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Abstract 
This paper presents a strategy for optimization of a 
fuzzy logic controller based on a control scheme, 
which consists of a fuzzy logic (FL) controller and a 
conventional derivative @) controller. For this 
purpose, we first choose a set of membership 
functions regarding change-in-error e ' ,  which 
represent the feedback of velocity. Then we optimize 
them using neural network in self-organizing 
process. To demonstrate the effectiveness of the 
proposed method, we report a number of simulation 
results involving both step and tracking control of a 
nonlinear plant. 

1 Introduction 

It is known that fuzzy controllers are suitable for 
systems with nonlinear dynamic equations or with 
unknown structures since empirical knowledge or 
operator experience can be integrated into the 
controllers by fuzzy sets and fuzzy rules. The 
problem with fuzzy logic controllers is that they are 
difficult to fine turn or optimize. 
One of the widely used methods for optimizing a 
fuzzy logic controller is to define membership 
functions of linguistic variables and to formulate 
fuzzy rules by control engineers. These membership 
functions and rules are stored in computer memory 
and can not be modified during operations [1][4][6]. 
Unfortunately, there is no generally applicable 
principle on determining the membership functions 
and rules for each particular system with specific 
requirements. Another approach is to modify the rule 
base by self-organizing algorithms automatically 
according to previous responses until the desired 
control performance is achieved [2][3][5]. In self- 
organizing control (SOC), modifying the rule base is 
to optimize a decision table based on a defined 
performance index. In such a decision table, however, 
there are a number of elements that should be 
optimized during operations (a high dimension 
optimization problem), it is generally a hard problem 
in optimizing the rule base within small learning 
times. 

In [8]-[9], a FL control scheme for a mechanical 
manipulator has been proposed, which consists of a 
FL controller and a conventional derivative @) 
controller, as shown in Fig.1. By investigating 
membership functions regarding change-in-error 
e in this scheme, the desired control performances 
have been achieved in presence of joint friction and 
load changes. In [lo], we use the Nelder and Mead's 
simplex algorithm to optimize these membership 
functions in self-organizing process. This paper 
presents a method for optimizing a fuzzy controller 
based on this scheme. For this purpose, we choose a 
set of membership functions whose shapes can be 
adjusted by a parameter vector k. Then, we optimize 
membership functions using neural network in self- 
organizing process. The proposed approach is 
suitable for systems that are weakly defined by 
analytical models and may be more effective than 
traditional self-organizing control, since it reduces 
optimizing a decision table (a number of elements in 
the table) into optimizing membership functions 
which are represented by the parameter vector. 
Besides, adjusting membership functions by two or 
three parameters also can be easily done by control 
engineers. To demonstrate the effectiveness and 
robustness of the proposed approach, we report 
several simulation results involving both step and 
tracking control of a nonlinear plant. 

2 Choice of Membership Functions 

The input signals to the FL controller in Fig. 1 consist 
of the error e = yd - y(t) between the reference and 
actual values and its change e . The output signal 
from the FL controller uf is determined by the Min- 
Max inference algorithm and the fuzzy rule base 
shown in Table 1. The fuzzify section in the FL 
controller changes the true physical quantities to 
fuzzy quantities based on membership functions. The 
defuzzification is carried out by the centroid method. 
Using this control scheme, the control signal U for a 
plant is computed as follows: 

U = uf + 6' ufdt + K,e (1) 
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where & is the parameter of the D controller. 
In general, both membership functions of triangular 
type and exponential type are widely used in FL 
control. Obviously, changing these membership 
functions will affect control performance. A 
membership function of a symmetrical triangle is 
characterized by its peaking and zero points (belief 
values of one and zero). Since such membership 
functions can be adjusted only by shifting their 
peaking and zero points, they are not flexible enough 
in modifying their shapes. A membership function of 

anexponentialtypep(cx)=exp[-(a-a,)*/o*] is 

characterized by its meana, and deviation 0 .  By 
increasing 0 ,  the membership functions of th is  type 
become flatter. If 0 is very large, control 
performance becomes poor because the 
corresponding linguistic variables become too 
"fuzzy". In [6], we have modified the membership 
functions regarding e , which represent the feedback 
of velocity, by adding some interpolation points to 
the triangular type. This idea leads to reduce the 
number of membership functions to be investigated. 
The studies in [6] have shown that the shape of 
membership functions for desired control 
performance does not fall on the triangular type nor 
the exponential type. Therefore, the membership 
functions regarding e in this SOC strategy are 
defined by cubic polynomials shown in Fig.2b, 
whose shapes can be modified by shifting the 
"moving" points along the dashed lines by their 

parameters shown in Fig.3. The parameterskb, k, 

and k,, denoted by a vector k = (k, , k, , kb ), are 
used to adjust the membership functionsp(NB) and 
p(PB), p(NS) and p (PS), and p(ZO), as shown in 
Fig.3a-c, respectively. The parameter vector k can 
be changed in the range 
[0.15, 0.851 x [0.15, 0.851 x [0.15, 0.851. On the 
contrary, the membership functions regarding e and 
uf are chosen to be the triangular type and remain 
unchanged during operations, as shown in Fig.2a and 
2c, respectively. 

3 Neural Network Structure 

In the method, the optimization of the fuzzy logic 
controller is done by using neural network to search 

the optimum point of the vector k* = (ki , k;, k; ) 
according to previous responses. Therefore, it is 
important to define a control performance index. 
Here, we use the integral-square-error criterion 

J = j) e2dt 

as a performance index. Since the parameter vector 

k = (k, , k, , kb ) has effects on control performance 

ofamanipulator,J=f(k,,k,,k,,) o r J = f ( k )  is 
used to describe the responses. 
Fig. 1 illustrates the fuzzy logic control scheme. In 
this scheme, a three-layer BP neural network is used 
to optimize the membership functions for desired 
control performance in self-organizing process. The 

input to the neural network is a given samplef(k*). 

The output qyl of the j-th neuron on the s-th hidden 
layer is calculated as 

qP]= J g ( c ( w ~ l * q ~ - ' l ) )  

where wls] is the weight on connection joining i-th 
neuron in layer (s-1) to j-th neuron in layer s and 
g( -) is a sigmoid logistic function 

J' 

(4) 

We use the e m r E  = f (k*)-  f ( k )  to modify the 

weight ~ $ 1  by Widrow-Hoff 6 leaming rule. If 

E I E ,  the output of the neural network is the vector 

k* = (k;, k$, k+b) that determines the optimal 
membership functions. 

4 Simulations 

In order to demonstrate the effectiveness and 
robustness of the proposed strategy, by numerical 
simulations we test time responses for the step, ramp 
tracking and sinusoidal tracking control of the 
nonlinear plant 

In all simulation studies, the initial values of the 
plant y(O), y'(O), and y"(0) are zero. 

ji+2.O~wLy+02y2 = w 2 u  ( 5 )  

Simulation 1 (Step Control) 

In order to obtain a small overshoot in positive step 
control, we use the modification of the integral- 
square-error criterion 

j) 100.0e2dt 
j) e2dt 

Fig.4 shows the step response to the nonlinear plant 
with w = 1.0 and6 = 1.0. Since there is a damping in 
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this plant to dissipate energy, the parameterK, of 
the D controller is chosen to be zero. Using neural 
network, we get the parameter vector 

k* =(0.472476, 0.431155, 0.410438). It can be 
observed that the time response exhibits a very small 

maximum overshoot M, M 0.0 and a fast settling 

time t, = 0.72 s. 

Now, we set 5 = -2.0. In this case, there is no 
damping in the plant to dissipate energy. For dealing 
with this problem, we add the D controller with 

K, = -3.5 (notice that the choice ofKd is not strict) 
to dissipate the internal energy of the plant. The 
optimum membership functions with 

k* = (0.485403, 0.474852, 0.463350) are 
determined using neural network in self-organizing 
process. Fig.5 shows the time response with 

M p ~ O . 0 a n d t s = 0 . 7 8 s .  

Simulation 2 (tracking control): 

In tracking control, the standard integral-square-error 
criterion is used to describe a control performance. 
Fig6 shows the sinusoidal tracking response to the 

plant with Kd = O . O ,  o =1.0 and {=LO. Using 
neural network, we get the parameter vector 

k* = (0.404975, 0.344822, 0.268896). Fig.6 
shows the time response with a small tracking error 
in the sinusoidal tracking control. 
Fig.7 shows the ramp tracking response to the plant 

(o =1.0, {=1.0 ,  K, = O . O ) .  The optimum 
membership functions with 

k* = ( 0 . 5 ,  0.55451, 0.448028) are found. The 
simulation result exhibits a small tracking error in the 
sinusoidal tracking control. 
Fig.8 shows the ramp tracking response to the plant 

(Kd = 0.0, w =1.0, 5 =l.O). in the presence of the 

disturbance Ydis = 0.2 sin( 1. I t)  in Fig.9. In spite of 
the disturbance, the tracking error still is small using 
the membership functions in Fig.7. 

5 Conclusions 

This paper presents a new fuzzy SOC strategy, which 
optimizes membership functions using neural 
network according to previous responses. This 
approach is suitable for systems in the absence of 
analytical models.. The simulation results show the 
effectiveness and robustness of the proposed method. 

The SOC control scheme consists a FL controller and 
a D controller. The FL controller is used to improve 
transient behaviors (e.g., small maximum overshoots 
and a fast settling time). If the FL controller can not 
stabilize a plant under the strongest negative 
feedback control, the D controller is added to solve 
this problem. This strategy may avoid dealing with 
stability analysis of nonlinear plants controlled by 
the SOC control scheme. 
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Fig. 1 : Control scheme for SOC algorithm Table 1: Fuzzy rule base 
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Fig.2: Membership functions 
of lingustic variables 

Fig. 3 : Changes of membership 
functions' shapes 
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Fig. 4: Time response of a stable plant 
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Fig. 5: Time response of an unstable plant 

Fig. 8: Time response of ramp tracking 
in the presence of a disturbance 

Fig. 9: A disturbance signal 

227 


