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Letters

A Method for Design of a Hybrid Neuro-Fuzzy
Control System Based on Behavior Modeling

Wei Li

Abstract—It is known that control signals from a fuzzy logic
controller are determined by a response behavior of a controlled
object rather than its analytical models. That implies that the
fuzzy controller could yield a similar control result for a set
of plants with a similar dynamic behavior. This idea leads to
modeling of a plant with unknown structure by defining several
types of dynamic behavior, such as “oscillation,” “overdamping,”
“underdamping,” and so forth. On the basis of dynamic behavior
classification, a new method is presented for design of a neuro-
fuzzy control system in two steps: First, we model a plant
with unknown structure by choosing a set of simplified systems
with equivalent behavior as “templates” to optimize their fuzzy
controllers off-line. Second, we use an algorithm for system
identification to perceive dynamic behavior and a neural network
to adapt fuzzy logic controllers by matching the “templates” on-
line. The main advantage of this method is that convergence
problem can be avoided during adaptation process. Finally, the
proposed method is used to design neuro-fuzzy controllers for a
two-link manipulator.

Index Terms—Neuro, controller, loop response.

I. INTRODUCTION

DESIGN of a fuzzy logic controller for a controlled object
with unknown structure mainly suffers from both aspects

of the controller itself and the controlled object. First, it is very
difficult to mathematically analyze the characters of the fuzzy
logic controllers and, second, a detailed analytical model of
the controlled object is not achieved due to nonlinearity or
uncertainty.

One of the widely used design method for fuzzy controllers
is to define membership functions of linguistic variables and
to formulate fuzzy rules by control engineers [1]–[3]. Un-
fortunately, there might be no generally applicable principle
on determining membership functions and rules for each
particular system with specific requirements. Another approach
is to adapt rule-base and/or membership functions by self-
organizing algorithms or neural network according to previous
responses until a desired control performance is achieved
[4]–[8]. In particular, an adaptive fuzzy system based on
softminoperator (proposed by Berenji and Khedkar [6]) is very
interesting in control of a plant with uncertainty. However,
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because the basis of the adaptive strategy is a trial-and-error
idea this strategy suffers mainly from its convergence, and the
convergence not only depends on the characteristics of a given
system, but also on different input references. To get a good
convergence during an adaptive process, some systems may
be started more times to adjust and test some initial values
and learning coefficients. A system might especially be out of
control if these coefficients were inadequate.

To deal with the convergence problem, this paper presents
a new paradigm for designing a neuro-fuzzy controller based
on behavior modeling. It is known that control signals from
a fuzzy logic controller are determined by response behavior
of a controlled object rather than its analytical models. That
means that for two plants with a similar dynamic behavior,
a fuzzy logic controller can yield a similar control response
although these two plants have different dynamic equations.
This leads to the idea of description of a plant with unknown
structure by defining several types of dynamic behavior,
such as “oscillation,” “overdamping,” “underdamping,” and
so forth. On the basis of dynamic behavior classification, we
design a neuro-fuzzy system for this plant with unknown
structure in following steps. First, we model the plant by
choosing a set of simplified systems with equivalent behavior
as “templates” to optimize their fuzzy logic controllers off-
line. Second, we use an algorithm for system identification to
perceive a dynamic behavior and a neural network to adapt
fuzzy logic controllers by matching the “templates” on-line. It
should be noted that any two plants with a similar dynamic
behavior under a given input such as overshot, rise time, and so
on do not mean that their analytical models are equivalent; but,
if the dynamic equations of two plants are identical, they must
have a same dynamic response under a given input. Therefore,
description of controlled objectives using dynamic behavior
models is more general than that using analytical models.

The differences between the proposed method and tradi-
tional adaptation strategies [4]–[8] are addressed as follows:
1) the strategy of the proposed neuro-fuzzy system is to
adapt fuzzy controller by matching “templates” instead of the
trial-and-error idea, 2) in the trial-and-error idea only current
response values, e.g., the-step error between a reference
and an actual value and its error-in-change are
used to adapt the controllers, however, by using the proposed
method much more historical information on responses is used
to classify dynamic behavior, 3) one of key problems with
the trial-and-error idea is convergence. In control based on
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behavior modeling, a tuning of a fuzzy logic controller is
divided into off-line and on-line stages, and the parameters of
the fuzzy logic controller are adapted based on “templates.”
Therefore, convergence can be greatly improved.

This paper is organized into six sections. In Section II,
we discuss general characters of a fuzzy logic controller. In
Section III, we propose an approach to behavior modeling,
and we use an identification algorithm to perceive dynamic
behavior. In Section IV, we present a neuro-fuzzy control
system based on behavior modeling, and we optimize the
parameters of the fuzzy logic controller using the Nelder and
Mead’s simplex algorithm [11]. In Section V, we use a neural
network on-line to adapt fuzzy controller based on “templates.”
In Section VI, we use the proposed method to design fuzzy
controllers for a two-link manipulator.

II. CHARACTERS OF A FUZZY LOGIC CONTROLLER

The principle of designing a fuzzy logic controller is to
integrate empirical knowledge and operator experience into
controllers by using fuzzy sets and fuzzy rules. To acquire
such knowledge, response process of a controlled object must
be observed, and its decision and control strategy are expressed
by fuzzy logic. Since this design strategy is only depends
on response behavior, a fuzzy logic controller can yield a
similar control result for a set of plants with a similar dynamic
behavior regardless of their mathematical models. We use
the following example to demonstrate this character of fuzzy
logic controller. First, we choose a second-order system as a
controlled object; its dynamic equation is expressed as follows:

(1)

where and Then, according to this
controlled object we optimize its fuzzy logic controller to
achieve a desired control performance. Fig. 1 shows open and
closed-loop responses to step change of the controlled object.
Now we replace the second-order system with a nonlinear
system with its dynamic equation

(2)

where and i.e., we use the optimized
fuzzy controller to control the nonlinear system. Although the
parameters of the nonlinear system are different from those
of the second-order system, by using the same fuzzy logic
controller its closed-loop time response is as good as that of
the second-order system (a very small maximum overshoot
and a fast settling time), as shown in Fig. 2. This is because
that the open-loop dynamic behavior of the nonlinear system
is very similar to that of the second-order system. It should be
noted that, due to the nonlinearity of (2) its dynamic behavior
is quite differ from that of (1) if both of the equations have the
same parameters and When the parameter in
(2) changes, its open loop response also changes. Nevertheless,
it is possible to find out another second-order system with a
similar response to that of this nonlinear system. For example,
the dynamic behavior of (2) with and
is similar to that of a second-order system with
and Therefore, we can design a same fuzzy logic

Fig. 1. Open and closed-loop responses of a second-order system.

Fig. 2. Open and closed-loop time responses of a nonlinear system.

controller for both of the controlled objects. Another example
is to choose a set of higher order system (from third order to
sixth-order) with a similar response loop behavior to that of
(1). Then using the same fuzzy logic controller, we can get a
similar closed-loop response. This leads to idea of modeling
of a plant with unknown structure by defining several types
of dynamic behavior.

The next well-known character of a fuzzy logic controller
is its robustness to parameter changes. When we change the
parameters of the second-order system (1) from and

to and we can observe the change of
the open-loop responses of the second-order system, as shown
in Fig. 3. At first, we optimize a fuzzy controller related to the
second-order system with and to achieve a
good control performance shown in Fig. 4. Then, we use the
fuzzy logic controller to control the second-order systems with

and Fig. 4 shows that the performance of
closed-loop response is also quite good. For system modeling,
this character greatly reduces the types of dynamic behavior
to be defined.

III. B EHAVIOR MODELING OF A CONTROLLED OBJECT

A dynamic behavior of a system is defined as its dynamic
response under a given input signal. According to the first
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Fig. 3. Open-loop time responses of a second-order system while changing
its parameters.

Fig. 4. Time responses of a second-order system while changing its param-
eters under fuzzy control.

character of a fuzzy logic controller, if a cluster of systems has
a similar dynamic behavior we can model all these systems by
choosing a system with simple dynamics. Moreover, based on
this system, with simple dynamics we can design a fuzzy logic
controller for this cluster of systems.

In terms of the second character, we can define very few
types of dynamic behavior to describe all response phenome-
non. For example, we can use a set of second-order systems
to define the following types of dynamic behavior:

1) “oscillation”
2) “strong overdamping”
3) “overdamping”
4) “appropriate”
5) “underdamping”
6) “strong underdamping” as shown in

Fig. 5.

For generalization, in this paper, these qualitative dynamic
behaviors are described by using the coefficients
and of a discrete-time equation as follows:

(3)

Fig. 5. Definition of dynamic behavior by a set of second-order systems.

For each type of defined behavior, we can optimize its fuzzy
logic controller in advance.

A key problem in behavior modeling is how to use the
defined types of dynamic behavior to model any dynamics
of a system with unknown structure. Obviously, for dynamic
responses of a complicated nonlinear plant with unknown
structure it is difficult to model them only by using a second-
order system. To deal with this problem we divide a whole
response process into many segments and to model each seg-
ment based behavior models. The idea is to use an algorithm
to identify the coefficients and of a second-
order system based on the measured input and output data

and shown in Fig. 6,
i.e., to recognize the dynamic behavior of each segment of
the response based on historical information on inputs and
outputs. When we model the nonlinear plant by the coefficients

and there exists an error between a second-order
system and the nonlinear plant, which can be expressed by

(4)

where depends on the coefficients, and and
its evaluating criteria is expressed by

(5)

In doing this, we define the following vectors:
and a matrix :

(6)

(7)

(8)

(9)

(10)
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Fig. 6. Dynamic behavior perception.

In behavior modeling, we should compute the coefficient
vector so that (5) can be minimized. For convenience, (4)
is represented by a vector form

(11)

(12)

(13)

Let ; we get

(14)

By defining matrix there then exits an orthogonal
matrix and an elementary matrix
Diag and

...
...

...
...

(15)

Then (14) can be transformed as

(16)

(17)

Let and then
We get

if

otherwise
(18)

(19)

In this paper, and
For a nonlinear controlled object with uncertainty, there

might be two types of practical ways to get its dynamic
response behavior. First, it is only possible by using test data
during system operation such as boiler control. Second, it
can be obtained by simulating a rough analytical dynamics
such as a dynamic equation of a manipulator. Therefore, a
dynamic response of the controlled object can be expressed by

(a)

(b)

(c)

Fig. 7. Identification of dynamic behavior of a nonlinear system. (a) Time
response of a nonlinear system. (b) Dynamic response yielded by behavior
models. (c) Time responses of both the nonlinear system and the behavior
models.

an array of inputs and outputs with a length On the basis
of behavior classification, we can off-line model the nonlinear
system by a set of second-order systems in following steps.

Step 1) Initialize
Step 2) Get inputs and outputs

from the test data that represent
dynamic behaviors of the controlled objects.

Step 3) Compute the coefficients, and by
using (15)–(19).

Step 4) If increase go to Step 1);
otherwise go to Step 5).

Step 5) Classify all coefficients, and for
each segment of dynamic response according to
the defined types of dynamic behaviors.

In some cases, it may be difficult to model a dynamic
response of a nonlinear system by a set of second-order
systems due to its complexity. To deal with this problem, we
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Fig. 8. A neuro-fuzzy control scheme based on behavior modeling.

recommend the use of a set of higher order linear system
because it is always possible to approximate a nonlinear
system by linearization. In fact, it is not necessary to identify
coefficients very exactly by fuzzy logic control.

Fig. 7(a) shows a dynamic response of the nonlinear plant.
Fig. 7(b) shows behavior modeling of the nonlinear plant by
a set of second-order systems. In Fig. 7(c), both the dynamic
responses of the nonlinear plant and the behavior models are
plotted together. If we can identify the type of behavior for a
segment of response, we can fire its correspondent fuzzy logic
controller.

IV. OPTIMIZATION OF MEMBERSHIP

FUNCTIONS OF CUBIC SPLINES

Fig. 8 shows a neuro-fuzzy control scheme based on be-
havior modeling, which consists of four parts: 1) a fuzzy
proportional integral (PI) controller and a conventional deriva-
tive D controller, 2) an algorithm for off-line optimization of
the fuzzy logic controller, 3) a unit for behavior modeling
which consists of a set of simplified models, and 4) a unit
for behavior perception which consists of an identification
algorithm discussed above and a standard back-propagation
neural network.

By combining the fuzzy PI and D controllers, static and
transient behaviors of a system can be improved [3]. A control
signal for a controlled object is computed as follows:

(20)

where is a sampling time and is an output of the
fuzzy controller and is a control signal to a plant.

This hybrid neuro-fuzzy control system is operated in off-
line and on-line two steps. In the off-line optimization step,
we use the behavior models to replace a controlled object with
unknown structure, and we optimize parameters of a fuzzy

logic controller according to the defined types of dynamic
behavior. For optimization of a fuzzy logic controller, of
course, many optimization techniques can be used such as
a genetic algorithm. On the basis of our previous work [9], in
this paper, the Nelder and Mead’s simplex algorithm is used
to optimize membership functions of fuzzy controllers.

Optimization of a fuzzy logic controller is to refine its mem-
bership functions and rule base. We can understand that a fuzzy
rule base represents human knowledge qualitatively, whereas
membership functions change qualitative human knowledge
into quantitative computation. For some problems, a fuzzy rule
base can be clearly obtained by using human knowledge. In
this case, a key problem is how to determine membership
functions to realize human knowledge efficiently. For the
control problem discussed in this paper, the fuzzy rule bases
could be fixed, as shown in Table I, since human knowledge
about the problem is clear. There are different strategies to
choose membership functions, but we believe that, in practice,
one should avoid changing all membership functions for
optimization of a fuzzy controller. To reduce the number
of membership functions to be optimized, therefore, it is
necessary to investigate effect of membership functions on
control performance. The study in [10] shows that the member-
ship functions regarding change-in-error affect dynamic
responses very strongly because they represent the feedback
of velocity. We use a very simple example to explain this
argument. If we remove all rules and membership functions
regarding change-in-error in a traditional fuzzy controller,
the fuzzy logic controller becomes a nonlinear proportional
controller. Using such a fuzzy controller it is very difficult to
control an unstable system, e.g., an inverse pendulum. More-
over, optimization of membership functions is to search for
reasonable combination of different types of membership func-
tions regarding , and Therefore, it is possible
that a fine tuning of the fuzzy logic controller can be achieved
by optimizing the membership functions regarding change-in-
error after the membership functions regarding and

are roughly defined according to human experience.



LI: METHOD FOR DESIGN OF A HYBRID NEURO-FUZZY CONTROL SYSTEM 133

(a)

(b)

(c)

Fig. 9. Membership functions of linguistic variables.

In [8], we have used cubic splines to define the mem-
bership functions regarding change-in-error as shown
in Fig. 9(b). Their shapes can be modified by shifting the
“moving” points along the dashed lines by their parameters
shown in Fig. 10. The parameters and denoted by a
vector are used to adjust the membership functions
and and and as shown in
Fig. 10(a)–(c), respectively. The vectorcan be changed in
the range [0.15, 0.85] [0.15, 0.85] [0.15, 0.85]. On the
contrary, the membership functions regarding and
are chosen to be the triangular type and remain unchanged
during operations, as shown in Fig. 9(a) and 9(c), respectively.
To investigate the effect of membership functions regarding

on control performance, we systematically perform the
following numerical simulations. Here, the nonlinear system
in (2) with and is chosen as the controlled
object. First, we change and by increasing
from 0.15 to 0.85 when and At
the time response exhibits an underdamped behavior, as shown

in Fig. 11(a). Since, in this case, the areas under
and are very small, the rules associated with
and have a weak effect on Consequently, the
negative feedback becomes weak. By increasingthe time
response becomes more damped. At the time
response exhibits an overdamped behavior shown in Fig. 11a.
Since, in the case, the areas and are very
large, the rules associated with and have a strong
effect on Consequently, the negative feedback becomes
strong. In similar manner, we change and by
increasing from 0.15 to 0.85 when and
At the time response is more overdamped than that
at as shown in Fig. 11(b). Because the areas under

and are very small at the rules
associated with and have a weak effect on
whereas the effects of the rules associated with and
get relative stronger. Finally, we change by increasing

from 0.15 to 0.85 when and Fig. 11(c)
shows that the difference between the responses at



134 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 1, FEBRUARY 1997

(a)

(b)

(c)

Fig. 10. Membership functions of cubic splines.

and is very little. The studies show that the effects
of and on control performance are strongest,
whereas that of is weakest.

To optimize the membership functions of cubic splines, the
integral-of-time-multiplied absolute-error (ITAE) criterion

(21)

is used to describe control performance. Since
is a function of the parameter vector

the optimization of the membership functions
of cubic splines is the computation of the minimum value,

by searching for the corresponding vector of the
membership functions. Computing the minimum value
by the simplex algorithm is briefly described as follows [11].

1) Start with three points and compute
and

2) Find the maximum value the next maximum value
, and the minimum value and the corresponding

points

3) Find the center point of the points and
and evaluate

4) Reflect in to find and
5) If proceed to the contraction and compute

and where
is the contraction coefficient. If

compute and
6) If replace by check convergence, and,

if not, return to 2). If move to next step.
7) Reduce the size of the simplex by

and , and calculate and
test for convergence, and, if not, return to 2).

V. NEURAL NETWORK TRAINING FOR

ON-LINE ADAPTATION OF FUZZY CONTROLLER

In the on-line adaptive step, the unit for behavior modeling
is switched off. During system operation, the identification
algorithm is used to identify dynamic behavior of a controlled
object according to the last segment of dynamic response, and
the neural network is used to determine the parameters of the
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(a)

(b)

(c)

Fig. 11. Effect of membership functions regarding change-in-error on con-
trol performance. (a) Time responses caused by changing. (b) Time responses
caused by changing. (c) Time responses caused by changing.

fuzzy logic controller based on a the type of dynamic behavior.
To achieve this objective, a three-layer BP neural network is
used to build a mapping relationship between the types of
dynamic behavior and parameters of their optimized fuzzy
logic controllers. The input patterns of the neural network are
coefficients and that are used to describe different
types of dynamic behavior. The output patterns from the neural
network are the optimized vector of the
membership functions for control of each type of dynamic
behavior. The output of the th neuron on the th hidden
layer is calculated as

(22)

Fig. 12. A two-link manipulator with rotary joints.

where is the weight on connection joiningth neuron in
layer to th neuron in layer and is a sigmoid
logistic function

(23)

The Widrow–Hoff learning rule is used to modify the weight
as follows:

(24)

for the output layer and

(25)

for any other layers. The connection weights of the neural
network are updated by

(26)

(27)

where is a learning coefficient, and is a momentum con-
stant. After patterns training, this hybrid neuro-fuzzy control
system can be used in on-line control of a nonlinear controlled
object.

VI. CONTROL OF A MANIPULATOR

In this section, the proposed method is used to design a
neuro-fuzzy control system for control of a two-link manip-
ulator in Fig. 12 whose dynamic equations can be found in
[3]. Because the dynamic equations, in absence of friction,
represent an unstable controlled object without controllers, we
design its controllers as follows.

1) Use proportional-integral-derivative (PID) controllers to
control each joint of the manipulator. The idea is a rough
design of PID controllers to make manipulator operation
stable. In this case, control performance could not be
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(a)

(b)

Fig. 13. Manipulator time responses for step control. (a) Joint one. (b) Joint
two.

desired usually, but it is acceptable. PID control parame-
ters and are determined by Ziegler–Nichols
technique [12].

2) Obtain dynamic responses of the manipulator under PID
control by simulating its rough dynamic equations or by
operating the real manipulator.

3) Build behavior models according to dynamic responses
of the manipulator under PID control.

4) Optimize the vector of the mem-
bership functions as discussed in Section IV, based on
behavior models of the manipulator.

5) Train the neural network to establish the map relation-
ship between each type of dynamic behavior and the
optimized parameters of its fuzzy logic
controller.

Fig. 13(a) and (b) shows the step responses to the joints one
and two of the manipulator, respectively. In these simulation
studies, was chosen to be 2 m’s; the initial anglers
and were set to be zero degree, and the reference values

and were chosen as 60 It can be observed that
the time responses under PID control (rough control) exhibit
much larger overshoots, slower settling time, and larger steady-
state errors. Of course, control performance can be improved
by carefully adjusting the PID control parameters. To do this,
however, it is not very easy because the dynamic equations

(a)

(b)

Fig. 14. The applied torques to joints one and two computed by PID and
fuzzy control. (a) Joint one. (b) Joint two.

TABLE I
FUZZY RULE BASE

of the manipulator are highly nonlinear. When the fuzzy
logic controller of each joint, whose parameter vector

is determined by neural network, are switched
on to control the manipulator, control performance becomes
much better, e.g., smaller overshoots, faster settling time, and
higher precision. Fig. 14 shows the applied torques to each
joint, computed by PID and fuzzy control, respectively. It
should be noted that the maximal applied torques to joint one
and two, computed by PID control, are Nm
and Nm. However, the applied torques to joint
one and two, computed by fuzzy control, are
Nm and Nm. This example illustrates that the
proposed neuro-fuzzy controllers not only need lower energy,
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but also achieve much better control performance than the
PID controllers do those. Therefore, the maximum torque of
each joint motor can be reduced by the proposed neuro-fuzzy
controllers.

Here, the strategy for design of the neuro-fuzzy control
system for the manipulator is based on rough design of PID
controllers and fine design of fuzzy controllers. Since by using
behavior modeling we can describe dynamic responses of the
manipulator under PID control without any difficulty, fuzzy
logic controllers are used to improve control performance
yielded by PID control. In a conservative view, this ensures
that control performance under fuzzy control is better than one
under PID control. In [14], we report control results of a real
PUMA 560 robot by using this hybrid neuro-fuzzy control
system.

VII. CONCLUSIONS

This paper presents a new method for designing a neuro-
fuzzy control system based on behavior modeling. Using
behavior modeling, a complicated control problem is trans-
formed to off-line to model a controlled object and on-line to
adapt its controller.

J. C. Bezdek points out that fuzzy models seem particularly
well suited for a smooth transition from numerical (quantita-
tive) to semantic (qualitative) information [13]. Therefore, for
a fuzzy controller, we have to design its semantic information
and to determine its numerical information. For some control
problems, its semantic information (rule base) can be directly
defined by human-knowledge. For example, a rule base for
position control of a manipulator in this paper. In this case, a
key problem is how to determine its quantitative information
(fuzzy sets or membership functions). Since for any given plant
quantitative information is not uniquely represented by fuzzy
sets, it is desired to adjust a few of membership functions to
achieve a good control performance. Therefore, we propose
for optimizing the membership functions related to change-
in-error. If both numerical and semantic information are not
available, a rule base and membership functions should be
optimized synchronously.

On the basis of behavior modeling, we can optimize fuzzy
logic controllers using different optimization strategy. Because
of our previous work, the simplex algorithm is implemented
in this control system. We would like to recommend to use a
genetic algorithm for off-line optimization.

Here, we would like to emphasize the strategy for design
of the neuro-fuzzy control system in two steps: rough design
of PID controllers and fine design of fuzzy controllers. This

strategy is practical because, in most control applications, PID
controllers have been widely adopted. Since in using this
design strategy fuzzy logic controllers are used to improve
control performance yielded by PID controller, this strategy
can ensure that control performance is better than one yielded
by PID control.

This study is based on the assumption that design of a
fuzzy controller depends on a response behavior of a controlled
plant rather than its analytical model. Although this view is
often adopted in designing a fuzzy logic controller in practice,
we would try to provide some rigorous proof or limitation
conditions in our further research.
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