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Letters

A Method for Design of a Hybrid Neuro-Fuzzy
Control System Based on Behavior Modeling
Wei Li

Abstract—It is known that control signals from a fuzzy logic because the basis of the adaptive strategy is a trial-and-error
controller are determined by a response behavior of a controlled jdea this strategy suffers mainly from its convergence, and the
object rather than its analytical models. That implies that the convergence not only depends on the characteristics of a given

fuzzy controller could yield a similar control result for a set b | diff . f T d
of plants with a similar dynamic behavior. This idea leads to system, but also on difierent input references. To get a goo

modeling of a plant with unknown structure by defining several convergence during an adaptive process, some systems may
types of dynamic behavior, such as “oscillation,” “overdamping,” be started more times to adjust and test some initial values

“lede_fr_damping," and so fﬁrtg._On the baSéSfOf dgnﬁ_lmic 2ehaVi0r and learning coefficients. A system might especially be out of
classification, a new method Is presented for design of & Neuro- ., | if these coefficients were inadequate.

fuzzy control system in two steps: First, we model a plant . .
with unknown structure by choosing a set of simplified systems 10 deal with the convergence problem, this paper presents

with equivalent behavior as “templates” to optimize their fuzzy ~a new paradigm for designing a neuro-fuzzy controller based
controllers off-line. Second, we use an algorithm for system on behavior modeling. It is known that control signals from
identification to perceive dynamic behavior and a neural network 4 fuzzy logic controller are determined by response behavior

to adapt fuzzy logic controllers by matching the “templates” on- . . .
line. Tﬂe ma}i/n agdvantage of th>i/s methog is that C%nvergence of a controlled object rather than its analytical models. That

problem can be avoided during adaptation process. Finally, the Means that for two plants with a similar dynamic behavior,
proposed method is used to design neuro-fuzzy controllers for a a fuzzy logic controller can yield a similar control response
two-link manipulator. although these two plants have different dynamic equations.
Index Terms—Neuro, controller, loop response. This leads to the idea of description of a plant with unknown
structure by defining several types of dynamic behavior,
such as “oscillation,” “overdamping,” “underdamping,” and
so forth. On the basis of dynamic behavior classification, we
ESIGN of a fuzzy logic controller for a controlled objectdesign a neuro-fuzzy system for this plant with unknown
with unknown structure mainly suffers from both aspectsiructure in following steps. First, we model the plant by
of the controller itself and the controlled object. First, it is verghoosing a set of simplified systems with equivalent behavior
difficult to mathematically analyze the characters of the fuzzys “templates” to optimize their fuzzy logic controllers off-
logic controllers and, second, a detailed analytical model fie. Second, we use an algorithm for system identification to
the controlled object is not achieved due to nonlinearity @rerceive a dynamic behavior and a neural network to adapt
uncertainty. fuzzy logic controllers by matching the “templates” on-line. It
One of the widely used design method for fuzzy controllershould be noted that any two plants with a similar dynamic
is to define membership functions of linguistic variables arsehavior under a given input such as overshot, rise time, and so
to formulate fuzzy rules by control engineers [1]-[3]. Unon do not mean that their analytical models are equivalent; but,
fortunately, there might be no generally applicable principlgthe dynamic equations of two plants are identical, they must
on determining membership functions and rules for eagve a same dynamic response under a given input. Therefore,
particular system with specific requirements. Another approagBscription of controlled objectives using dynamic behavior
is to adapt rule-base and/or membership functions by seifodels is more general than that using analytical models.
organizing algorithms or neural network according to previous The differences between the proposed method and tradi-
responses until a desired control performance is achievg@shal adaptation strategies [4]-[8] are addressed as follows:
[4]-[8]. In particular, an adaptive fuzzy system based ofy the strategy of the proposed neuro-fuzzy system is to
softminoperator (proposed by Bereniji and Khedkar [6]) is verydapt fuzzy controller by matching “templates” instead of the
interesting in control of a plant with uncertainty. Howeveryia|-and-error idea, 2) in the trial-and-error idea only current
) . . ) ) response values, e.g., thiestep error between a reference
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behavior modeling, a tuning of a fuzzy logic controller is ~ Open-loop time response
divided into off-line and on-line stages, and the parameters of” 1 Closed-oop time response e
the fuzzy logic controller are adapted based on “templates.”

Therefore, convergence can be greatly improved. 1.0
This paper is organized into six sections. In Section Il, ]
we discuss general characters of a fuzzy logic controller. In0-87
Section lll, we propose an approach to behavior modeling, ]
and we use an identification algorithm to perceive dynamic8.6
behavior. In Section IV, we present a neuro-fuzzy control
system based on behavior modeling, and we optimize the.a-
parameters of the fuzzy logic controller using the Nelder and
Mead'’s simplex algorithm [11]. In Section V, we use a neural g.2 ]
network on-line to adapt fuzzy controller based on “templates.” ]
In Section VI, we use the proposed method to design fuzzyyg
controllers for a two-link manipulator. 00 05 10 15 20 25 30 35 A0 45
Fig. 1. Open and closed-loop responses of a second-order system.

Il. CHARACTERS OF AFuUzzy LoGIC CONTROLLER .
Open-loop time response

Closed-loop time response

|
|
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The principle of designing a fuzzy logic controller is to
integrate empirical knowledge and operator experience intom
controllers by using fuzzy sets and fuzzy rules. To acquire
such knowledge, response process of a controlled object musnt
be observed, and its decision and control strategy are expressec
by fuzzy logic. Since this design strategy is only depends
on response behavior, a fuzzy logic controller can yield a
similar control result for a set of plants with a similar dynamic
behavior regardless of their mathematical models. We usé4
the following example to demonstrate this character of fuzzy
logic controller. First, we choose a second-order system as 8.2
controlled object; its dynamic equation is expressed as follows:
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i+ 2.0wE) 4+ w? = wlu (1) 60 05 1.0 15 20 25 30 35 40 45

. . Fig. 2. Open and closed-loop time responses of a nonlinear system.
wherew = 1.4 and ¢ = 0.575. Then, according to this g P P P Y

controlled object we optimize its fuzzy logic controller tocontroller for both of the controlled objects. Another example

achieve a desired control performance. Fig. 1 shows open aglqo choose a set of higher order system (from third order to

N
Cngjve(\jA':Orgg; SC%O?ﬁ:sstgc;;ed?grzzr:g;ygget:]e;g;tgllﬁgnﬁ?e%?%th—order) yvith a similar response loop behavior to that of
svstem with its dvnamic equation (i)._Then using the same fuzzy I(_)glc controll_er, we can ge_t a
Y y q similar closed-loop response. This leads to idea of modeling

i+ 2.0wEgy + wy? = wiu (2) of a plant with unknown structure by defining several types
of dynamic behavior.

wherew = 1.0 and{ = 1.0, i.e., we use the optimized The next well-known character of a fuzzy logic controller

fuzzy controller to control the nonlinear system. Although thig its robustness to parameter changes. When we change the
parameters of the nonlinear system are different from thoggrameters of the second-order system (1) fror 1.0 and

of the second-order system, by using the same fuzzy logic= 0.7 to w = 1.0 and¢ = 1.0, we can observe the change of
controller its closed-loop time response is as good as thattgé open-loop responses of the second-order system, as shown

the second-order system (a very small maximum overshegtrig. 3. At first, we optimize a fuzzy controller related to the
and a fast settling time), as shown in Fig. 2. This is becausgcond-order system with = 1.0 and¢ = 0.7 to achieve a

that the open-loop dynamic behavior of the nonlinear systegaod control performance shown in Fig. 4. Then, we use the
is very similar to that of the second-order system. It should bgzzy logic controller to control the second-order systems with
noted that, due to the nonlinearity of (2) its dynamic behavigy = 1.0 and¢ = 1.0. Fig. 4 shows that the performance of

is quite differ from that of (1) if both of the equations have thelosed-loop response is also quite good. For system modeling,

same parameters = 1.0 and{ = 1.0. When the parameter in this character greatly reduces the types of dynamic behavior
(2) changes, its open loop response also changes. Neverthelgsge defined.

it is possible to find out another second-order system with a

similar response to that of this nonlinear system. For example,

the dynamic behavior of (2) wit = 1000.0 and ¢ = 1.0 Ill. BEHAVIOR MODELING OF A CONTROLLED OBJECT

is similar to that of a second-order system with—= 1400 A dynamic behavior of a system is defined as its dynamic

and¢ = 0.578. Therefore, we can design a same fuzzy logiesponse under a given input signal. According to the first
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Fig. 3. Open-loop time responses of a second-order system while changing. 5. Definition of dynamic behavior by a set of second-order systems.
its parameters.

For each type of defined behavior, we can optimize its fuzzy

1.2 5 logic controller in advance.
i Close-loop time responses A key problem in behavior modeling is how to use the
1.0 defined types of dynamic behavior to model any dynamics
] of a system with unknown structure. Obviously, for dynamic
0.8 - responses of a complicated nonlinear plant with unknown
3 structure it is difficult to model them only by using a second-
0.6 - order system. To deal with this problem we divide a whole
] response process into many segments and to model each seg-
0.4 ment based behavior models. The idea is to use an algorithm
] to identify the coefficientsa;,a2,b;, and b, of a second-
0.2 ] order system based on the measured input an_d ogtput data
: Time [s] w(k) andy(k)k = n+ 1,n 4+ 2,---,N) shown in Fig. 6,
0.0 i.e., to recognize the dynamic behavior of each segment of

0.0 05 1.0 15 20 25 30 35 40 45 the response based on historical information on inputs and

. . _ o outputs. When we model the nonlinear plant by the coefficients
Fig. 4. Time responses of a second-order system while changing its param- .

eters under fuzzy control. a1, az, by, andbs, there exists an error between a second-order

system and the nonlinear plant, which can be expressed by

character of a fuzzy logic controller, if a cluster of systems has y(k) + ary(k = 1) + azy(k — 2)

a similar dynamic behavior we can model all these systems by = bru(k — 1) + bau(k = 2) + e(k) (4)
choosing a system with simple dynamics. Moreover, based \%eree(k) depends on the coefficients, ay, by, andbs, and
this system, with simple dynamics we can design a fuzzy logjg evaluating criteria is expressed by T ’
controller for this cluster of systems.

In terms of the second character, we can define very few N

types of dynamic behavior to describe all response phenome- J = Z (k). ®)

non. For example, we can use a set of second-order systems k=n+1

to define the following types of dynamic behavior: In doing this, we define the following vectors, ¥, e, 6,
1) “oscillation” (0.0 < ¢ £ 0.2); and a matrixz:
2) “strong overdamping?0.2 < § < 0.4);
3; “overdgamping”(oi <g§( < 0.6§);_ ) u’ = [u(n +1),u(n +2) - -u(V)]" (6)
4) “appropriate”(0.6 < § < 0.8); v =y(n+1),y(n+2)-y(N)]" (7)
5) “underdamping”(0.8 <§ < 1.3); el =le(n+1),e(n+2) - e(N)]F (8)
6) “s_trong underdamping{1.3< § < 3.0), as shown in 67 =[ay, - an,bo, - bn]” (9)

Flg. 5. ) " ) n
For generalization, in this paper, these qualitative dynamic
beha?/iors are described byp uZing the cocjafficieqts@, le, —4(n) —y(n — 1) u(n) u(n —1)

and b, of a discrete-time equation as follows: z = _y(_n__+ 1 —u(n) u(n+ 1 u(n)

y(k)Fary(k—1)+asy(k—2) = biu(k—1)+bou(k—2). (3) YN 1)~V =2) w1l - 2)(10)
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Fig. 6. Dynamic behavior perception.
In behavior modeling, we should compute the coefficient 1.0
vector # so that (5) can be minimized. For convenience, (4) \/
is represented by a vector form
y=zt+e (11) time(s)
J=ele=(y—x6)T(y — z6) 0 5 10 15 20
=yly—0Taly —yT20 + 072 x0 (12) (b)
aJ
50 = —2xTy + 227 x6. (13) a0
Let 8J/06 = 0; we get
'zt = z1y. (14)
By defining matrixA = =¥z there then exits an orthogonal
matrix U and an elementary matri¥,3U,V,9: UAV =
Diag(D), and
dg 0 - 0 e time(s)
0 do 0 o 5 10 15 20
=|. . (15) (©

Fig. 7. Identification of dynamic behavior of a nonlinear system. (a) Time

0 0 - div_p

response of a nonlinear system. (b) Dynamic response yielded by behavior
models. (c) Time responses of both the nonlinear system and the behavior
Then (14) can be transformed as models.
Ul pv—14 =Ty (16) | _ |
DV-14 — U:cTy. (17) an array _of |nput§ .and_ outputs with a _Ieng‘tf@. On the ba§|s
of behavior classification, we can off-line model the nonlinear
Let 3 = Uzly,~v = V—lé, andy? = [hy - h(x—n], then system by a set of second-order systems in following steps.
D~ = 3. We get Step 1) Initializeko = 0.
L Step 2) Get inputsi(k) and outputsy(k) (k = ko +
B — j, if di#£0 (18) 1,---,ko + 6) from the test data that represent
’ 0. otherwise dynamic behaviors of the controlled objects.
A Step 3) Compute the coefficients;, as,b;, and b, by
=Vr. (19) using (15)—(19).
In this paperby = 0,n = 2 and N = 6. Step 4) Ifk<I_(o, increaseky = ko + 6 go to Step 1);
For a nonlinear controlled object with uncertainty, there otherwise go to Step 5).
might be two types of practical ways to get its dynamic Step 5) Classify all coefficientsy,, ag, by, and by for
response behavior. First, it is only possible by using test data each segment of dynamic response according to
during system operation such as boiler control. Second, it the defined types of dynamic behaviors.

can be obtained by simulating a rough analytical dynamicsin some cases, it may be difficult to model a dynamic
such as a dynamic equation of a manipulator. Thereforeresponse of a nonlinear system by a set of second-order
dynamic response of the controlled object can be expressedsggtems due to its complexity. To deal with this problem, we
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Fig. 8. A neuro-fuzzy control scheme based on behavior modeling.

recommend the use of a set of higher order linear systéagic controller according to the defined types of dynamic
because it is always possible to approximate a nonlindaghavior. For optimization of a fuzzy logic controller, of
system by linearization. In fact, it is not necessary to identifyourse, many optimization techniques can be used such as
coefficients very exactly by fuzzy logic control. a genetic algorithm. On the basis of our previous work [9], in
Fig. 7(a) shows a dynamic response of the nonlinear platitis paper, the Nelder and Mead’s simplex algorithm is used
Fig. 7(b) shows behavior modeling of the nonlinear plant by optimize membership functions of fuzzy controllers.
a set of second-order systems. In Fig. 7(c), both the dynamidOptimization of a fuzzy logic controller is to refine its mem-
responses of the nonlinear plant and the behavior models begship functions and rule base. We can understand that a fuzzy
plotted together. If we can identify the type of behavior for aule base represents human knowledge qualitatively, whereas
segment of response, we can fire its correspondent fuzzy logiembership functions change qualitative human knowledge

controller. into quantitative computation. For some problems, a fuzzy rule
base can be clearly obtained by using human knowledge. In

V. OPTIMIZATION OF MEMBERSHIP this case, a key problem is how to determine membership

FUNCTIONS OF CUBIC SPLINES functions to realize human knowledge efficiently. For the

Fig. 8 shows a neuro-fuzzy control scheme based on B:é)_ntrol prc_)blem discussed' in this paper, the fuzzy rule bases
havior modeling, which consists of four parts: 1) a fuzz§°“|d be fixed, as shown in Table I, since human knowledge

proportional integral (PI) controller and a conventional derivzﬁbom the problem_ IS clez_ir. There are d!fferent strateglesj o
tive D controller, 2) an algorithm for off-line optimization OfChOOSe members_hlp functpns, but we belleve_ that, n practice,
the fuzzy logic controller, 3) a unit for behavior modelingone_ ;hogld a}/mdfchangmg all: meTmberzhlp fuhnct|ons bfor
which consists of a set of simplified models, and 4) a unptimization of a fuzzy controller. To reduce the number

for behavior perception which consists of an identificatioﬂf membership functions to be optimized, therefore, it is

algorithm discussed above and a standard back-propagaﬁgﬁessary to investigate effect' of membership functions on
neural network. control performance. The study in [10] shows that the member-

By combining the fuzzy PI and D controllers, static an&hip functions regarding change-in-erifi) affect dynamic
transient behaviors of a system can be improved [3]. A contr§JSPONSEs Very strongly because they represent the feedback

signal« for a controlled object is computed as follows: of velocity. We use a very simple example to e_xplaln Fh's
argument. If we remove all rules and membership functions
k

regarding change-in-erréfk) in a traditional fuzzy controller,

u(k) = Kpus(k) +KZATZ“J“(J) the fuzzy logic controller becomes a nonlinear proportional
=1 controller. Using such a fuzzy controller it is very difficult to
+ ﬁ(e(k) —e(k—1)) (20) control an unstable system, e.g., an inverse pendulum. More-
AT over, optimization of membership functions is to search for
where AT is a sampling time and ;(k) is an output of the reasonable combination of different types of membership func-
fuzzy controller and is a control signal to a plant. tions regarding:(k), é(k), andw (k). Therefore, it is possible

This hybrid neuro-fuzzy control system is operated in ofthat a fine tuning of the fuzzy logic controller can be achieved
line and on-line two steps. In the off-line optimization stey optimizing the membership functions regarding change-in-
we use the behavior models to replace a controlled object welror (k) after the membership functions regardie(@) and
unknown structure, and we optimize parameters of a fuzzy (k) are roughly defined according to human experience.
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Fig. 9. Membership functions of linguistic variables.

In [8], we have used cubic splines to define the menmn Fig. 11(a). Since, in this case, the areas undets(¢)
bership functions regarding change-in-erég), as shown and ppp(é) are very small, the rules associated withB
in Fig. 9(b). Their shapes can be modified by shifting thend PB have a weak effect o (k). Consequently, the
“moving” points along the dashed lines by their parameteregative feedback becomes weak. By increasginghe time
shown in Fig. 10. The parameteks, &, andk., denoted by a response becomes more damped. kAt = 0.85, the time
vectork, are used to adjust the membership functipRg;(¢) response exhibits an overdamped behavior shown in Fig. 11a.
andppre(é), pnvs(é), andpps(é), andpzo(é), as shown in Since, in the case, the arepgrs(é) and ppgp(é) are very
Fig. 10(a)—(c), respectively. The vectbrcan be changed in large, the rules associated witiB and PB have a strong
the range [0.15, 0.85% [0.15, 0.85] x [0.15, 0.85]. On the effect onu (k). Consequently, the negative feedback becomes
contrary, the membership functions regarditd) andw (k) strong. In similar manner, we change-s(¢é) andups(é) by
are chosen to be the triangular type and remain unchangecreasingk; from 0.15 to 0.85 whert, = 0.5 andk. = 0.5.
during operations, as shown in Fig. 9(a) and 9(c), respectiveht k, = 0.15, the time response is more overdamped than that
To investigate the effect of membership functions regardired ks = 0.85, as shown in Fig. 11(b). Because the areas under
¢é(k) on control performance, we systematically perform theys(é) and ups(é) are very small at, = 0.15, the rules
following numerical simulations. Here, the nonlinear systemssociated withVS and PS have a weak effect om;(k),
in (2) with w = 1.0 and¢ = 1.0 is chosen as the controlledwhereas the effects of the rules associated With and PB
object. First, we changeyxp(é) andupp(é) by increasings,  get relative stronger. Finally, we changg(¢é) by increasing
from 0.15 to 0.85 whelk, = 0.5 andk, = 0.5. At k&, = 0.15, k. from 0.15 to 0.85 wherk;, = 0.5 andk, = 0.5. Fig. 11(c)
the time response exhibits an underdamped behavior, as shewows that the difference between the responsés at0.15
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Fig. 10. Membership functions of cubic splines.

andk. = 0.85 is very little. The studies show that the effects 3) Find the center point of the points, and k;: k; =

of uyp(é) andppp(é) on control performance are strongest, 0.5(k, + k;) and evaluated; = f(ky).
whereas that ofizo(é) is weakest. 4) Reflectk,, in k; to find k, and H,. = f(k,.).
To optimize the membership functions of cubic splines, the 5) If H, > H,, proceed to the contraction and compute
integral-of-time-multiplied absolute-error (ITAE) criterion k. = Pk, + (1 - Pk; and H. = f(k.) where
o B(0< B < 1) is the contraction coefficient. 1§, < H,,
H :/ tle(t)| dt (21) computek. = Bk, + (1 — f)k; and H. = f(k.).
0 6) If H.< H;, replacek;, by k., check convergence, and,

if not, return to 2). IfH,. > Hj;, move to next step.

7) Reduce the size of the simplex by = k;,+0.5(kr, —k;)
andky, =k, + 0.5(ky — ki), and calculated;, and H,,
test for convergence, and, if not, return to 2).

is used to describe control performance. Sinfée =
f(k., ks, k) is a function of the parameter vectdr =
(kz, ks, ky), the optimization of the membership functions
of cubic splines is the computation of the minimum value,
H*, by searching for the corresponding vectet of the

membership functions. Computing the minimum valt(@") V. NEURAL NETWORK TRAINING FOR
by the simplex algorithm is briefly described as follows [11]. ON-LINE ADAPTATION OF FUzzY CONTROLLER
1) Start with three points;, k2, k3 and compute; = In the on-line adaptive step, the unit for behavior modeling
f(k1),Hy = f(k2), and H3 = f(k3). is switched off. During system operation, the identification

2) Find the maximum valuéd;,, the next maximum value algorithm is used to identify dynamic behavior of a controlled
H,, and the minimum valué{; and the corresponding object according to the last segment of dynamic response, and
points k, kg, ki. the neural network is used to determine the parameters of the
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K,=0.15 (k,= 0.5;k,= 0.5)
703
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Time (s) Fig. 12. A two-link manipulator with rotary joints.

(@)

B e where q][»SZJ is the weight on connection joiningh neuron in
1 o— K= 015 (K.~ 0.5:k,=0.5) layer (s — 1) to jth neuron in layers, and f(z) is a sigmoid
s logistic function
0.8 P 1
§ = . 23
o @)= 1o (23)
° 4: The Widrow—Hoffé learning rule is used to modify the weight
o wi as follows:
7 Lo B BN
. 6Z - f (wzi * 4 ) Z(tzk - tZk)
0.0 } 1 } ! } { | ! |
00 05 1.0 1.5 20 25 30 35 40 4.5 :
Time (8) 5. — f/ [3] ” [3] # —tA
(b) =L (wy * ;) ;( S — ton)
k
B K —-08353(Kk_=05Kk,=05) 3 3 * ¢
ol . > 8 = f'(wy * afp) > (i — o) (24)
- N0.15 k
0-8- for the output layer and
0.6 s s s+1 s+1
] 6% = f(Nett) ST ) s=1,2,3  (25)
0.4 k
0_2: for any other layers. The connection Weigmﬁ] of the neural
i network are updated by
.0 ! | ! ! } i ! } i
8.6 65 1.9 1.5 20 25 30 35 :il.;lmc‘i(;S) wij(t + 1) :wij[,sgt) + [?_ui?(t + 1) (26)
© Awij(t + 1) :7761' Net; + OéAw“ (t) (27)

Fig. 11. Effect of membership functions regarding change-in-error on COWheren is a |eaming coefficient. and is a momentum con-

trol performance. (a) Time responses caused by changing. (b) Time responses . . .

caused by changing. (c) Time responses caused by changing. stant. After patterns training, this hybrid neuro-fuzzy control
system can be used in on-line control of a nonlinear controlled

fuzzy logic controller based on a the type of dynamic behaviagbject.

To achieve this objective, a three-layer BP neural network is

used to build a mapping relationship between the types of Vi
dynamic behavior and parameters of their optimized fuzzy

logic controllers. The input patterns of the neural network are In this section, the proposed method is used to design a
coefficientsay , a2, by, andb, that are used to describe differenfieuro-fuzzy control system for control of a two-link manip-
types of dynamic behavior. The output patterns from the neutdtor in Fig. 12 whose dynamic equations can be found in
network are the optimized vectd® = (k*,k*,k;) of the [3]. Because the dynamic equations, m_absence of friction,
membership functions for control of each type of dynamit€Present an unstable controlled object without controllers, we

behavior. The outpuﬁ}ﬂ of the jth neuron on theth hidden design its controllers as follows.
layer is calculated as 1) Use proportional-integral-derivative (PID) controllers to

control each joint of the manipulator. The idea is a rough
q][ﬂ — f(Netf}) = f <Z(wj[sz1 % q2[8—11)> (22) design of PID controllers to make manipulator operation

stable. In this case, control performance could not be

. CONTROL OF A MANIPULATOR
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Fig. 13. Manipulator time responses for step control. (a) Joint one. (b) JoiAy. 14. The applied torques to joints one and two computed by PID and

two.

2)

3)

4)

5)

fuzzy control. (a) Joint one. (b) Joint two.

desired usually, but it is acceptable. PID control parame-

tersk,;, K;; andK 4 are determined by Ziegler—Nichols FUZZIAELIILEE IBASE
technique [12]. .

Obtain dynamic responses of the manipulator under PID NlNB NS ZO PS PB
control by simulating its rough dynamic equations or by ~Bles P8 PB Ps zo

operating the real manipulator.

. ) ) : Ns|»B PB Ps zoO NS
Build behavior models according to dynamic responses

of the manipulator under PID control. ZO|PB PS ZO NS NB
Optimize the vectok™ = (k% k%, k;) of the mem- PS|PS ZO NS NB NB
bership functions as discussed in Section IV, based on PB[|ZO NS NB NB NB

behavior models of the manipulator.
Train the neural network to establish the map relation-

ship between each type of dynamic behavior and ¢ he manipulator are highly nonlinear. When the fuzzy
optimized parameteds” = (kZ, k7, k7)) of its fuzzy logic  |ogic controller of each joint, whose parameter vedkSr=

controller. (k*,k*, kF) is determined by neural network, are switched

zr )

Fig. 13(a) and (b) shows the step responses to the joints @eto control the manipulator, control performance becomes
and two of the manipulator, respectively. In these simulatighuch better, e.g., smaller overshoots, faster settling time, and
studies,AT’ was chosen to be 2 m’s; the initial angléig0) higher precision. Fig. 14 shows the applied torques to each
and#,(0) were set to be zero degree, and the reference valyeisit, computed by PID and fuzzy control, respectively. It

erefl

and #..;» were chosen as 601t can be observed that should be noted that the maximal applied torques to joint one

the time responses under PID control (rough control) exhikihd two, computed by PID control, arg .. = 996 Nm
much larger overshoots, slower settling time, and larger stea@yd ; ... = 733 Nm. However, the applied torques to joint

state

errors. Of course, control performance can be improvege and two, computed by fuzzy control, arg,.. = 975

by carefully adjusting the PID control parameters. To do thislm and 72, = 604 Nm. This example illustrates that the
however, it is not very easy because the dynamic equatiqgmeposed neuro-fuzzy controllers not only need lower energy,
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but also achieve much better control performance than thtategy is practical because, in most control applications, PID
PID controllers do those. Therefore, the maximum torque obntrollers have been widely adopted. Since in using this
each joint motor can be reduced by the proposed neuro-fuzigsign strategy fuzzy logic controllers are used to improve
controllers. control performance yielded by PID controller, this strategy
Here, the strategy for design of the neuro-fuzzy controln ensure that control performance is better than one yielded
system for the manipulator is based on rough design of Py PID control.
controllers and fine design of fuzzy controllers. Since by using This study is based on the assumption that design of a
behavior modeling we can describe dynamic responses of thezy controller depends on a response behavior of a controlled
manipulator under PID control without any difficulty, fuzzyplant rather than its analytical model. Although this view is
logic controllers are used to improve control performanagften adopted in designing a fuzzy logic controller in practice,
yielded by PID control. In a conservative view, this ensurege would try to provide some rigorous proof or limitation
that control performance under fuzzy control is better than omenditions in our further research.
under PID control. In [14], we report control results of a real
PUMA 560 robot by using this hybrid neuro-fuzzy control ACKNOWLEDGMENT

system. The author would like to thank the referees for detailed and

helpful comments.
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