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Identifying an odour source in fluid-advected environments, algorithms abstracted from
moth-inspired plume tracing strategies
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This paper presents algorithms for identifying the odour source of a chemical plume with significant filament intermittency
and meander developed in fluid-advected environments. The algorithms are abstracted from moth-inspired chemical plume
tracing strategies in two steps. First, we introduce the concept of the last chemical detection points that leads to construction
of a source identification zone and development of two variations in the source identification algorithms. Second, we use
Monte Carlo methods to optimise the proposed algorithms in a simulated environment. The evaluation results demonstrate
that the optimised algorithm achieves a success rate of over 90% in identifying the source location, the average identification
time is 3–4 min and the average error is 1–2 m surrounding the source location.

Keywords: biologically inspired searching strategy; chemical plume tracing; odour source localization; olfaction-based
navigation

1. Introduction
Recently, there has been a growing interest to apply a robot-
based chemical plume tracer in homeland security and envi-
ronmental monitoring. In order to develop the plume tracer
for a natural fluid environment application, DARPA/ONR
sponsored an interdisciplinary team to investigate biologi-
cally inspired chemical plume tracing (CPT) strategies un-
der the CPT program (Cowen and Ward 2002). Grasso et
al. (2000) implemented biomimetic strategies on their robot
lobster to analyse chemotaxis-based algorithms and to eval-
uate biomimetic strategies. Grasso and Atema (2002) em-
ployed a single sensor or two sensors detecting fluorescence
to compare the plume-tracing performance of three plume-
tracing strategy variations. Other studies (Liao and Cowen
2002; Weissburg et al. 2002) proposed sensor array-based
strategies and suggested that search strategies based on fol-
lowing the ‘edge’ of a plume (as opposed to the centreline
are robust). Hayes et al. (2002) used multiple robots to
improve a Spiral Surge Algorithm in the field of swarm
intelligence in order to find a plume and to trace the plume
to its source location. Li et al. (2001) developed, evalu-
ated and optimised both passive and active plume tracing
strategies inspired by moth behaviour. The strategies were
implemented on a REMUS underwater vehicle with a single
chemical sensor for the in-water test runs in November and
April 2002 at the San Clemente Island of California (Fig-
ure 1) and in June 2003 in Duck, North Carolina (Farrell
et al. 2005; Li et al. 2006). The field experiments success-
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fully demonstrated tracking of chemical plumes over 100
m and source identification on the order of tens of metres
in the near shore, oceanic fluid flow environments, where
plumes were developed under turbulence, tides and waves.
Nevertheless, the source identification still leaves signifi-
cant room for improvement.

This paper systemically discusses a process of design-
ing source identification algorithms, which are abstracted
from the moth-inspired plume tracing strategies based on a
single chemical sensor (Li et al. 2001). First, we introduce
the concept of the last chemical detection points (LCDPs)
to construct source identification zones (SIZs) (Li 2006)
and use chemical detection events to develop two varia-
tions of SIZ algorithms for the source identification along
with the measured tracer locations and fluid flow directions.
The first algorithm, which we call SIZ T, maintains the con-
stant number of the most recent LCDPs in a priority queue
in the time sequence. This algorithm computes the mini-
mum and maximum coordinates of the LCDPs in the queue
to construct an SIZ, and dynamically monitors the SIZ T
size during CPT missions. When the SIZ T size becomes
small enough, it identifies the mean of the LCDPs as the
source location. The second algorithm named SIZ F keeps
all the detected LCDPs in the order of the current up-flow
direction. A SIZ F holds a constant size. This algorithm dy-
namically checks the number of LCDPs inside SIZ F during
CPT missions. When the SIZ F contains enough LCDPs, it
identifies the most up-flow LCDP inside SIZ F as the odour
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4 W. Li

Figure 1. A CPT in-water test run conducted in November 2002 at San Clemente Island, California, using a plume of Rhodamine dye
developed in near shore ocean conditions. REMUS vehicle trajectory was documented over distance of 411 m from the first detection point
to the identified source location for the time in [480.3, 1190.6] s. The grey circles indicate locations where the chemical concentration
was above threshold when the vehicle was at that location.

source location. Second, we adopt Monte Carlo methods to
optimise the algorithms using a simulated plume with sig-
nificant filament intermittency and meander (Farrell et al.
2002), and evaluate the performance of source identifica-
tion manoeuvres in three aspects: reliability, identification
time, and accuracy.

This paper is organised as follows. In section 2, we state
the source identification problem. In section 3, we define the
concept of the last chemical detection points (LCDPs) and
present the two SIZ algorithms. In section 4, we analyse the
proposed algorithms. In section 5, we develop a strategy to
evaluate and optimise the algorithms. In section 6, we draw
conclusions about the algorithms.

2. Problem statements of source identification

Several groups have studied olfactory-based navigation in
structured environments. Russell (2001) included robotic
implementation of algorithms that estimate statistics of the
plume such as the plume centroid and experiments where
the chemical is constrained to a multiple-duct tunnel sys-
tem. Ishida et al. (1996, 2001) used an array of sensors to
track the plume by estimating the plume centreline, by esti-
mating parameters of a Gaussian plume-distribution model
or by estimating the three-dimensional (3-D) direction to-
ward the odour source. Marques et al. (2002) performed
plume tracing tests using mobile robots in laboratory en-

vironments. Lilienthal et al. (2004) reported test results on
proximity to a gas source when a laboratory robot manoeu-
vred in the vicinity of the source location in an environment
with scales of centimetres. However, the assumed condi-
tions in the experiments are hardly available in the real
world, and there exist multiple local concentration maxima
when a plume is propagated in a turbulence-dominated flow
environment. Recently, Li (2009) used six robots to local-
ize an odour source in a laboratory environment, but the
approaches still need to be validated for tracing a plume in
a natural environment.

For real application, the objective of source declara-
tion is to identify the chemical source in a natural envi-
ronment, where a robot-based tracer must be able to trace
a chemical plume over a significant distance to its source
location. Factors that complicate the source identification
include the unknown chemical source concentration, dif-
ferent advection distance of any detected chemical and the
significant flow variation with both location and time. Dif-
ferent from plume tracing, there is no clear analogue to
the robot Declare-Source behaviour for animals. For bio-
logical entities (e.g., moths), the conclusion of identifying
the pheromone source location may still be a mystery. In-
stead, while moth plume tracing relies primarily on sensed
pheromones, the final determination of the location of the
female moth could be based on data from multiple sensors,
including vision, tactile or even auditory cues. In this study,
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Applied Bionics and Biomechanics 5

however, available information for making source identi-
fication includes a set of above threshold concentrations
detected by a single chemical sensor, along with the mea-
sured instantaneous flow directions and robot manoeuvre
positions.

A straightforward idea of the source identification is
to estimate the odour source based on chemical detection
points (odour-hit points) during plume tracing activities.
The tracer has ceased progress up the plume because of
inter-hit distances of the odour-hit points. Nonetheless,
whether the tracer has reached the source is not foolproof
because small inter-hit distances might occur in all parts
of the plume (Hayes et al. 2002). The inter-hit distances
are sensitive to the sampling of the control system and the
predefined concentration threshold of a plume-tracing algo-
rithm. The fluid mechanics studies show that at medium and
high Reynolds numbers, the evolution of the chemical dis-
tribution in the flow is turbulence dominated (Murlis 1986;
Webster et al. 2001). As a result, the turbulent diffusion
process leads to a highly discontinuous and intermittent
distribution of the chemical plume, which makes source
identification based on odour-hit points more arduous.

3. Design of source identification algorithms

3.1. Last chemical detection point (LCDP)

We derive the source identification algorithms from the two
moth-inspired behaviours: Maintain-Plume and Reacquire-
Plume. Maintain-Plume is broken down into Track-In and
Track-Out activities because of intermittency of a chemi-
cal plume transported in a fluid flow environment (Li et al.
2001). The tracer alternatively utilises Maintain-Plume and
Reacquire-Plume in making progress towards the source
location in the up-flow direction. In a typical plume trac-
ing scenario, the tracer activates Track-In once it detects
the chemical, e.g., the activities during �T1 and �T3 in
Figure 2(a). It continues Track-Out when it loses contact
with the chemical within λ seconds, e.g., the activity dur-
ing �T2 in Figure 2(a). After λ seconds, it switches to
Reacquire-Plume for casting the plume, e.g., the activity
after �T4 in Figure 2(a). A chemical detection point at
which the tracer loses contact with the chemical plume for
λ seconds is defined as a LCDP, e.g., point (xlast, ylast) at
Tlast in Figure 2(a). In our applications, the coordinates of
(xlast, ylast) are specified in a coordinate system with the
origin defined by the centre of an operation area (OpArea).
We use a cloverleaf trajectory with the centre (xlast, ylast)
to implement the Reacquire-Plume behaviour, as shown in
Figure 2(b). We choose the length of each leaf by consid-
ering that the minimum value is constrained to be larger
than the tracer turning radius (10–15 m for the REMUS
vehicle). Note that one leaf is aligned with the down-flow
direction for the tracer to rediscover the chemical when it
has passed the source location. During a Reacquire-Plume

activity, the tracer either detects the chemical or completes
the cloverleaf trajectory Nre times (Nre = 2 or 3 for the
in-water tests). If Nre repetitions are completed without a
chemical detection, the tracer reverts to Find-Plume.

In order to develop the source identification algorithms,
we define a LCDP node by

struct LCDP Node
{

double Tlast, xlast, ylast;
double conc, fdir, fmag;
double xflow, yflow;

};

where Tlast is the time when the LCDP is detected, (xlast,
ylast) are the coordinates of the tracer at Tlast, conc is the
chemical concentration at (xlast, ylast) and Tlast, (fdir, fmag)
are the flow direction and magnitude at (xlast, ylast) and
Tlast, and (xflow, yflow) are the coordinates of (xlast, ylast) in
a new coordinate system defined according to the current
flow direction. For convenience, we also use (xlast, ylast)
to represent the LCDP in the following discussion. Note
that conc and fmag in the LCDP node do not appear in
the source identification algorithm, but they are reserved
for possible further application. In the moth-inspired CPT
strategies, the chemical sensor works as a “binary detector”.
The Boolean value is “1” if the chemical concentration is
above the threshold. Otherwise, the Boolean value is set to
“0”. The Monte Carlo study in (Li et al. 2001) shows that
decreasing the threshold increases the time the tracer stays
“in the plume”, but it is accompanied by an increase in
noise. The threshold value was chosen as conc > 4% of the
full scale (i.e., 0.2 V) on the basis of an analysis of chemical
sensor data from the REMUS operating in San Diego Bay in
absence of the chemical (Li et al. 2006). In this scenario, the
sensor readings were pure noise but never surpassed 0.2 V.
The CPT strategies adopt this threshold for both the in-water
tests and the simulation studies. The proposed algorithms
make the source identification decision on the basis of the
number of LCDPs in SIZ instead of their concentrations. A
limited increment of this threshold may affect the number of
odour-hit points detected during a Maintain-Plume activity,
i.e., it may increase the number of Track-Out activities.
However, any Track-Out activity within λ seconds does not
generate a new LCDP.

3.2. Patterns for source identification

LCDPs provide important information about plume traver-
sal distances between Reacquire-Plume activities. The
LCDPs are separated along the axis of the plume when
the tracer is far from the source location, while the LCDPs
are clustered in the vicinity of the source when the tracer is
approaching the source location. The tracer usually exits the
plume and moves up flow from the source when it traces the
plume to the source location. When this situation occurs,
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6 W. Li

Figure 2. Derivation of source identification algorithms from moth-inspired plume tracing strategies. (a) Definition of a last chemical
detection point: the tracer moves up-flow when it detects concentration above the threshold and still keeps an up-flow motion with an
offset when it detects concentration below the threshold. The tracer records (xlast, ylast) as a LCDP if it cannot re-catch the plume within λ
seconds during Track-Out activity. (b) Patterns for identifying the odour source using the LCDPs: the tracer generates most of the LCDPs
in the vicinity of the source location, when it overshoots the source and re-catch the plume using Reacquire-Plume. Reacquire-Plume is
implemented using a cloverleaf trajectory, and its centre is located at (xlast, ylast).

the tracer also activates Reacquire-Plume to rediscover the
plume on a cloverleaf trajectory. As a result of the frequent
switching between Maintain-Plume and Reacquire-Plume,
the tracer generates a pattern with a number of cloverleaf
trajectories in the vicinity of the source location, as shown
in Figure 2(b). Such a distribution of the LCDPs is em-
ployed to facilitate development of the source identification
algorithm.

The tracer detects a new LCDP and inserts its node
into the priority queue when it switches its behaviour from

Maintain-Plume to Reacquire-Plume. The queue sorts the
LCDP nodes in a new coordinate system, defined in order
of the current up-flow direction, fdir + 180◦. Its x-axis is
aligned with the fdir direction, and its origin is located at
(xlast, ylast). The algorithm maps each LCDP in the queue
into the new coordinate system by
[

xflow

yflow

]
=

[
cos(fdir + 180◦) − sin(fdir + 180◦)

sin(fdir + 180◦) cos(fdir + 180◦)

][
xlast

ylast

]
.

(1)
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Figure 3. Maintain the LCDPs with a heap-based priority queue.
The lowest number indicates the highest priority. Copy an item
from the priority queue to a list needs following steps: first, the
queue swaps the first LCDP node (LCDP with 1) with the last
LCDP node (LCDP with 4); second, it copies the LCDP node
with the highest priority to the list and deletes the last node; third,
the queue compares the LCDP node (LCDP with 4) on the top with
its two children, swaps with the smallest child if the LCDP node
is greater than its children or child and repeats this comparison
until the LCDP node is less than both of its children.

The xflow components determine the LCDP nodes’ pri-
orities according to the current up flow direction. The small-
est xflow has the highest priority. The more LCDPs the pri-
ority queue accumulates, the more information about the
source location the tracer gathers. The top panel of Figure 3
illustrates ten LCDPs in circles, and the bottom panel of
Figure 3 shows that they are sorted in order of the cur-
rent up flow direction. The smaller the number associated
with a LCDP, the higher the priority assigned to the node.

The top node always indicates the most up flow LCDP. In
each planning cycle, the identification algorithm copies the
LCDPs from the queue to a list using the following proce-
dure. (1) The queue swaps the top node (the LCDP with the
highest priority) with the last node. (2) The queue copies
the LCDP with the highest priority to the list and deletes
the last node. (3) The queue moves a new LCDP with the
highest priority to the top, as shown in the bottom panel of
Figure 3. The queue repeats this procedure until it moves
all the LCDPs to the list. Subsequently, the list receives the
LCDPs according to their priorities.

3.3. SIZ T algorithm

The SIZ T algorithm keeps updating the Ndec most recent
LCDPs during CPT missions and sorts them in the order
of time serials using the priority queue. The algorithm con-
structs the SIZ T size (shown in the left figure of Figure 4)
by

x
(min)
last = min

{
x

t(i)
last

}
x

(max)
last = max

{
x

t(i)
last

}
y

(min)
last = min

{
y

t(i)
last

}
y

(max)
last = max

{
y

t(i)
last

}
i = 1, . . . , Ndec (2)

where a superscript t indicates that the queue sorts the Ndec

LCDPs in time series. When the tracer approaches the odour
source, the distances between the LCDPs become smaller,
i.e., the SIZ T size becomes smaller. During CPT missions,

Figure 4. The left figure illustrates SIZ T in the shape of a rectangle, which is determined by computing the minimum and maximum
components of the LCDPs. SIZ T identifies the source location when the size becomes small enough. The right figure illustrates SIZ F in
the shape of a circle. SIZ F holds a constant size and identifies the source location when it contains enough LCPDs.
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8 W. Li

Table 1. Pseudo code for SIZ T algorithm

ALGORITHM SIZ T(Q[ 1, . . . , Ndec])
//Identifying the source location by SIZ T algorithm
//Input: Priority queue Q[1, . . . , Ndec]
//Output: Status of source identification

if (Ndec ≥ Nini)
Sort Q in the order of the time serials
for i ← 1 to Ndec do

P [i] ← Q[i] // P is a list
Calculate (x(min)

last , y
(min)
last ) and (x(max)

last , y
(max)
last ) in Equation (2)

Calculate the diameter of SIZ T in Equation (3)
if the diameter ≤ εT

return (x(m)
last , y

(m)
last ) as the source location

else
return no source location identified

else
return no source location identified

the SIZ T algorithm dynamically checks the diagonal

R =
√(

x
(max)
last − x

(min)
last

)2 + (
y

(max)
last − y

(min)
last

)2
. (3)

When R ≤ εT, SIZ T identifies the mean

x
(m)
last =

Ndec∑
i=1

x
t(i)
last/Ndec

y
(m)
last =

Ndec∑
i=1

y
t(i)
last/Ndec

(4)

as the source location. Table 1 lists the pseudo code of the
SIZ T algorithm with three parameters: the criterion, εT,
for checking the SIZ T size; the integer, Ndec, indicating
the constant number of LCDPs maintained in the queue,
and the initial value,Nini, identifying the priority queue for
accumulation of at least Nini LCPDs before starting source
identification. The parameters εT and Ndec are adjustable
and crucial to achieving the desired performance of source
identification.

3.4. SIZ F algorithm

The SIZ F algorithm maintains all LCDPs in the order of
the current up flow direction using the priority queue. SIZ F
holds a constant size, εF, and makes the source identification
with the following iterative construct: First, SIZ F calcu-
lates (x(m)

last , y
(m)
last ) of all the LCDPs; Second, SIZ F find the

point, pmax, with the largest distance to (x(m)
last , y

(m)
last )

Dmax = max

{√(
x

f (i)
last − x

(m)
last

)2 + (
y

f (i)
last − y

(m)
last

)2
}

× (i = 1, 2, . . . , Nall) (5)

from the priority queue, where a superscript f indicates that
the LCDPs are sorted in the order of the most recent up flow
direction and Nall is the total number of LCDPs detected
during a CPT mission. If Dmax is greater than εF, SIZ F re-
moves the LCDP with pmax from the set of LCDPs. These
calculations repeat until all remaining LCDPs are close
enough to (x(m)

last , y
(m)
last ), i.e., they all are located inside SIZ F,

as shown in the right figure of Figure 4. If the number of
the remaining LCDPs is greater than Nmin, SIZ F identifies
its most up flow LCDP as the odour source. Table 2 lists
the pseudo code of the SIZ F algorithm with three param-
eters: the SIZ F size, εF, the initial value,Nini, and the inte-
ger, Nmin, which indicates the minimum number of LCDPs
remaining inside SIZ F for the source identification. The
SIZ F algorithm also has two the adjustable parameters εF

and Nmin. There are three main differences between SIZ F
and SIZ T: (1) SIZ F maintains all the LCDPs using the
queue, while SIZ T updates only the constant number of
the most recent LCDPs in each planning cycle. (2) SIZ T
is in the shape of a rectangle, while SIZ F is in the shape
of a circle, as shown in Figure 4. (3) The SIZ F algorithm
uses an iterative construct to cluster LCDPs inside SIZ F,
while SIZ T uses a sequential construct to check its size.
The parameter, Nini, defined in the algorithms works as a
filter to block some invalid LCPDs only when Ndec or Nmin

is very small.

4. Algorithms analysis

4.1. Simulated fluid-advected plume

We evaluate the SIZ algorithms using a tracer with
the REMUS dynamics in a simulated flow environment
(Farrell et al. 2002), as shown in Figure 5. The simulated
plume model achieves significant computational simplifi-
cation relative to turbulence models, but it was designed to
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Table 2. Pseudo code for SIZ F algorithm

ALGORITHM SIZ F(Q[1, . . . , Nall])
//Identifying the source location by SIZ F algorithm
//Input: Priority queue Q[1, . . . ,Nall]
//Output: Status of source identification
if (Nall ≥ Nini)

Sort Q in the order of the current up-flow direction
L[1, . . . ,Nall] ← Q[1, . . . ,Nall] ; n1 ← Nall // L is a list
status ← false
while n1 ≥ Nmin do

Calculate (x(m)
last , y

(m)
last ) of all LCDPs in the priority queue;

Find pmax with Dmax in Equation (5)
if Dmax > εF

remove pmax from L; n1 ← n1−1
else

status ← true; break
if status = true

return (xf (1)
last , y

f (1)
last ) as the source location

else
return no source location identified

else
return no source location identified

maintain the plume characteristics that significantly com-
plicate the plume tracing problems (intermittency, meander
and varying flow) caused by natural flow fluid. Instead of
adjusting the Reynolds numbers, it controls a filament re-
lease rate (5–10 filaments/s) to simulate filament intermit-
tency and addresses the meandering nature of the plume
as a key factor complicating the plume tracing. It also ma-
nipulates flow variation to challenge the CPT strategies.
An OpArea is specified by [0,100] × [−50,50] in metres.
The simulation time step is 0.01 s. A source location is
chosen as (20, 0) in metres for checking the accuracy of
identified source locations, but it is unknown to the tracer
during CPT test runs. The simulation environment is set
below: first, the filament release rate is 5 filaments/s be-
cause a low release rate may result in significant plume
intermittency, which often causes the tracer to lose contact
with the plume and consequently to make spurious identi-
fication. Second, the mean fluid velocity is 1 m/s. Figure
6(a) illustrates flow velocity varying from 0.86 to 1.17 m/s
detected during a simulation run. The flow speed and vari-
ation, which are much larger than these detected during
the in-water test runs, significantly challenge the efficacy
and robustness of the plume tracing strategies. Next, mea-
sured fluid direction, which is corrupted by additive noise
from a white normal random process, varies in [−27.42,
28.30] in degree, as shown in the top panel of Figure 6(b).
The bottom panel of Figure 6(b) displays an expanding
scale of the flow direction for the time in [184.3, 186.3]
in second. These settings remain for all simulations in this
study.

Figure 7 illustrates a plume-tracing trajectory of a test
run from the first point of plume detection (marked by

a triangle) to the defined source location (marked by an
asterisk) as well as odour-hit points. In order to present the
difficulties of tracing the plume with significant meander
in the larger scales of the OpArea, we address this test run in
three regions of the OpArea: the significant meander region
the, spurious identification region and the source identifica-
tion region. The simulated plume exhibits significant me-
ander, filament intermittency and low concentration, when
it is transported over a significant distance (approximately
37 m in Figure 7) from its source. In this region, a tracer
rarely directs toward the plume source despite its detec-
tion of an above threshold concentration. Successful plume
tracing through this region assures tacking of the plume
over distances of 100 m in the field tests. The concen-
tration of the plume is still patchy, but plume meander is
relatively smaller when the plume is advected to an inter-
mediate distance (10–37 m in Figure 7) from its source.
Most spurious identifications occur in this region because
of significant filament intermittency, as shown in Figure 8.
In the region within 10 m from the source, the tracer eas-
ily tracks the plume toward its source, but its manoeuvring
in the vicinity of the source helps investigate the LCDPs
characteristics for the source identification. For simulation
test runs, the tracer velocity command is set as 1 m/s for
Maintain-Plume. At this speed, which is close to the mean
fluid velocity, we evaluate if Track-Out navigates the tracer
to turn into a correct direction to encounter next chemi-
cal filament. The command for Reacquire-Plume is set 1.4
m/s, which is slightly greater than the mean fluid velocity
to re-catch the lost plumes during Reacquire-Plume ma-
noeuvres. The command 2 m/s for Find-Plume allows the
tracer to explores the OpArea quickly. Figure 6(c) plots the
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10 W. Li

Figure 5. Olfactory-based chemical plume tracing in a simulated fluid-advected environment. The greyscale indicates above threshold
concentration. The arrows indicate the magnitude and direction of the local flow vector at the tail of the arrow. (a) Tracer starts its CPT
mission from the home location, including plume finding and plume tracing. (b) Tracer manoeuvres in the vicinity of the source location
to identify the odor source.

tracer speed variations and transits between the different
behaviours during a simulation test run.

4.2. Analysis of source identification algorithms

An identified source location is valid if its coordinates
are situated within a given distance from a defined source

location; otherwise it is invalid (spurious). For the simula-
tion evaluations, a valid source location is located within
10 m of the defined source location. Accordingly, iden-
tification time is the manoeuvring time prior to identi-
fying the source location within the distance of the de-
fined source location. Note that the SIZ algorithms do not
interrupt Maintain-Plume and Reacquire-Plume activities
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Figure 6. Flow information during a simulation test run. (a) Flow speed varies in [0.86, 1.17] in m/s for t in [26.69, 234.30] s during
the test run. (b) Flow direction corrupted by additive white noise varies in [−27.42, 28.30] in degree for t in [26.69, 234.30] s during the
test run (the top panel of the figure) and the expanding scale of the flow direction for t in [184.3, 186.3] s. (c) Vehicle speed in m/s is
documented for t in [26.69, 234.30] s.

during CPT missions as they only use LCDPs to estimate
the odour source. We propose a hypothesis: given an algo-
rithm version, including its type and parameter setting, the
mean identification time of valid source locations is almost
independent of a tracer initial (a home location). To validate
this hypothesis, we design two groups of evaluations with
respect to initials (80, −30) and (40, 20) in metres. The two
initials specify the different plume tracing characteristics.

Starting at (80, −30) m, the tracer must trace the plume
through the significant meander region while the traversal
distance from (40, 20) m to the source location is relatively
shorter. On the basis of the Monte Carlo study results (the
evaluation strategy will be explained in detail in section
5), we discuss the two algorithm versions with the paral-
lel parameter values: SIZ T with εT = 6 m and Ndec = 6,
and SIZ F with εF = 6 m and Nmin = 6. These parameter
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12 W. Li

Figure 7. Tracer trajectory is documented from the first detection point to the identified source location during a simulation test run. The
thick grey circles indicate locations where the chemical concentration was above threshold when the tracer was at that location. Tracer
traces the plume toward its source through significant meander region, spurious identification region and source identification region.

settings achieve a high success rate of test runs because an
intention of the validation is to evaluate the identification
time of the valid source locations identified during CPT
test runs. Because Nini = Ndec and Nini = Nmin, the initial
value, Nini = 6, is discarded. SIZ T needs the last six most
recent LCDPs close enough for the source identification,
while SIZ F needs to enclose the six most up flow LCDPs.
For each group, the simulations continue 1000 CPT test
runs without duplications of the trajectory, the odour-hit
points or the LCDPs. We define a CPT test run as a cycle
the tracer starts at its home location and returns the home
location. The test run fails if the tracer cannot identify the
source location within the time limit Tmax = 1000.0 s (in
simulation studies, this limit is used to measure CPT perfor-
mance, while in the field tests a similar setting was defined
to check remaining energy in order to bring the tracer back
home); otherwise, it records the identification time, the to-
tal time for the test run and the coordinates of the identified
source location. For each test run, both of the versions work
concurrently, and the following situations may occur. First,
both record an “over-time” test run, if they cannot identify
the source location within Tmax. Second, if one out of two
first identifies the odour source within Tmax = 1000 s, it
is deactivated after reporting the identified source location,
the identification time and the total time cost, but the tracer
continues its CPT manoeuvre to identify the odour source
using the next version. Finally, the tracer returns the home
location, if the second version identifies the odour source
within Tmax again; otherwise, it returns to the home location
with a record of an “over-time” test run.

Figure 9(a) shows that the SIZ T version averages the
total time of 388 s and 279.9 s marked by circles to

complete the CPT test runs with respect to (80, −30) m
and (40, 20) m; while the SIZ F version spends 359.5 s and
245.1 s. The two tracer initials apparently cause different
times for plume tracing from the first chemical detection
to the source. For the source identification, however, the
SIZ T version averages nearly the same time (218.5 s and
219.2 s marked by asterisks in Figure 9(a)) with respect to
(80, −30) m and (40, 20) m. Similarly, the SIZ F version
averages nearly the same time (186.8 s and 183.9 s). The
identification time of a valid source location relies only on
the duration in which the tracer manoeuvres in the vicin-
ity of the source location to detect sufficient LCDPs for
source identification. The validated hypothesis provides a
foundation for optimising the SIZ algorithms free from ini-
tial positions. The SIZ T version yields standard deviations
of 90.7 s and 95.3 s, while the SIZ F version only yields
standard deviations of 49.6 s and 46.1 s marked by squares
in Figure 9(a).

Figure 8. Tracking of the plume with significant filament inter-
mittency may cause spurious source identification when the tracer
clusters two LCDPs for source identification.
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Figure 9. Evaluation results of SIZ T and SIZ F with respect to two initials (80, −30) and (40, 20) in metre for 1000 simulation test
runs. (a) Mean total time, mean identification time and standard deviation of identification time for the 1000 test runs. (b) Success rate,
spurious identifications and over-time runs of the 1000 test runs. (c) Mean identification error, standard deviation of identification errors
and error distributions.

Figure 9(b) shows that both of the versions achieve
success rates of over 98% with respect to the initial posi-
tions (40, 20) m and (80, −30) m. For (80, −30) m, SIZ T
makes six spurious identifications and fourteen “over-
time” test runs during the 1000 CPT test runs, and SIZ F
makes ten spurious identifications and six “over-time” test
runs. For (40, 20) m, SIZ T makes no spurious identifi-
cation and two “over-time” test runs. In contrast, SIZ F
makes five spurious identifications and no “over-time” test
run.

The SIZ F version records the mean identification error
less than 1 m, while the SIZ T version, about 3.27 m, as

shown in the top panel of Figure 9(c). The standard variation
varies in [1.10, 1.22] in metre. The bottom panel of Fig-
ure 9(c) summarises a distribution of the identified source
locations in three groups: within 2 m, between 2 and 5 m
and between 5 and 10 m. The SIZ F version achieves the
high accuracy for the 1000 test runs. 88.82% of the valid
source locations are located within 2 m, and only about
1% between 5 and 10 m. Using the SIZ T version, however,
only 8.78% of the identified source locations fall within 2 m
and over 80.0%, between 2 m and 5 m. On the basis of the
thorough analysis above, we choose the SIZ F algorithm
for optimisation.
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5. SIZ F Algorithm optimisation

The optimisation is designed to achieve a high success rate
(reliability) with a rational identification time by investi-
gating the SIZ F parameters (εF, Nmin, Nini). Note that the
sole input to the SIZ algorithms is the priority queue main-
taining LCDPs detected during a CPT test run. This feature
leads to the development of a new strategy for optimisation.
Here, we redefine a CPT test run by deactivating any source
identification algorithm. The tracer starts at a home loca-
tion, utilises Find-Plume, Maintain-Plume and Reacquire-
Plume to move toward the source location and returns the
home location only when the mission time reaches Tmax =
1000 s. We store LCDP (and the odour-hit points) detected
during each test run into its associated log file. The 1000
CPT test runs; create the 1000 log files. For optimisation,
we retrieve the LCDP nodes of each test run from its log file
and insert them into the priority queue as the input to the
SIZ F algorithm. This strategy has two advantages: first, it
evaluates different algorithm versions under identical ex-
perimental conditions, as it uses the same LCPDs of the
CPT test runs; and second, it greatly reduces computational
time for optimisation, as retrieving the LCDPs from the
log files costs much less time than running 1000 CPT mis-
sions on-line. Figure 10 illustrates 38 LCDPs marked by red
squares and 4066 odour-hit points marked by green circles
detected during one test run. The LCDPs are only 9.35% of
the odour-hit points, and most of them are clustered in the
vicinity of the source location. On the basis of the retrieved
LCDPs of the 1000 test runs, we conduct the three groups of
evaluation.

Evaluations in Group 1 assess the effects of Nini and
Nmin on the identification performance. We fix εF = 4 m,
vary Nini from 4 to 5 and increase Nmin from 2 to 4. The eval-
uation results are interpreted with the following remarks.
First, given Nmin = 2, changing Nini from 4 to 5 results in
increasing the success rate of 7.3% and the mean identifi-
cation time of 5.5 s, indicated by two points (60.3, 51.9)
and (67.6, 57.4) in the top panel of Figure 11(a). Nini works
as a filter to remove some invalid LCDPs. Nmin takes over
Nini, if Nmin is close to Nini. For instance, given Nmin = 4,
increasing Nini from 4 to 5 makes only 0.1% increase of
the success rate and no change in the identification time, as
indicated by two points (95.1, 157.0) and (95.2, 157.0) in
the top panel of Figure 11(a). Nini = 4 is fixed for the sub-
sequent evaluations. Second, increasing Nmin significantly
improves the success rate. The two curves of Group 1 in
Figure 11(a) show that, given Nini = 4 or Nini = 5, changing
Nmin from 2 to 4 results in increasing the success rate from
60.3% through 86.3% to 95.1% or from 67.6% through
88.9% to 95.2%, as increasing Nmin significantly decreases
the spurious identifications from 396 through 136 to 44 or
from 321 through 108 to 42 in the top panel of Figure 11(b).
Third, increasing Nmin by one results in increasing the iden-
tification time about 50 s, denoted by a time constant, κ ,

Figure 10. Distribution of odour-hit points and LCDPs of a sim-
ulation test run. (a) 4066 odour-hit points and 38 LCDPs detected
during the test run. (b) Expanding scale of odour-hit points and
LCDPs in the vicinity of the odour source.

which allows the tracer to traverse at least one cloverleaf
with a diameter of 10–15 m to detect next LCDP during a
Reacquire-Plume activity. We propose a time metric (Nmin –
1) × κ to estimate the identification time. Note that (Nmin –
1) × κ provides further evidence of identification time free
from tracer initials. For example, when Nmin = 4, the esti-
mated time of 150 s is close to the evaluation result of 157 s.
In Group 1, Nmin = 2 achieves the low identification time
of 51.9 s and 57.4 s, close to the estimated value of 50 s, but
the success rate of about 60% is not acceptable. Therefore,
Nmin = 2 is excluded in the following evaluations.
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Figure 11. Evaluation results of SIZ F optimisation for 1000 simulation test runs. (a) Mean identification time versus success rate for the
1000 test runs. (b) Spurious identifications, over-time runs and standard deviation of identification time for the 1000 test runs. (c) Mean
identification error and standard deviation of identification error.
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Three evaluations in Group 2 further detect the effects
ofNmin on the identification performance at εF = 5 m. This
group takes Nini = 4, as recommended above, and increases
Nmin from 3 to 5. The evaluation results show that the
Nmin increases results in improving the success rate from
80.5% through 92.5% to 97.2% at a given εF, but the mean
identification time increases from 80.3 s through 122.1 s to
169.1 s in the curve of Group 2 in Figure 11(a). However,
increasing Nmin from 4 to 5 makes an improvement of the
success rate only 4.7%. Comparing Group 2 with Group
1 for Nmin = 3 or Nmin = 4, increasing εF from 4 m to
5 m results in reducing the mean identification time from
91.9 s to 80.3s or from 156.99 s to 122.09 s but results in
deceasing the success rate from 86.3% to 80.5% or from
95.1% to 92.5%.

Four evaluations in Group 3 further investigate the ef-
fects ofNmin on the source identification performance at
εF = 6 m. This group also takes Nini = 4, and changes Nmin

from 4 to 7. Represented by the curve of Group 3 in Fig-
ure 11(a), the evaluation results show that increasing Nmin

from 4 to 7 results in improving the success rate from 88.9%
through 96.0% and 98.4% to 98.9% but increasing the mean
identification time from 113.1 s through 147.7 s and 186.7 s
to 222.7 s. Note that increasing Nmin from 4 to 5 or from 5 to
6 improves only the success rate of 2.4% or 0.5%. This result
indicates that the success rate nearly reaches its limit when
Nmin > 6. Comparing Group 3 with Group 2 for a given
Nmin, increasing εF from 5 m to 6 m results in reducing the
mean identification time but decreasing the success rate.

We summarise the evaluations in Groups 1–3. First,
a high success rate goes along with a high identification
time, as shown in Figure 11(a). In application, achieving a
high success rate should have priority. Here, we recommend
Nmin = 4 or Nmin = 5, since a larger Nmin cannot signifi-
cantly improve the success rate and unnecessarily increases
the identification time. Increasing Nmin causes a slight in-
crease of “over-time” runs shown in the middle panel of
Figure 11(b). Second, a bigger εF makes the source identifi-
cation quicker but causes a lower success rate. Figure 10(b)
illustrates the expanded scale of the vicinity of the source
location. The estimated plume width over 4 m suggests εF =
5 m or εF = 6 m. These settings from Groups 2 and 3 result
in the standard deviation of the identification time in [34.1,
55.3] s, as shown in the bottom panel of Figure 11(b). Next,
the mean and standard deviation of identification errors in a
scope from 2.77 m to 0.59 m are satisfied, as shown in Fig-
ure 11(c). Finally, Nini is ignored because Nini = 4 ≤ Nmin.
The optimised algorithm achieves the mean identification
time in about 3 min and a success rate of about 90%.

6. Discussion and conclusion

Insect-inspired navigational strategies were reviewed by
Cardé and Willis (2008). We abstract the two SIZ source
identification algorithms from the moth-inspired plume
tracing strategies reported by Li et al. (2001) and use Monte

Carlo methods to evaluate and optimise the source identifi-
cation algorithms in a simulated plume environment (Farrell
et al. 2002). In comparison with plume tracing experiments
in a laboratory environment, simulation studies provide the
following advantages: (1) Using the simulated plume, dif-
ferent CPT strategies can be evaluated under the uniform
conditions. (2) Tracing the simulated plume is much more
difficulty than laboratory plumes, since the fluid flow di-
rections and magnitudes in the simulated environment vary
in location and time, while wind directions and magnitudes
in the laboratory environment remain nearly unchanged
(Kowadlo and Russell 2003). In fact, odour source in a
laboratory environment can be easily localised with point-
by-point searching strategies. (3) Flow speed and flow vari-
ations in the simulation runs, which are much larger than
those detected during the in-water test runs (Li 2007), dis-
perse the chemicals rapidly to challenge the efficacy and
robustness of plume tracing strategies.

The SIZ T condition for source declaration is stronger
than the SIZ F condition. SIZ T needs the six most recent
LCDPs close enough for source declaration, while SIZ F
needs the six most up flow LCDPs close enough. The SIZ T
condition requires a robot to overshoot nearly the same po-
sition in the vicinity of the odour source for the last six
times, but a number of factors can disperse LCDPs, such
as the width of chemical plumes, the variation of flow di-
rections, the intermittency of filaments or the robot’s me-
chanical restrains. However, by using the SIZ F algorithm,
it is relatively easier to enclose the six most up flow LCDPs
inside SIZ F, since the odour source located in the up flow
direction always makes the robot an up flow progress. The
result in Figure 9(a) shows that SIZ F, in average, saves
about 14.5% energy to complete source declarations.

The simulation studies show that a success rate in
declaring source locations reaches about 90%, the aver-
age time cost of the identified source locations is about 3–4
min and the average error is about 1–2 m for 1000 test
runs in an operation area with length scales of 100 m. This
success rate is much higher than the 70% rate from tracing
a pheromone plume in insects (Belanger and Arbas 1998).
The CPT strategies investigated in this paper have potential
for extension to trace plumes in three dimensions. Our fur-
ther research will address simulation evaluations of tracing
a chemical plume in 3-D.
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