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Abstract

A neuro-fuzzy system architecture for behavior-based control of a mobile robot in unknown environments is presented. A
neural network is used to understand environments. Its inputs are a heading angle between the robot and a specified target,
and range information acquired by an array of ultrasonic sensors. The output from the neural network is a trained reference
motion direction for robot navigation.

The methodology of the behavior-based control approach proposed in this paper is: (1) to analyze and to decompose a
complex task based on stimulus-response behavior; and (2) to quantitatively formulate each type of behavior with a simple
feature by fuzzy sets and fuzzy rules as well as to coordinate conflicts and competition among multiple types of behavior by
fuzzy reasoning. An advantage is that building fuzzy sets and rules for each simple-featured type of behavior is much easier
than for a complex task.

Based upon a reference motion direction and distances between the robot and obstacles, different types of behavior are
fused by fuzzy logic to control the velocities of the two rear wheels of the robot. Simulation experiments show that the
proposed neuro-fuzzy system can improve navigation performance in complex and unknown environments. In addition, this
architecture is suitable for multisensor fusion and integration. (© 1997 Elsevier Science B.V.

Keywords: Robotics; Engineering; Artificial intelligence; Sensor-based motion planning; Behavior-based control

1. Introduction

In robot applications in the real world, a mobile
robot should be able to operate in uncertain and dy-
namic environments. Behavior-based control [1,2]
shows potentialities for robot navigation in unknown
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environments since it does not need building an exact
world model and complex reasoning process. Before,
however, behavior-based control is used to navigate a
mobile robot in the real world perfectly, much effort
should be made to solve problems with it, such as,
the quantitative formulation of behavior, and the effi-
cient coordination of conflicts and competition among
multiple types of behavior, and so forth. In order
to overcome these deficiencies, some fuzzy-logic-

based behavior control schemes have been proposed
[4,5,9,10].
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Based upon fuzzy logic, speed control and turn
control of a mobile robot are determined by goal ori-
entation and obstacle proximity in [9]. The idea of
this approach starts with an implementation of very
low level actions using very few rules. However, some
types of behavior with a high level, such as, fol-
lowing edges, are not realized, so navigation perfor-
mance could deteriorate when the mobile robot needs
the behavior, following edges, to escape from a room
without global information. The methodologies of the
strategies in [5, 10] are similar. That is: first, the idea
of stimulus—response behavior is used to analyze and
to decompose a complex task; then, fuzzy rules are
used to formulate each type of behavior with simple
feature as well as fuzzy reasoning is used to fuse dif-
ferent types of behavior. The differences between [3]
and [10] lie in concrete implementation, such as, type
selection of behavior and control schemes.

In comparison with traditional approaches [l, 2],
the fuzzy-logic-based approach fuses different types
of behavior using fuzzy reasoning [13] rather than
simply inhibiting some types of behavior according
to an assigned priority. Consequently, unstable os-
cillations between different types of behavior can be
avoided. This approach also differs from fuzzy con-
trol approaches for obstacle avoidance in [8, 11, 12]
since perception and decision units in this method
are integrated in one module based on reactive be-
haviors, and they are directly oriented to a dynamic
environment to improve real-time response and
reliability.

In the control scheme proposed in [5], the input sig-
nals are the distances between the robot and the ob-
stacles to the left, front, and right locations as well as
the heading angle between the robot and a specified
target. In analogy to artificial potential fields [3], the
distances between the robot and obstacles serve as a
repulsive force for avoiding obstacles, while the head-
ing angle serves as an attractive force for moving to
the target. But the fuzzy-logic-based approach is or-
thogonal to strict geometrical computation on environ-
ments, so it is more robust than the artificial potential
field approach. Since, however, this control scheme
always uses the heading angle as a reference motion
direction to do behavior fusion, it differs, to some ex-
tent, from the way a human would drive a car, so that
it does not guarantee to provide a good path for robot
navigation in some cases. The graphical simulation in
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Fig. 1. Robot navigation with a trap motion in a U-shaped object
caused by a heading angle.

Fig. 1 shows that the robot has a trap motion in a U-
shaped object since it uses the heading angle as its ref-
erence motion direction during its whole navigation.
In fact, a driver only takes the heading angle as a refer-
ence motion direction to drive his car, when there are
no obstacles between his car and a target; otherwise
the driver must determine a reference motion direc-
tion according to the distribution of obstacles in local
regions.

In order to improve navigation performance in
unknown environments, this paper presents a new
neuro-fuzzy system architecture [7] by adding a neu-
ral network into the control scheme in [5]. The inputs
to the neural network are the heading angle between
the robot and a specified target, and range information
acquired by an array of ultrasonic sensors, and the
output from the neural network is a trained reference
direction for robot motion. Based upon the reference
motion direction and distances between the robot and
obstacles in dynamic environments, behavior fusion
is done by fuzzy logic to control the velocities of
the two rear wheels of the robot. Simulation exper-
iments show that the proposed neuro-fuzzy system
can improve navigation performance in complex and
unknown environments. In addition, thts architecture
is suitable for robot navigation by multisensor fusion
and integration [6].
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Fig. 2. A neuro-fuzzy system architecture for mobile robot navi-
gation in uncertain environments.

2. Neuro-fuzzy system architecture for robot
navigation

Fig. 2 shows the proposed neuro-fuzzy system
architecture for robot navigation in unknown envi-
ronments. The conception of the navigation system
architecture is based on the combination of a neu-
ral network and the fuzzy logic navigation scheme
proposed in [7].

The neural network is used to process range infor-
mation to determine a good reference motion direc-
tion. Therefore, its input signals are the heading angle,
©, between the robot and a specified target, and the
sonar data, d; (i = 1,...,15), that are acquired by 15
ultrasonic sensors, mounted on the THMR-II mobile
robot with 1.0 m length and 0.8 m width, as shown in
Fig. 3. These ultrasonic sensors are divided into three
groups to detect obstacles to the left, front, and right
locations, respectively. When the target is located to
the left side of the mobile robot, the heading angle,
0, is defined as negative; when the target is located to
the right side of the mobile robot, the heading angle,
©, is defined as positive. The output from the neural
network is a reference motion direction, @', for robot
navigation.

In the fuzzy control scheme, fuzzy rules and fuzzy
reasoning are used to formulate all types of behavior
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Fig. 3. Ultrasonic sensors for a mobile robot navigation.

quantitatively and to coordinate their conflicts and
competition. The input signals to the fuzzy control
scheme are distances between the robot and obsta-
cles to the left, front, and right locations, denoted
by left_obs, front_obs, and right_obs, respectively,
as well as a reference motion direction, &', which
is determined by the neural network. The outputs
from the fuzzy control system are the results of be-
havior fusion to control the speed of the two rear
wheels of the mobile robot. The linguistic variables
far, med(medium) and near are chosen to fuzzify
left_obs, front_obs, and right_obs. The linguistic
variables P(positive), Z(zero), and N(negative) are
used to fuzzify the reference motion direction, @’; the
linguistic variables fast, med, and slow are used to
fuzzify the velocities of the driving wheels left v and
right_¢. Fig. 4 shows their corresponding membership
functions.

Here, it is noted that the sonar datad,; (i = 1,...,15)
have been independently processed by both the neural
network and the fuzzy control scheme for different
purposes, respectively. For the neural network, the
sonar data d; (i = 1,...,15) in combination with the
heading angle, @, are used as its input patterns to
train a good motion direction. In the fuzzy control
scheme, the sonar data, d; (i = 1,...,15), are used
for computing the distances between the robot and
obstacles, right_obs, front_obs, and left_obs, in the
real world as follows:

right_obs = Min{d;}, i=1....,6, ()
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Fig. 4. Membership functions regarding input and output variables.

front_obs = Min{d,;}, i=7,...,9, (2)

left_obs = Min{d;}, i=10,...,15. (3)

The strategy for independently processing sonar
data d; (i = 1,...,15), using both the neural net-
work and the fuzzy control scheme, can drastically
reduce the effects of sonar data errors on navigation
performance. This is because: (1) The neural net-
work only needs the relative relations of sonar data
d; rather than the absolute precise values of sonar
data d; to train reference motion directions. (2) The
fuzzy control system only needs the minimum val-
ues, right_obs, front_obs, and left obs, derived from
the sonar data d; (i=1,...,15), to avoid obstacles.
Consequently, even though one of the processing
sonar data d; causes some errors, another is able to
compensate such errors to some extent. If the neural
network outputs a false reference motion direction,
this reference does not cause robot collision with ob-
stacles since a real motion direction of the robot is
not only determined by its reference motion direction,
but also by distances between the robot and obstacles,

input  hidden hidden output
layer layer1 layer2 layer

© — heading angle

€ — robot reference motion direction

dy-.-dg--- dyg — sonar data, distances between
the robot and obstacles

Fig. 5. The used neural network for training robot reference motion
direction.

right_obs, front_obs, and left_obs. For example, the
graphical simulation in Fig. 1 shows that the robot
reaches the target without collision with obstacles,
although its reference motion directions are identical
with its heading angles during the whole navigation.
In another case, even if some of right_obs, front_obs,
and left_obs have errors, the possibility of robot col-
lision with obstacles can be reduced when the neural
network outputs a good reference motion direction.

3. Training reference motion directions by neural
network

In the neuro-fuzzy system architecture, a four-layer
standard back-propagation (BP) network is used to
train robot reference motion directions, as shown in
Fig. 5. The inputs to the neural network are the sonar
data d; (i = 1,...,15), representing the distribution
of obstacles in local regions, and the heading angle
between the robot and a specified target. Fig. 6 lists
some of the circumstance patterns. The following ex-
amples are used to explain how such circumstance pat-
terns can be used for training robot reference motion
directions.

1. Fig. 6(a) shows that a reference motion di-
rection, @', is identical with the heading angle, O,
since there are no obstacles around the robot (d; =
doax; L= 1,...,15).

2. Fig. 6(b) shows that a reference motion direc-
tion, @', is zero since there exist obstacles on the left
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Fig. 6. Circumstance patterns for neural network.

side of the robot (dmin < d; < dnax; 1 = 10,...,15
and d; = dpax; 1 = 1,...,
angle, 0, is negative.

3. Fig. 6(c) shows that a reference motion direc-
tion, @', is identical with the heading angle, ©, since
there are no obstacles between the robot current po-
sition and the target although there exist obstacles on
the left side of the robot (dmin < d; < diyax; [ =
10,...,15, and d; = dyax; i=1,...,9). ...

According to such circumstance patterns, the input—
output relationship of each unit can be written as
follows.

3

9) although the heading

Input units:

ql['l]:di’ i:1""’15’

gid = ©. (4)
Hidden units:
= f(Netth), 5=23, (5)
Net!"! = Z whl ¥l s =23 (6)
Output unit:
0" =gl = f(Net), (7)
Netl = >~ Wit g1, (8)
i

where w I'is the weight on connection joining the ith
neuron 1n layer [s — 1] to the jth neuron in layer [s],
and f(x) is a sigmoid logistic function:

fx) =

T+e ©)

The error, E = 0.5 3_,(0} — @} ), is used to modify
the weight w; [5] by the following J learning rule:

Output layer:

S = f’(NetM) Z(@f{ _ @A; ). (10)
k

Other layers:
o[s (Nﬁt ) 2(6 [s+1] ij+l])a

s:1,2,3. (11)

The connection weights of the neural network are up-
dated by

wi(t + 1) = wi (1) + Awy(r + 1), (12)
Avwigle + 1) = 0o Net ™ 4 2 Awy (1), (13)

where 7 is a learning coefficient and « i1s a momentum
constant.

4. Behavior fusion by fuzzy reasoning

A key issue of behavior-based control is how to ef-
ficiently coordinate conflicts and competition among
different types of behavior to achieve a good per-
formance. A usual approach to coordinating multiple
types of behavior is to fire a behavior according to
an inhibiting and suppressing strategy associated with
artificial potential fields [2]. The following are some
deficiencies of this strategy noted in our experiments:

1. In some cases, the robot cannot reach a given
target. Fig. 7 shows that the robot is unable to get
through the narrow channel to reach the given target.
The reason is that the robot always activates obstacle
avoidance behavior when it approaches this channel,
so that it turns to the right to move into a large free
space.

2. Much effort must be made to test and to ad-
just some thresholds for firing each behavior during
preprogramming. Especially, these thresholds depend
heavily on environments, i.e., a set of thresholds, de-
termined in a given environment, may not be suitable
for others.

3. Robot motion with unstable oscillations between
different types of behavior may occur in some cases.
This is because just only one type of behavior could be
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Fig. 7. Robot navigation by priority strategy.
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Fig. 8. Unstable oscillations caused by behavior control according
to priority strategy.

activated at a given instant and two types of behavior
with neighboring priority, e.g., obstacle avoidance and
following edges, are fired in turn, as shown in Fig. 8.
In order to do behavior fusion by fuzzy logic, first
of all, fuzzy sets and fuzzy rules are used to formulate
each type of behavior, such as (1) obstacle avoidance;
(2) following edges; (3) target steer; (4) decelerating
at curved and narrow roads [5]. Then, all types of be-

Rule i: If (left_obs is near and front_obs is near and
right_ohs is near and head_ang is N)

Then (left_v is fast and right_v is slowj
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Fig. 9. Behavior fusion by fuzzy reasoning.

havior are weighted by fuzzy reasoning. The follow-
ing is an illustration of how this problem is dealt with
by the Min—Max inference algorithm and the centroid
defuzzification method, as shown in Fig. 9. For in-
stance, the inputs left_obs = x;, front_obs = x,, and
right_obs = x3, ®' = 8, are fuzzified by their mem-
bership functions to fire fuzzy rules associated with
them simultaneously. Assume that Rule i (see below),
formulating the obstacle avoidance behavior, and Rule
J (see below), formulating the following edges behav-
ior, are fired according to the fuzzified inputs (in fact,
much more fuzzy rules may be activated):

Rule i: If (left_obs is near and front_obs is near and
right_obs is near and head_ang is N)
Then (left_v is fast and right_v is slow).
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Fig. 10. Robot navigation by behavior fusion.

Rule j: If (left_obs is near and front_obs is med
and right_obs is med and head—ang is N)
Then (left_v is med and right_v is med).

By fuzzy reasoning, both Rule i and Rule j, re-
lated to the obstacle avoidance and following edges
behaviors respectively, are weighted to determine an
appropriate control action, i.e., the velocities, left v
and right_v, of the robot’s rear wheels. By using
behavior fusion based on fuzzy reasoning, robot nav-
igation performance can be greatly improved. Fig. 10
shows that the robot reaches the target in Fig. 7 by
efficiently weighting multiple types of behavior, such
as avoiding obstacles, following edges, and moving
toward target and so on.

5. Simulations

To demonstrate the effectiveness of the proposed
neuro-fuzzy system, a simulation experiment on robot
navigation in an unknown environment is shown in
Fig. 11. In local region 1, the robot moves according
to its reference motion direction, @ = 0, outputted
by the neural network, although the heading angle, &,
in region 1 is positive. In local region 2, using the
neural network the robot recognizes that there is a U-
shaped object around it, and outputs a good reference

| Region1—g
| "”‘ e

Fig. 11. Robot navigation by the neuro-fuzzy system.

motion direction to avoid such trap motion in Fig. 1.
In local region 3, the robot gets through a narrow and
curved road by multi-behavior fusion and local ref-
erence motion directions. It can be observed that the
robot automatically reduces its speed to avoid colli-
sion when it moves in such a narrow and curved road.
In local region 4, the robot first uses the heading an-
gle as its reference motion direction because it cannot
detect obstacles in its front; the robot then turns right
to avoid an obstacle by using a positive reference mo-
tion direction when it detects its obstacle. When the
robot goes past the obstacle, it reaches the target by
using the heading angle.

6. Conclusions

In this paper, a new neuro-fuzzy system architec-
ture for behavior-based control of robot navigation
in uncertain environments is proposed. This strategy
consists of two levels: (1) the high level is for en-
vironment understanding; and (2) the low level is
for behavior control. At the high level, a neural net-
work is used to process range information for under-
standing the distribution of obstacles in local regions;
while at the low level fuzzy sets and fuzzy rules are
used to formulate each type of behavior quantitatively
and to coordinate conflicts and competition among
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multiple types of behavior efficiently. In general, the
more information on environments are obtained at the
high level, the more correct decision can be made at
the low level. Especially, the strategy for indepen-
dently processing sonar data, using both the neural
network and the fuzzy control scheme, can drastically
reduce the effects of sonar data errors on navigation
performance. The simulation results demonstrate that,
using this system, navigation performance in complex
and unknown environments can be greatly improved.
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