[image: image1.jpg]Iseley, D. T., 1991, *Trenchless Excavation Methods: Classification and Evalu-
ation,” Journal of Construction Engineering and Management, Vol. 117, No. 3,
Sept., pp. 65-76.

Joha, J. E. A., 1969, Gas Dynamics, Allyn and Bacon, pp. 40-42.

Lee S.L., et al, 1988, ““Rational Wave Equation Model for Pile Driving
Analysis," ASCE, Journal of Geotechnical Engineering, Vol. 114, No. 3, Mar.

Milligan, G., 1990, *“Trenchless Construction Techniques,’" Engineering Di-
gest, Vol. 36, No. 2, pp. 26-28.

‘Whitlow, R., 1988, Basic Soil Mechanics, Longman Scientific and Technical,
Essex, England.

Fast Mapping of Obstacles Into
Configuration Space'

Wei Li,? Chenyu Ma,?> Zushun Chen,?
Qi Cao,” and Jingnan Ye?

This paper presents an approach to fast mapping of obstacles
from a workspace into a configuration space, based on defining
some specific points in the workspace as fundamental obstacles.
In order to achieve this objective, we propose efficient algo-
rithms for mapping complex Cartesian obstacles by determining
their critical points. The computational time required for map-
ping a two-dimensional obstacle is approximately 5 ms with a
33 Mhz 80486 CPU. Obstacle mapping in this paper is based
on a CAD model of an environment that provide global informa-
tion. The proposed mapping procedure and algorithms are suit-
able for industrial manipulators with a symmetric workspace
occupied by polygonal obstacles.

1 Introduction

Since Lozano-Perez (1981) investigated the problems of ro-
bot motion planning using C-space, a great deal of research has
been devoted to construction of C-space. One of the most widely
used approaches is to decompose C-space into regular and irreg-
ular cells (Lozano-Perez, 1987; Faverjon, 1984). Warren et al.
(1989) improved mapping performance by classifying *‘regu-
lar’ and *“singular” points on an obstacle. These C-space algo-
rithms are efficient for path search in static environments. How-
ever, they cannot be used in real-time path planning since large
amounts of computational time is needed to deal with a robot’s
kinematics and geometry, as well as the obstacles’ geometry.
Branicky and Newmann (1990; 1991) used primitives’ images
to speed up the mapping process by cell decomposition. The
efficiency of path searching using cell decomposition depends
largely upon the size of the cells generated. If the decomposed
cells are large, the searching process is fast but path searching
may fail due to the loss of accuracy; if the decomposed cells
are small enough, collision-free paths can be found, but the
search process requires more execution time. Another approach
for obstacle mapping is to compute collision boundaries be-
tween a robot and obstacles in terms of the robot’s kinematics
on the assumption that the robotic arms and obstacles are all
polyhedral. For instance, Ge and McCarthy (1990) have pre-
sented the algebraic equations of C-space obstacles.

' Some of the results in this work were published in the Proc. of the 1995
American Control Conference.

? Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, People’s Republic of China.

Contributed by the Dynamic Systems and Control Division of THE AMERICAN
SOCIETY OF MECHANICAL ENGINEERS . Manuscript received by the Dynamic Sys-
tems and Control Division May 20, 1997. Associate Technical Editor: B. Siciliano.

298 / Vol. 120, JUNE 1998

This paper presents a practical approach to real-time path
planning for a robot, based on fast mapping of obstacles into
configuration space (C-space). Its basic idea is to define some
specific points in workspace (W-space) as fundamental obsta-
cles and to construct a database of fundamental obstacles’ im-
ages in C-space (Li, 1990). In our previous works (Li, 1991;
Li and Zhang, 1993), main fundamental obstacles were intro-
duced to reduce the memory of the database; an analytical model
for mapping fundamental obstacles was presented according to
a robot’s kinematics as well as geometry; and slice C-space
obstacles were proposed to build a free subspace. Since mapping
a Cartesian obstacle based on fundamental obstacles is superim-
posing images of fundamental obstacles on its borders, the study
of the paper is to further speed up the time-consuming procedure
of C-space construction by selecting the critical points. Finally,
the computational time required by the existing approaches
above is compared with that of the proposed one.

2 Off-Line Mapping of Fundamental Obstacles
Since most robot’s W-spaces are symmetric, they can be

formed by moving an area around their symmetric axes. Such

an area is known as a robot’s fundamental area. Figure 1(a)

T EE T

Fig. 1(b)

Fig. 1 (a) Fundamental area of a PUMA robot; (b) Fundamental obsta-
cles of the PUMA robot

Transactions of the ASME

[image: image2.jpg]Fig. 2 Geometric models for mapping fundamental obstacles

shows a fundamental area of a PUMA robot, denoted by the
plane XOZ. In a polar coordinate system, XOZ can be expressed
by Eq. (3); and its original point is the intersection of the axes
X and Z. A grid is used to discretize XOZ. Intersection points
of verticals and horizons on the grid are defined as fundamental
obstacles FO, = (x, z) shown in Fig. 1(b). The distance, 5,
between two neighboring FO, is chosen to be 40 mm because
5 is smaller than the radius of the robot’s wrist (approximately
42.5 mm). Each FO, has two important parameters

r=vV*+

-

where ris the distance between FO, and the original point, and
(p is the angle between r and the axis X.

Since FO, are independent of real obstacles in an environ-
ment, their C-space obstacles, denoted by CO(FO;), can be
precomputed in terms of the robot’s kinematics and geometry.
If joints 6., 65, and are assumed to be zero, the analytical
model of computing CO(FO,) without considering the robot’s
geometry can be written by

(§8]

(2)

6, = arctan (3) - arclan(4) 3)

x ;r +y +di
hy = x cos #; + y sin 6, 4
h::h;+ *+ai—di—ai)

2a,
—_—

Vit + 22— @) — a3 = dy = (ds + do) (6)
6, = arctan (ﬂ) ~an:l.an< b))

z :Qh} +22—h3

|9!:ammn(h, Auz?osﬂz) =

z+ aysin 6,

_amm(—))
V(hy — ay cos 62)° + (z + ap sin 6,)* — a3

where d; represents a point on the center line of the forearm
shown in Fig. 2. Table 1 lists the DH-parameters a, ds, as, d,
and d, of the PUMA 560 robot. Dashed curves in Fig. 3 show

Journal of Dynamic Systems, Measurement, and Control

Table 1 DH-parameters of the PUMA 560 robot

a 3 a3 dy ds
T2 0mm 149 5mm 20 5mm T2 0mm S6smm

270

180

920

45 90
Fig. 3 The images of fundamental obstacles in C-space

CO(FO,) without considering the geometry. Here, we suppose
that the fundamental area is located at #, = 0 due to the symme-
try of the W-space. In order to avoid collisions, CO(FO,) has to
be modified by taking the robot’s geometry into consideration.
Because of the thickness, d,,, of the forearm shown in Fig. 2,
the forbidden region of 6, becomes
(d; + 0.5d,
e]

8 = [Biins Ormac] = [amtan (%) — arctan

Similarly, the forbidden region of 6, and #; must be enlarged
by its upper boundary 5, and lower boundary ;.

. (R . (4,
65y = 6 + arcsin (—dm) — arcsin (Fl)

1 :

(10)

2 R . (4
6y, = B — arcsin (T,) + arcsin (j) (11)

J

i Ruax — Ruin)

d, = 12
3 R 12)
where Ry, and R, are radii of the ends of the forearm in
Fig. 2. Solid curves in Fig. 3 show CO(FO,) regarding the

geometry.

3 Real-Time Mapping of More Complex Obstacles
by Critical Points

For computing complex C-space obstacles, we only need to
save the images of FO, , that are located along the positive half
of the horizontal axis on XOZ, denoted by MFO,, since all
CO(FO,) can be computed based on CO(MFO,) (Li, 1991).
According to the DH-parameters and 6, we obtain the number

JUNE 1998, Vol. 120 / 299

[image: image3.jpg]Table 2 Coordinates of CO(MFO,)

PO, = (10.0)_| WO, = (3.0 | MFG; = (130,0) | MPO, = (160,6) | MFO; (300,07
70,704, MPG, 108,07 470,20 | MYy -060.) [M0~ (4]
0.0, 0,07 [MFO,, = (320,01 | MO, = (560,01 | MFO,, =

O
) [MFO; = (60,0

X PO 0 b 0.0
Oy~ b iro~ (a0

Table 3 A sample of the image of a fundamental obstacle MFO,. =
(560, 0)

FO L~ GR0.0)
0T e, e ot [efbe)
W | o | o @o | die o500

of MFO, (k= 1,2, ..., 23) listed in Table 2. Table 3 gives
a sample of CO(MEF¢ A) saved in a database, where ¢ is the
number of points that represents the upper boundary and
the lower boundary of CO(MFOy); 05, 0%, 6, and
't are the minimal and maximal values of 6, and 6; for
CO(MFO,). In order to map a three-dimensional (3D) obstacle
O with complex geometry, we use pseudo-language to describe
Algorithm 1 for computation of [© i, O]

Algorithm 1:

Step 1 ©p= and O, =
Step2 fork=110Kdo
Step2.1 Compute 8, of vertex k of O by Eq. (3);

if 6,<O, then O,=0), end if;
if 61> O1nax then O =0, end if;
end for k;

where K is the number of vertex of O. When XOZ moves from
0 i 10 Oy, it decomposes O into a finite set of 2D obstacles,
SO, which can be modeled by FO,. Figure 1(b) shows two
2D obstacles SO, and SO, as well as FO, on their borders.
Based on FO; in W-space and CO(FO;) in C-space, CO(SO)
can be computed by

CO(S0) = CO(FO,) U ... U CO(FO,) U ... (13)

Since upper and lower boundaries of CO(SO), denoted by
CO(SO), and CO(SO),, consist of upper and lower bound-
aries of CO(FO,), the computation of CO(SO) is to determine
boundaries of all CO(FO,). All CO(SO) related to SO, and
S0, are plotted in Fig. 4(a—b). It can be observed that some
of CO(FO,) completely or partially overlap with others. In

8
270 270
90 8, w0 8,
S
-0 90
180 o 180 -180 0 180
Fig. 4(b)
270 6
270
%0 [
\ 90 0,
-30
-180] 180 -80
. -180 0 180
Fig. 4(c) Fig. 4(d)

Fig.4 Mapping SO, and SO by their critical fundamental obstacles

300 / Vol. 120, JUNE 1998

Transactions of the ASME

[image: image4.jpg]920

920 o
Fig.5 Computation of complex obstacles by critical points

920

fact, after O represented by the O points in Fig. 5 are removed
from Eq. (13), CO(SO) keeps unchanged, e.g., CO(SO,) and
CO(S0,) in Fig. 4(c—d), because their images completely
overlap with the images of FO, represented by the ® points in
Fig. 5.

The boundaries of CO(SO) for 6, and 6; are formed when
the robot touches the boundary of SO from the exterior in each
of both cases (Brady et al., 1982): 1. The robot arms contact
a vertex of SO; 2. The robot end-effector contacts an edge of
SO. It has been reported (Li, 1991) that CO(SO) is most
mainly formed when the robot arms contact SO. Thus, we
define the following FO; as critical points. First, FO, with the
minimum r, denoted by G, in Fig. 5, is defined as a critical
point since it is the nearest fundamental obstacle to the original
point. Second, FO; with 0., and ©,,,,, denoted by G, and
G; are defined as critical points shown in Fig. 5. Finally, FO;
with the maximum and minimum ¢, denoted by G, and Gs
shown in Fig. 5 are considered as critical points. The critical
points’ images govern CO(SO), because: 1. G, contributes the
largest collision area in C-space among all FO,; 2. G and G,
which determine the forbidden region [@pin, ©2na] for 6:: 3.
G, and G can be contacted by the robotic arms when the
arms stretch up. On the assumption that the number of FO, for
modeling a 2D obstacle SO is J, we propose Algorithm 2 to
determine the critical points of SO:

i =2, Oax=—2, Prria=00, AN Prrmz=—2;
110/

x4+ 2% if r<ro, then ru.=r; gi=j end
ifs
Step22 ¢ = arctan (5);
x
ifl <P then Yuin=p; g2=J end if;
if 9> Puoax then Pma=p3 g3=) end ify
Step23 = [% J; D=0+ 0% =0L + 0

if 040 <O then Ouin=0'%n: 4=/ end i
if 535> O 2max then Oom=0%ns; g5=J end if:
end for j;

where the symbol |] takes the maximum integer that is not
greater than the quotient, and gi, £, g, 84, and gs represent
the sequence number of the critical points G,, G, Gs, G,, and
Gs. The computational complexity of Algorithm 2 is O(1) +
o) = o).

Journal of Dynamic Systems, Measurement, and Control

In fact, determining the upper boundary of CO(SO), is to
calculate the upper boundary of CO(G,)y, CO(Gs), and
CO(Gs)y; while determining CO(SO), is to do the lower
boundary of CO(G,).. CO(G:), and CO(Gy).. Therefore,
CO(SO), and CO(SO); can be expressed as

CO(S0)y = CO(Gy)u U CO(Gy)y U CO(Gs)y (14)
CO(80), = CO(G). U CO(G:), U CO(Gy): (15)

We propose Algorithm 3 to compute CO(SO), and
CO(SO),:

Algorithm 3:
Oy @zm,J
min =] max =| === [M=Pon—Puint 11
Step1 P, [A& P, lAez Pt 1
Step 2 for m=1 10 M do Oy, (m)==; O3y(m)=—=; end

for m;
fori =g, 8. 85 do

e 5 [=[352 5ot

ABy; W=0pu—0Omint1; T=Omia—Puin;

Step 3

Step 3.1 Stin mod

Step 3.2

Step 4

Step 4.1 On =

Step 4.2

for o wdo
i =(1=5)*03y (k) +s* 03 (k+1); if v,>Osy
(7+k) then sy (7+k)=v, end ifs
end for k;
end for i;
for i=g;, g:bf“dn o
Blnin < 0o
A@ [G —L J 042 mod
AB,; W=0mm—Omint1; T=0min—Puins
for 10 w do
vp=(1=5) %03, (k)+s*03. (k+1);
(7+k) then O, (7+k)=v, end if;
end for k;
end for i

if v<Oy

where the symbol [takes the minimum integer that is not
smaller than the quotient, and the symbol mod takes remainder.
In all algorithms, the small letter 6 is used to represent a funda-
mental obstacle’s image; while the capital-letter © is used to
represent a complex obstacle’s image. Here, CO(SO), and
CO(SO), are represented by @,(m) and Oy (m) (m = 1,
... M). @5,(1) and @3,(1) are the functions of s, While
Oyy(M) and @5, (M) are those of ©,,,. The computational
amount of Step 1 and Step 2 in Algorithm 3 is O(M), and that
of Step 3 and Step 4 is O(Q), where Q is the upper bound of
w. The left-upper and right-lower parts of CO(SO) are closed
by connecting the limits” points of its left-upper and right-lower
parts, as shown by the thick curves in Fig. 4 (c—d). For mapping
0, in Fig. 1(a). O, is decomposed by XOZ into a set of SO,;
and then SO, can be quickly mapped by the movements dis-
cussed above. By using the union operation of CO(SO,),
CO(0,) is obtained (Li, 1991).

4 Motion Planning by Slice Configuration Obstacles

For quick building a free subspace, slice C-space obstacles
on a cross-section plane determined by starting and goal con-
figurations are computed shown in Fig. 6(a). In this paper, a
cross-section plane for the PUMA 560 robot

ab, + b, + cs +d =0 (16)
a=0
b =6 — 8.

i an
=0 — 0,
d = —ab,, — b, — cbs,

JUNE 1998, Vol. 120 / 301

[image: image5.jpg]rJ
Eo
a

msxaty

Fig. 6(b)
Fig.6 (a) Slice C-space obstacles on a cross-section plane; (b) Interpo-
lation

is chosen to be parallel to axis 6, where @,,, 6,,, 6, and 6,,.
6s,. s, are the position vectors of the starting configuration
and the goal configuration. Here, we present Algorithm 4 for
computing slice C-space obstacles

Algorithm 4:
Qi — 6,

Step 1 flag=0; p = L‘A—&""‘"J 3 =2 pt1;

Step2 fori=11topdo

Step2.1 Of'=0,,+(i—1)*AO;

Step 2.2 if flag=0 then CRT1=a*©"+b+OL,+c
*O, +d;
if |CRT1| <e then
Slice-C-Obstacleli, 1]
Slice-C-Obstacle| p,—
Slice-C-Obstacleli, 2
Slice-C-Obstacle| p—i, 2]1=0 %,
Slice-C-Obstacleli, 3]1=0 0..;
Slice-C-Obstaclel p,—i, 31=0 s
next end if; CRT2=a*©{" + b*+O%,,
+c* @4, + d;
if |CRT2|<e then
Slice-C-Obstaclel i, 1]
Slice-C-Obstacle[p,—
Slice-C-Obstacle[i, 2
Slice-C-Obstaclel p,—
Slice-C-Obstacle(i, 3]
Slice-C-Obstaclel p,—i, 31=0 3
next end if; sgl = sign(CRT1);
. s5¢2=sign(CRT2);
if sgl=sg2 then next end if;
sg=sgl; flag=1; Search(1, 1\, i, u);
Search(1, 1, i, 1);

-o;

=0{";

302 / Vol. 120, JUNE 1998

Table 4 Data structure of a Slice_C_Obstacle

o [off oV | o) | of) | of o) | o
EAEN oV | of) [o) [ot of | ol
of) [ofd [~ [ef? | ol [of) | of ot | oft)
Step 23 else
CRT1=a*0{"+b*O%),+c*O%,. +d;
if |CRT1| <e then
Slice-C-Obstacleli, 11=01";
Slice-C-Obstacle] 0,
Slice-C-Obstacle[i, 2] = O%y.;
Slice-C-Obstacle[p,—i, 2 egg
Slice-C-Obstacle[i, 3] =
Slice-C-Obstaclel j1—i, 31 O,
next else
sgl = sign(CRT1); if sg#sg! then next
end if:
CRT2=a*® " +b* 0%, +c*O%, +d.
if |CRT2| < e then
Slice-C-Obstacleli, 1]=
Slice-C-Obstaclel, u,
Slice-C-Obstacle(i, 2 &
Slice-C-Obstacle| pa—i, 2]=0%u;
Slice-C-Obstacle[i, 3]=0 %,
Slice-C-Obstacle[p,—i, 3]1=! 9§
next end if;
end if;
sg2=sign(CRT2); if sgl=sg2 then next end
ifs
Search(1, 11, i, u); Search(1, 1", i, I);
end if:
end for i;

Recursive-Procedure
Search(m, n, i, t):

Step 1 p=if r=u then i else p,—i end if:

Step2 if n=m+1 then
wl=a*O\"+b*(m* A0, +O%;,)+c* O (m)
+d;

w2=a*@{)+b*(n* AO+ONi,)+c* O (n)
+d;
s=wl/(wl+w2):
Slice-C-Obstacle[p,
Slice-C-Obstacle(p,
Slice-C-Obstacle[p, 3]=(1—5)*O%) (m)+s*
04(n); (see Fig. 6(b))

Step3 else
- m+n s

Step 31 j= |_ TJ 3 w=a* @' +br(j+ A0, +04,)
+c*@Y(j)+d;

Step 32 if |w|<e then

Slice-C-Obstacle[p, 11=01";
Slice-C-Obstacle[p, 2]=j* A0, +O4),,;
Slice-C-Obstaclelp, 31=04(j);

Step 3.3 else

Step 3.3.1 sgw = sign(w); if sg=sgw then

Step 3.32 Search(j, n

Step 3.3.3 else Search(m, j, i, 1);

end if;
end if;
end if;
end Search;

Table 4 lists the data structure of a Slice_C_Obstacle. Since
Search (m, n, s, 1) in Step_3 operates recursive calls of Search
itself at most log, | n — m] times, its complexity is O(log, [n
— ml) = O(log.). Since Step 2 contains y times of repeti-

Transactions of the ASME

[image: image6.jpg]be

EEEEHEN : H
20 EEHEE 4 f2zty
TR HiH H
920 0 920
Fig. 7(a) Polygon a with 4 edges and 60 points; polygon b with 5 edges
and 52 points
24
920 e e
PR
H o B
o asas: X
P :
B /
H]
N e
920 0 920

Fig. 7(b) Polygon c with 6 edges and 92 points; Polygon d with 7 edges
and 52 points

Fig.7 The comparision of computational time for 2D obstacles

tions, the complexity of Algorithm 4 can be expressed by O(1)
p
+ 2 [0(1) + O(log; V)] = O(pxlog, Q). Using slice C-

=1
space obstacles, a free subspace can be represented by a graph.
The shortest path in the graph can be searched by the well-
known movement A*. The work (Li, 1995) shows collision
avoidance of two PUMA robots sharing a common workspace.

5 Discussions and Conclusions

In order to compare mapping performance, 2D obstacles in
Fig. 7 are mapped into the C-space of the PUMA 560 robot
using the following approaches: 1. by solving the robot’s kine-
matics (Ge and McCarthy, 1990); 2. by computing “‘regular””
and “singular” points (Warren ct al., 1989); 3. by activating
all FO, on borders of 2D obstacles (Branicky and Newmann,
1990; Li, 1990); 4. by determining critical points. Table 5 lists
number of obstacles’ edges and points as well as the computa-
tional time required. For comparison, the obstacles’ points are
identical with the fundamental obstacles on the obstacles’ bor-
ders.” Al algorithms are coded in C language.

In types 1 and 2, we should first enlarge the 2D-obstacles
according to the robot’s geometry. For type 1, the algebraic

Journal of Dynamic Systems, Measurement, and Control

Table 5 Computation time by different strategies

Gbstacles Typel | TypeZ | Typed | Typed
No. | Edges | Poinis | CPUtme | CPU time | CPU time | CPU time.
Geo) | (sec) | (Sec) (Se)
o 2] 3312 | 0247 | 0083 | 0.00509
| 5 2 231 | 025 | 00389 | 000493
< | &) 3774|0397 | 00686 | 000845
a7 2 269 | 032 | 0098 | 000491

equations are used to compute C-space obstacles of the enlarged
polygon; while for type 2, since the ‘‘regular’’ points’ images
govern the C-space obstacles, computational time mainly needs
to deal with them. Thus, this type is faster than type 1. In types
3 and 4, we cut computational time for enlarging obstacles since
the robot’s geometry and kinematics are preprocessed. Based
on FO, and CO(FO,), obstacle mapping is to superimpose the
images of FO; on the obstacles’ borders, hence computational
time is reduced. Using the proposed approach in this paper,
only the critical points among FO, are used to construct the C-
space, hence this approach is the fastest. The complexities of
Algorithm 2 and Algorithm 3 are O(J) + O(M). J is much
smaller than the number of all FO,, and M has the maximum
possible value of 3 times of maximal value of 1’ = 24. In this
paper, obstacle mapping is based on a CAD model of an envi-
ronment that provides global information. The work (Li et al.,
1996) reported an application of the proposed approach to con-
struction of a C-space based on local sensor information.

If the connectivity between start and goal configurations is
deteriorated after obstacle mapping, the goal configuration may
not be reached. For example, path searching may fail due to
the loss of accuracy if a free space is constructed by large
decomposed cells. The proposed algorithms can avoid this prob-
lem since the boundaries of a C-space obstacle is represented by
line segments rather than decomposed cells. In a free subspace
constructed by slice C-space obstacles, however, there may not
exist a collision-free path between start and goal configurations.
In this case, another cross-section plane should be chosen to
construct a new free subspace.

Acknowledgments

The work is funded by the National Natural Science Founda-
tion of China under grant 69585004 and by the Chinese **863'"
High Technology Project under grant 863-512-28-20. The first
author would like to express his thanks to the Alexander von
Humboldt Foundation for supporting his stay in German during
the revision of this paper. The authors would also like to express
their gratitude to the referees for detailed and helpful comments.

References

Brady M. et al., 1982, Robot Motion: Planning and Control, MIT Press, Cam-
bridge, pp. 13.

Branicky M. S., and Newmann W. S., 1990, **Rapid Computation of Configu-
ration Space Obstacles,”” Proceedings. IEEE International Conference on Ro-
botics and Automation, pp. 304-310.

Faverjon, B., 1984, **Obstacle Avoidance Using an Octree in the Configuration
Space of a Manipulator,” Proceedings IEEE International Conference on Ro-
botics, pp. 504-512.

Ge Q., and McCarthy J. M., 1990, **An Algebraic Formulation of Configura-
tion-Space Obstacles for Spatial Robots,” Proceedings IEEE International Con-
ference on Robotics and Automation, pp. 1542—1547.

Li W., 1990, **Automatic Determination of Collision-Free Paths for General
Robots,” Robotersysteme, Vol. 6, pp. 218224

Li W., 1991, “‘Fast Mapping Obstacles in the Configuration Space, Roboter-
systeme, Vol. 7, pp. 148-154.

Li W., and Zhang B., 1993, **Solving the Robotic “Pick-and-Place’ Pathfind
Problem," Manufacturing Review, Vol. 6, pp. 114129,

Li W., 1995, “An Approach to On-Line Path Planning for Multiple Robots,’”
Proc. of the 1995 American Control Conference (ACC" 95), pp. 18961900,

Li W., etal., 1996, **Sensor-Based Obstacle Modeling in Configuration Space
for Manipulator Motion Planning, " Proceedings of the IEEE 1996 International
Conference on Multisensor Fusion and Inegration.

JUNE 1998, Vol. 120 / 303

[image: image7.jpg]Lozano-Perez T., 1981, **Automatic Planning of Manipulator Transfer Move-
ments, JEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-11, pp.

681698,
Lozano-Perez T., 1987, ““A Simple Motion-Planning Algorithm for General

Robot Manipulators, [EEE Journal of Robotics and Automation, Vol. RA-3, pp.
224-238.

304 / Vol. 120, JUNE 1998

Newmann W.S., and Branicky M. §., 1991, *!

‘Real-Time Configuration Space

‘Transformations for Obstacle Avoidance,” International Journal of Robotics Re-

search, Vol. 10, No. 5, pp. 650-667.

Warren C. W., Danos J. C., and Mooring B. W., 1989, **An Approach to Manip-
ulator Path Planning,”" International Journal of Robotics Research, Vol. 8, No.

5. pp. 87-95.

Transactions of the ASME

