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Abstract 

This paper presents an approach to sensor-based 
obstacle modeling in a configuration spacc for manipulator 
motion planning in unknown environmenls. In order to 
achieve this objective, an efficient algorithm is used to fast 
map obstacles bused on defined fundamental obstacles in 
the workspace and their images in the configuration space. 
A robotic manipulator is assumed to be equipped with 
"distance" sensors to detect obstacles in the local region. 
By computation ofthe critical points of an obstacle based on 
information acquired by the "distance" sensors, an obstacle 
model in the conjguration space is constructed. By using 
this sensor-based conJiguration space modeling, robot 
motion planning in unknown environments can be perjbrmed 
in realistic time frames. 

1 .  Introduction 

It  is well known that motion planning based on sensors is 
a key issue of manipulator application in the real world. One 
of the most widely used approaches to motion planning, 
including obstacle mapping and path searching, is based on 
a configuration space (C-space) modeling. The algorithms 
reported in [1][2][3] show that motion planning in the C- 
space is accurate and efficient in static environments. 
However, these C-space algorithms, such as cell 
decomposition, etc., are not suitable for sensor-based path 
planning in unknown environments because there is lack of 
a model for connection between the C-space algorithms and 
information from sensors. One of their deficiencies is that 
large amounts of computational time are needed to deal with 
a robot's kinematics and geometry as well as the obstacles' 
geometry before searching for a path. 

In [4], Lumelsky presents an interesting algorithm for 
motion planning in dynamic environments. For a 
manipulator, its obstacle modeling in  the C-space serves to 
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compute the collision boundaries between a robot and the 
obstacles. Because this modeling approach has to solve the 
algebraic equations of the C-space obstacles in terms of the 
robot's kinematics based upon a simplified geometric model 
of the robotic arm, it is also a time consuming work. 

In [5][6][7], we present approaches for fast mapping an 
obstacle from a workspace (W-space) into a C-space. Its 
basis is to define some points in the W-space as fundamental 
obstacles and to precompute their C-space obstacles 
according to a robot's kinematics and geometry. Using the 
fundamental obstacles and their images in the C-space, we 
propose an efficient algorithm for a C-space modeling based 
on "distance" sensors. Its idea is to compute their 
approximate contours from the critical points of an obstacle 
based on information acquired by the sensors. On the basis 
of this C-space modeling, we adopt the algorithms proposed 
in [SI to plan a collision-free path. 

This paper is organized as follows. First, considering a 
planar robot, Section 11 briefly presents the concept of 
fundamental obstacles and gives the algebraic computation 
for mapping the fundamental obstacles to the C-space. 
Section I11 proposes the method for mapping complex 
obstacles by using the critical points. Section IV presents an 
obstacle modeling in the C-space based on sensor 
information for motion planning. Section V extends this 
method for motion planning in 3D space. Finally, Section VI 
summarises the work presented in this paper. 

2. Fundamental Obstacles and Their Images in C- 
Space 

Before we discuss the proposed approach, we introduce 
fundamental obstacles and their images in the C-space. 
Since a two-link planar manipulator is the fundamental part 
of a real manipulator, such as a PUMA 560 robot, we will 
use it to describe our basic approach. Fig. l a  shows the W- 
space of the manipulator. A grid is used to discretize this W- 

0-7803-3700-X/96 $5.00 01996 IEEE 265 



V 

-40 

x 

1% 

0 

-18C 

40 -1 

f 
i co,(Fo. 

$' 
I 

0 

\ 

4 

0 

Fig. 1 (a) Fundamental obstacles FO,, , FO,, , FO,, in the W-space, 
and (b) images COR(FO,,), CO,(FO,,), COR(FO,,) in the C-space. 

space. Intersection points of verticals and horizontals on the 
grid are defined as fundamental obstacles FOi=(x, y) shown 
in Fig. la.  Each FOi has two important parameters: 

COR(FO~) is very simple. Hence here we only show the 
case when I ,  5 r I I,. 

The analytical model for computing COR(FO~) without 
considering the robot's geometry can be written as follows: 

r = Jx' + y 2  (1) 

cp = arctan - (Pj 
where r is the distance between FOi and the original point, 
and cp is the angle between r and the X axis. For example, 
in Fig. la, cp and r are two parameters of FOib. In [ 7 ] ,  we 
have in detail discussed how to choose fundamental 
obstacles and to locate them in W-space. 

Since {FOi} are independent of a real obstacle in an 
unknown environment, their C-space obstacles, denoted by 
CO,t(FOi), can be precomputed i n  tcr'rns 01' thc kincmatics 
and geometry of the robot. We first define I ,  and I ,  as the 
length of the first and second link of the manipulator, 
respectively. When r < I , ,  the model for computing 

[ r 2  - s2 1 
O 2  = ?? arccos ___- 

(3) 

(4) 

where 0 < s < l 2 .  In order to avoid collision, the image, 
COR(FO~), has to be modified by taking the robot's 
geometry into consideration. The forbidden region in the C- 
space must be enlarged by the upper boundary 02" and the 
lower boundary 021 of the second joint as follows: 

e,, = O2 + arcsin - ( 1:) 
Table 1. A sample of the image of a fundamental obstacle MFO24 = (24, 0) .  

( 5 )  
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. arcsin( f) 

where w is the width of the robot’s arm. When s changes 
from 0 to I , ,  the C-space obstacle is generated by formula 
(3)-(6) .  Fig. l a  shows fundamental obstacles FOi,, FOib and 
FOic; Fig. Ib shows their corresponding images 
COR( FOi,), COR(FOib) and COR(FO~,) regarding the 
robot’s geometry. 

To compute complex C-space obstacles, we only need to 
save the images of FOi, which are located along the positive 
half of the horizontal axis, denoted by MFOk. In this paper, 
we choose forty MFOk ( k  = 1, 2 ,..., 40). Based on 
CO,z(MFOk), all COR(FO~) can be computed by the use of 
r and cp in [7].  As an example, Table 1 gives a sample of 

COR(MFO~) saved in a database, where f3yiin, €I\?,,, 

Oyii,, and 0\ti,, are the minimal and maximal values of 
81 and 82 for COR(MFOk). 

3. Mapping Complex Obstacles by Critical Points 

Since FOi and COR(FO~) describe the key relationship 
between the W-space and the C-space, for a complex 
obstacle SjOi in two dimensions, we can compute its C- 
space obstacle COR(Sj0i) according to 

where FOk are the fundamental obstacles on borders of SjOi. 
Since the upper and lower boundaries of coR(sjoi), 
denoted by COR(SjOi)upper and cOR(sj0i )lower , consist 
of upper and lower boundaries of COR(FO~), respectively, 
the computation of COR(Sj0i) determines the boundaries of 
all COl<(FOi). A 2D obstacle SjOi is shown in Fig. 2a and 
all FOk related to SjOi are shown as ‘ 0 ’ .  All COR(FO~) 
should be computed together to form cOR(sj0i). It can be 
noted that some of COR(FO~) completely or partially 
overlap with each other, and hence many irregular cells must 
be activated repeatedly by using the cell decomposition 
approach for superimposing COR(sj0i). 

In our approach, cOR(sj0i) is represented by their 
boundaries rather than their irregular cells, and we propose 
an algorithm for obstacle mapping using the critical points 
of an obstacle. The boundaries of cOR(sJ0i) for the joints 
81 and 8 2  are formed when the robot touches the boundary 
of SjOi from the exterior in each of the two cases [9]: 1. The 
robot links contact a vertex of SjOi; 2. The robot end- 
effector contacts an edge of SjOi. It has been reported that 
COR(Sj0i) is most often formed whenever the robot arm 
contacts SjOi [4]. Hence we select such FOi from equation 
(7) that can be contacted by the robot links to improve 
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mapping performance. According to these principles, we 
define the following FO, as the critical points, shown as 'e' 
in Fig. 2a. First, the fundamental obstacle FOi with the 
minimum r ,  denoted by G I ,  is defined as a critical FOi , 
since it is the nearest fundamental obstacle to the original 
point, shown in Fig. 2a. Secondly, the fundamental obstacle 
FOi with @ ~ n l i n  and Olmax, denoted by G2 and C3 are 
defined as critical. points shown in Fig. 2b. Finally, the 
fundamental obstacle FOi with the minimum and maximum 
cp, denoted by G4 and Gg, are also considered as critical 
points of SiOi, as shown in Fig. 2c. The critical points' 
images govern c o R ( s j o i ) ,  because: 1 .  The critical point G I  
contributes the largest collision area in the C-space among 
all FOi; 2. The critical points G2 and G3, which determine 
the forbidden region [@,,,,in , Elllnax] for the joint 81, can be 
contacted by the robot links; 3. The critical points G4 and 
G5 also can be contacted by the robotic arm when the arm 
stretches up, as shown in Fig. 2c. On the assumption that the 
number of FO, for modeling a 2D obstacle SjOi is J ,  we 
propose the following Algorithm 1 to compute the critical 
points for SjOi 

Step 2.3 

e';' = ($71 

i f  0"' ( J )  . 

if e(i) -@(I) . 

lmax lmax + Q : 

- I m i n < @ l m i n  then @ l m i n =  ~~, , ,~ ,~g4=/end if; 

- 1 > @ I  max then @ I  lnax - 1 , g j  =.I end if I 
_ _  end for j 

where the symbol L 1 takes the maximum integer that is 
smaller than the quotient, and gl, 62, g3, g4 and g5 are the 
sequence numbers of the critical points Cl,  G2, G3, GJ and 
G5. The computational complexity of Step 1 in Afgorithm 1 
is 41). Since equations ( I )  and (2) can be performed by the 
finite number of fundamental operations KO,  the 
computational complexity of Step 2.1-2.3 are 41). Ilence 
the complexity of Afgurithnr 1 is ql)+qJ). Since. 

obviously, J is much smaller than the total number of 
fundamental obstacles, the time complexity of Algorithm 1 
can be expressed by q l ) .  

For the critical points. their images can be obtained on 
the basis of the database [5] instead of by computing the 
robot's kinematics and geometry as well as the obstacles' 
geometry. In fact, determining the upper boundary of 
COR(SjOi)upper  serves to calculate the upper boundary of 
C O R ( G  1 )upper, C O ~ ( G 3 ) u p p e r  and COR(GS)Upper, while 
determining COR(Sj0 i ) lower  serves to Compute the lower 
boundary of C O R ( G  ])lower, COR(G2)lOWer and 
C O ~ ( G 4 ) l o w e r .  Therefore, C o R ( S j 0 i ) u p p e r  and 
COR(SjOi) lower can be expressed as: 

Algorithm 2: 
generate-C-space_obstacle() : 

Step 1 .  

Step 2 .  

Step 3. 

M = Pmax - Pmin + 1 : 
for m = l u  M &  

0 2 1  ( m  ) = m ; 
0 2 "  ( m ) = -CO : 

- 

-- end for m 
for i = g l ,  g 3 ,  g5 do 
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mapping result using the critical points can be seen in Fig. 3. 

4 

-180 0 180 

Fig. 3. Generation of C-space from critical points 

where the symbol r 1 takes the minimum integer that is 
larger than the quotient, and the symbol mod takes the 
remainder. In all algorithms, the small letter 8 is used to 
represent the image of a point obstacle; while the capital- 
letter @ is used to represent the image of an obstacle except 
at the point obstacles. Therefore, COR(SJOi)upper and 
cOR(sj0i )lower are represented by @zu(m) and @21(m) 
( m  = 1 ,  ..., M ) ,  and 0 2 “  ( I )  and 0 2 1  ( I )  as well as @ z u ( M )  
and OZl(M) are the functions of @ln, i , ,  as well as @ l m a x .  
The computational amount of Step 1 and Step 2 in 
Algorithm 2 is ql), and that of Srep 3 and Srep 4 is also 
q1) since the number of COK(MFO~) in Table 1 is 
smaller than a constant. Therefore, the total complexity of 
Algorithm 2 can be expressed by 41). Its computation can 
be competed in about 5ms using a PC386 computer. The 

4. Sensor Based Obstacle Modeling in C-Space for 
Motion Planning 

One of the most important steps for motion planning in 
an uncertain world is obstacle modeling based on sonar data. 
Using the mapping method given in the last section, we 
present an approach to C-space obstacle modeling based on 
information obtained from “distance” sensors are assumed to 
be attached to the second link of the robot. The approach 
will be described through an example as shown in Fig. 4a- 
4h. 

The aim of motion planning is to find a collision free 
path from a start position to a goal position. Building a C- 
space using the critical points of the obstacles in the W- 
space is fast enough for a planner to give the path in real 
time. In an unknown environment, however, we cannot get 
the entire knowledge of the environment in advance. Hence 
it is very important to acquire information on obstacles from 
sensors. 

In our study, “distance” sensors are distributed regularly 
on both sides of the second link of the planar robot, as 
shown in Fig. 4a. Each sensor can retum the vertical 
distance (straight-up to the second link) between it and the 
obstacle. Thus the boundary points of the obstacle in a local 
region can be found according to distance data. They are 
approximated by FOi and can be mapped into the C-space 
according to the precomputed result of FOi. These FOi are 
shown by ‘0’  in Fig. 4a and specify all the possible 
collisions in the local region. In other word, if the robot does 
not contact these FO,, it will not collide with any obstacles 
when it moves in small steps. Here we consider only those 
FOi situated on one side of the robot’s second link when we 
try to let the link move toward them. 

Once distance information on the local region is 
acquired, a C-space obstacle can be formed according to the 
critical points of all POi. Through computation using 
algorithm 1,  the critical points can be acquired and they are 
represented by ‘ 0 ’  in Fig. 4a (In some cases, the critical 
points may number be 4, 3, or even 2). The image of the 
obstacle in the local region in the C-space is displayed in 
Fig. 4b. Based on the C-space modeling, then, the planner 
generates a local path to the goal point for robot motion in 
small steps. If the robot arrives at the goal point, the 
planning is finished; Alternatively, if it does not reach the 
goal point, it should rebuild all FOi and critical points 
according to updated information from the sensors, and once 
it is found that the critical points are different from the last 
ones, the planner should re-plan a new route starting from 
this point-to the goal point. I t  should be remarked that only 
the current.FOi, computed from the new information, are to 
be considered. We do not accumulate historical FOi since 
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these FO, would be far from robot and they do not affect the 
robot’s current planning. 

In our example, the robot starts from the start point and 
finds that there is no difference between the current critical 
points and the old ones when it moves to the second and the 
third configurations. When it gets to the fourth position (as 
shown in Fig. 4c and 4d), it finds a different situation. Then, 
the C-space is rebuilt according to the new critical points 
and the planner will generate a new path. Thus the work 
continues until the goal is reached. Fig. 4a, 4c, 4e, 4g, 4i and 
4k describe some consequent configurations and the critical 
points’ positions, while Fig. 4b, 4d, 4f, 4h, 4j and 41 give the 
configuration spaces corresponding to Fig. 4a, 4c, 4e, 4g, 4i 
and 4k, respectively. The thick solid line in each one of 
these C-space figures represents the current C-space 
obstacle, while the other lines describe the old C-space 
obstacles. In Fig. 4i and 4k, no critical points can be found 
since the robot has passed the obstacle to the goal point. In 
the other hand in Fig. 4j and 41, no thick solid line is found, 
which means that the current local C-space is an obstacle 
free space. 

The approach above can be genealised by means of 
following algorithm. 

Algorithm 3 1 

Step I .  old-g, = CO, old-g;? = CO, old-g3 = CO, old-g4 = a, 
and old - g5 = CO; current = start; path[()] = start; 
i = O ;  

Step2. current +goal & 

Step 2.1 find fundanientulobstacles(); 

Slep 2.4 next = motion-planning (current, goal); 
current = next: 

Step 2.5 path[i] = next; i=i+ I ;  

-- end while 

where start and goal are separately the start position and 
goal position of the robot, gl ,  62, 63, g4 and 65 have the 
same meaning as those in Algorithm I and 2 ,  while old-gl, 
old-gz, old-g3, old-g4 and old-65 are used to keep old 
values of them, respectively. The aim of the function find- 

fundamental-obstacles is to acquire all FO, approximately 
standing for real obstacles according to distance data, and 
that of the function motion-planning is to generate the next 
position to which the robot should move according to a 
certain method, respectively. The result of the motion 
planning is to be recorded in path. 

5, Extension to 3D Motion Planning 

Let us consider motion planning of a 3D robot like a 
PlJMA 560, whose first three joint angles are defined as 00, 
01, and 02 from the base, respectively. A global or local 3D 
C-space must be built. What we should consider is the first 
joint’s mapping. K. Sun and V. Lumelsky addresses the 
problem of collision-free motion planning of a 3D robot 
manipulator with sliding joints in an unknown environment 
in [ I O ] .  In their paper, sensors are installed on the arm to 
detect a contact with an obstacle. However, this approach is 
not suitable for a robot PUMA 560 with revolute joints. In 
our simulation, we furnish “distance” sensors on all four 
sides of the third link of the revolute robot. Thus, they can 
receive not only information considering motion of the 
second and third link, just like the case of a planar robot 
discussed above, but also information about the first link’s 
motion. Some boundary points in a 3D obstacle can be 
found and every point must be selected on a proper 00 plane 
and FOi near them are to be mapped to generate a 2D C- 
space. We can also use the critical points in every 2D space 
to form a 2D C-space. That is , a partial 3D C-space can be 
formed by generating several 2D C-spaces. One of our 
simulations on robot PUMA 560 can be seen from Fig. 5 .  

Fig. 5 .  Motion planning for a PUMA 560 robot 
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Using the above method, the robot can sense the 
environment information once it starts to move. When the 
robot moves to the next position according to the last 
planning, it should decide whether the critical points in each 
80 plane are changed. This is the same as for a 2D space. If 
they are changed, the robot regenerates the C-space obstacle 
and replans a path; otherwise it continues to the next 
position and again decides if the C-space is changed. N o  
more than the images of 40 fundamental obstacles are stored 
even in 3D motion case. 

6. Conclusions 

In this paper, we present an approximate approach to fast 
mapping obstacle from the W-space into the C-space based 
on selecting critical fundamental obstacles, and we analyze 
its computational complexity as O( 1). Usually, the 
approximation adopted provides sufficient information for 
the manipulator to plan a realistic collision-free path in the 
unknown environment. We discuss sensor-based obstacle 
modeling in the C-space for a planar manipulator and extend 
it to 3D operation. This C-space obstacle modeling makes 
path searching quicker and simpler for practical use. In our 
further research, we will implement this approach on a real 
robot system, and especially we will study an effect of 
sensors on planning performance. 
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