
Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems

Sensor-Based Obstacle Modeling in Configuration Space
for Manipulator Motion Planning

Wei L1; Chenyu MA
Zushun C H E N ; Qi C A 0

Department of Computer Science and Technology
Tsinghua University

Beijing, 100084, P. R. China
email: Iw@s 1000e.cs.tsinghua.edu.cn

Abstract

This paper presents an approach to sensor-based
obstacle modeling in a configuration spacc for manipulator
motion planning in unknown environmenls. In order to
achieve this objective, an efficient algorithm is used to fast
map obstacles bused on defined fundamental obstacles in
the workspace and their images in the configuration space.
A robotic manipulator is assumed to be equipped with
"distance" sensors to detect obstacles in the local region.
By computation ofthe critical points of an obstacle based on
information acquired by the "distance" sensors, an obstacle
model in the conjguration space is constructed. By using
this sensor-based conJiguration space modeling, robot
motion planning in unknown environments can be perjbrmed
in realistic time frames.

1 . Introduction

It is well known that motion planning based on sensors is
a key issue of manipulator application in the real world. One
of the most widely used approaches to motion planning,
including obstacle mapping and path searching, is based on
a configuration space (C-space) modeling. The algorithms
reported in [1][2][3] show that motion planning in the C-
space is accurate and efficient in static environments.
However, these C-space algorithms, such as cell
decomposition, etc., are not suitable for sensor-based path
planning in unknown environments because there is lack of
a model for connection between the C-space algorithms and
information from sensors. One of their deficiencies is that
large amounts of computational time are needed to deal with
a robot's kinematics and geometry as well as the obstacles'
geometry before searching for a path.

In [4], Lumelsky presents an interesting algorithm for
motion planning in dynamic environments. For a
manipulator, its obstacle modeling in the C-space serves to

S.K. TSO

Center for Intelligent Design, Automation and
Manufacturing

Department of Manufacturing Engineering
City University of Hong Kong, HK

email: sktso@hkueee.hku.hk

compute the collision boundaries between a robot and the
obstacles. Because this modeling approach has to solve the
algebraic equations of the C-space obstacles in terms of the
robot's kinematics based upon a simplified geometric model
of the robotic arm, it is also a time consuming work.

In [5][6][7], we present approaches for fast mapping an
obstacle from a workspace (W-space) into a C-space. Its
basis is to define some points in the W-space as fundamental
obstacles and to precompute their C-space obstacles
according to a robot's kinematics and geometry. Using the
fundamental obstacles and their images in the C-space, we
propose an efficient algorithm for a C-space modeling based
on "distance" sensors. Its idea is to compute their
approximate contours from the critical points of an obstacle
based on information acquired by the sensors. On the basis
of this C-space modeling, we adopt the algorithms proposed
in [SI to plan a collision-free path.

This paper is organized as follows. First, considering a
planar robot, Section 11 briefly presents the concept of
fundamental obstacles and gives the algebraic computation
for mapping the fundamental obstacles to the C-space.
Section I11 proposes the method for mapping complex
obstacles by using the critical points. Section IV presents an
obstacle modeling in the C-space based on sensor
information for motion planning. Section V extends this
method for motion planning in 3D space. Finally, Section VI
summarises the work presented in this paper.

2. Fundamental Obstacles and Their Images in C-
Space

Before we discuss the proposed approach, we introduce
fundamental obstacles and their images in the C-space.
Since a two-link planar manipulator is the fundamental part
of a real manipulator, such as a PUMA 560 robot, we will
use it to describe our basic approach. Fig. l a shows the W-
space of the manipulator. A grid is used to discretize this W-

0-7803-3700-X/96 $5.00 01996 IEEE 265

V

-40

x

1%

0

-18C

40 -1

f
i co,(Fo.

$'
I

0

\

4

0

Fig. 1 (a) Fundamental obstacles FO,, , FO,, , FO,, in the W-space,
and (b) images COR(FO,,), CO,(FO,,), COR(FO,,) in the C-space.

space. Intersection points of verticals and horizontals on the
grid are defined as fundamental obstacles FOi=(x, y) shown
in Fig. la. Each FOi has two important parameters:

COR(FO~) is very simple. Hence here we only show the
case when I , 5 r I I,.

The analytical model for computing COR(FO~) without
considering the robot's geometry can be written as follows:

r = Jx' + y 2 (1)

cp = arctan - (Pj
where r is the distance between FOi and the original point,
and cp is the angle between r and the X axis. For example,
in Fig. la, cp and r are two parameters of FOib. In [7] , we
have in detail discussed how to choose fundamental
obstacles and to locate them in W-space.

Since {FOi} are independent of a real obstacle in an
unknown environment, their C-space obstacles, denoted by
CO,t(FOi), can be precomputed i n tcr'rns 01' thc kincmatics
and geometry of the robot. We first define I , and I , as the
length of the first and second link of the manipulator,
respectively. When r < I , , the model for computing

[r 2 - s2 1
O 2 = ?? arccos ___-

(3)

(4)

where 0 < s < l 2 . In order to avoid collision, the image,
COR(FO~), has to be modified by taking the robot's
geometry into consideration. The forbidden region in the C-
space must be enlarged by the upper boundary 02" and the
lower boundary 021 of the second joint as follows:

e,, = O2 + arcsin - (1:)
Table 1. A sample of the image of a fundamental obstacle MFO24 = (24, 0) .

(5)

266

Y
40

0 x

-40

-40 0 40

Fig. 2. Critical points of an obstacles

. arcsin(f)

where w is the width of the robot’s arm. When s changes
from 0 to I , , the C-space obstacle is generated by formula
(3)-(6) . Fig. l a shows fundamental obstacles FOi,, FOib and
FOic; Fig. Ib shows their corresponding images
COR(FOi,), COR(FOib) and COR(FO~,) regarding the
robot’s geometry.

To compute complex C-space obstacles, we only need to
save the images of FOi, which are located along the positive
half of the horizontal axis, denoted by MFOk. In this paper,
we choose forty MFOk (k = 1, 2 ,..., 40). Based on
CO,z(MFOk), all COR(FO~) can be computed by the use of
r and cp in [7]. As an example, Table 1 gives a sample of

COR(MFO~) saved in a database, where f3yiin, €I\?,,,

Oyii,, and 0\ti,, are the minimal and maximal values of
81 and 82 for COR(MFOk).

3. Mapping Complex Obstacles by Critical Points

Since FOi and COR(FO~) describe the key relationship
between the W-space and the C-space, for a complex
obstacle SjOi in two dimensions, we can compute its C-
space obstacle COR(Sj0i) according to

where FOk are the fundamental obstacles on borders of SjOi.
Since the upper and lower boundaries of coR(sjoi),
denoted by COR(SjOi)upper and cOR(sj0i)lower , consist
of upper and lower boundaries of COR(FO~), respectively,
the computation of COR(Sj0i) determines the boundaries of
all COl<(FOi). A 2D obstacle SjOi is shown in Fig. 2a and
all FOk related to SjOi are shown as ‘ 0 ’ . All COR(FO~)
should be computed together to form cOR(sj0i). It can be
noted that some of COR(FO~) completely or partially
overlap with each other, and hence many irregular cells must
be activated repeatedly by using the cell decomposition
approach for superimposing COR(sj0i).

In our approach, cOR(sj0i) is represented by their
boundaries rather than their irregular cells, and we propose
an algorithm for obstacle mapping using the critical points
of an obstacle. The boundaries of cOR(sJ0i) for the joints
81 and 8 2 are formed when the robot touches the boundary
of SjOi from the exterior in each of the two cases [9]: 1. The
robot links contact a vertex of SjOi; 2. The robot end-
effector contacts an edge of SjOi. It has been reported that
COR(Sj0i) is most often formed whenever the robot arm
contacts SjOi [4]. Hence we select such FOi from equation
(7) that can be contacted by the robot links to improve

267

mapping performance. According to these principles, we
define the following FO, as the critical points, shown as 'e'
in Fig. 2a. First, the fundamental obstacle FOi with the
minimum r , denoted by G I , is defined as a critical FOi ,
since it is the nearest fundamental obstacle to the original
point, shown in Fig. 2a. Secondly, the fundamental obstacle
FOi with @ ~ n l i n and Olmax, denoted by G2 and C3 are
defined as critical. points shown in Fig. 2b. Finally, the
fundamental obstacle FOi with the minimum and maximum
cp, denoted by G4 and Gg, are also considered as critical
points of SiOi, as shown in Fig. 2c. The critical points'
images govern c o R (s j o i) , because: 1 . The critical point G I
contributes the largest collision area in the C-space among
all FOi; 2. The critical points G2 and G3, which determine
the forbidden region [@,,,,in , Elllnax] for the joint 81, can be
contacted by the robot links; 3. The critical points G4 and
G5 also can be contacted by the robotic arm when the arm
stretches up, as shown in Fig. 2c. On the assumption that the
number of FO, for modeling a 2D obstacle SjOi is J , we
propose the following Algorithm 1 to compute the critical
points for SjOi

Step 2.3

e';' = ($71

i f 0"' (J) .

if e(i) -@(I) .

lmax lmax + Q :

- I m i n < @ l m i n then @ l m i n = ~~, , ,~ ,~g4=/end if;

- 1 > @ I max then @ I lnax - 1 , g j =.I end if I
_ _ end for j

where the symbol L 1 takes the maximum integer that is
smaller than the quotient, and gl, 62, g3, g4 and g5 are the
sequence numbers of the critical points Cl, G2, G3, GJ and
G5. The computational complexity of Step 1 in Afgorithm 1
is 41). Since equations (I) and (2) can be performed by the
finite number of fundamental operations KO, the
computational complexity of Step 2.1-2.3 are 41). Ilence
the complexity of Afgurithnr 1 is ql)+qJ). Since.

obviously, J is much smaller than the total number of
fundamental obstacles, the time complexity of Algorithm 1
can be expressed by q l) .

For the critical points. their images can be obtained on
the basis of the database [5] instead of by computing the
robot's kinematics and geometry as well as the obstacles'
geometry. In fact, determining the upper boundary of
COR(SjOi)upper serves to calculate the upper boundary of
C O R (G 1)upper, C O ~ (G 3) u p p e r and COR(GS)Upper, while
determining COR(Sj0 i) lower serves to Compute the lower
boundary of C O R (G])lower, COR(G2)lOWer and
C O ~ (G 4) l o w e r . Therefore, C o R (S j 0 i) u p p e r and
COR(SjOi) lower can be expressed as:

Algorithm 2:
generate-C-space_obstacle() :

Step 1 .

Step 2 .

Step 3.

M = Pmax - Pmin + 1 :
for m = l u M &

0 2 1 (m) = m ;
0 2 " (m) = -CO :

-

-- end for m
for i = g l , g 3 , g5 do

268

mapping result using the critical points can be seen in Fig. 3.

4

-180 0 180

Fig. 3. Generation of C-space from critical points

where the symbol r 1 takes the minimum integer that is
larger than the quotient, and the symbol mod takes the
remainder. In all algorithms, the small letter 8 is used to
represent the image of a point obstacle; while the capital-
letter @ is used to represent the image of an obstacle except
at the point obstacles. Therefore, COR(SJOi)upper and
cOR(sj0i)lower are represented by @zu(m) and @21(m)
(m = 1 , ..., M) , and 0 2 “ (I) and 0 2 1 (I) as well as @ z u (M)
and OZl(M) are the functions of @ln, i , , as well as @ l m a x .
The computational amount of Step 1 and Step 2 in
Algorithm 2 is ql), and that of Srep 3 and Srep 4 is also
q1) since the number of COK(MFO~) in Table 1 is
smaller than a constant. Therefore, the total complexity of
Algorithm 2 can be expressed by 41). Its computation can
be competed in about 5ms using a PC386 computer. The

4. Sensor Based Obstacle Modeling in C-Space for
Motion Planning

One of the most important steps for motion planning in
an uncertain world is obstacle modeling based on sonar data.
Using the mapping method given in the last section, we
present an approach to C-space obstacle modeling based on
information obtained from “distance” sensors are assumed to
be attached to the second link of the robot. The approach
will be described through an example as shown in Fig. 4a-
4h.

The aim of motion planning is to find a collision free
path from a start position to a goal position. Building a C-
space using the critical points of the obstacles in the W-
space is fast enough for a planner to give the path in real
time. In an unknown environment, however, we cannot get
the entire knowledge of the environment in advance. Hence
it is very important to acquire information on obstacles from
sensors.

In our study, “distance” sensors are distributed regularly
on both sides of the second link of the planar robot, as
shown in Fig. 4a. Each sensor can retum the vertical
distance (straight-up to the second link) between it and the
obstacle. Thus the boundary points of the obstacle in a local
region can be found according to distance data. They are
approximated by FOi and can be mapped into the C-space
according to the precomputed result of FOi. These FOi are
shown by ‘0’ in Fig. 4a and specify all the possible
collisions in the local region. In other word, if the robot does
not contact these FO,, it will not collide with any obstacles
when it moves in small steps. Here we consider only those
FOi situated on one side of the robot’s second link when we
try to let the link move toward them.

Once distance information on the local region is
acquired, a C-space obstacle can be formed according to the
critical points of all POi. Through computation using
algorithm 1, the critical points can be acquired and they are
represented by ‘ 0 ’ in Fig. 4a (In some cases, the critical
points may number be 4, 3, or even 2). The image of the
obstacle in the local region in the C-space is displayed in
Fig. 4b. Based on the C-space modeling, then, the planner
generates a local path to the goal point for robot motion in
small steps. If the robot arrives at the goal point, the
planning is finished; Alternatively, if it does not reach the
goal point, it should rebuild all FOi and critical points
according to updated information from the sensors, and once
it is found that the critical points are different from the last
ones, the planner should re-plan a new route starting from
this point-to the goal point. I t should be remarked that only
the current.FOi, computed from the new information, are to
be considered. We do not accumulate historical FOi since

269

0

-180

0 110 t a n I I O

0) (1)
Fig. 4. An example of motion planning for a planar robot

270

these FO, would be far from robot and they do not affect the
robot’s current planning.

In our example, the robot starts from the start point and
finds that there is no difference between the current critical
points and the old ones when it moves to the second and the
third configurations. When it gets to the fourth position (as
shown in Fig. 4c and 4d), it finds a different situation. Then,
the C-space is rebuilt according to the new critical points
and the planner will generate a new path. Thus the work
continues until the goal is reached. Fig. 4a, 4c, 4e, 4g, 4i and
4k describe some consequent configurations and the critical
points’ positions, while Fig. 4b, 4d, 4f, 4h, 4j and 41 give the
configuration spaces corresponding to Fig. 4a, 4c, 4e, 4g, 4i
and 4k, respectively. The thick solid line in each one of
these C-space figures represents the current C-space
obstacle, while the other lines describe the old C-space
obstacles. In Fig. 4i and 4k, no critical points can be found
since the robot has passed the obstacle to the goal point. In
the other hand in Fig. 4j and 41, no thick solid line is found,
which means that the current local C-space is an obstacle
free space.

The approach above can be genealised by means of
following algorithm.

Algorithm 3 1

Step I . old-g, = CO, old-g;? = CO, old-g3 = CO, old-g4 = a,
and old - g5 = CO; current = start; path[()] = start;
i = O ;

Step2. current +goal &

Step 2.1 find fundanientulobstacles();

Slep 2.4 next = motion-planning (current, goal);
current = next:

Step 2.5 path[i] = next; i=i+ I ;

-- end while

where start and goal are separately the start position and
goal position of the robot, gl , 62, 63, g4 and 65 have the
same meaning as those in Algorithm I and 2 , while old-gl,
old-gz, old-g3, old-g4 and old-65 are used to keep old
values of them, respectively. The aim of the function find-

fundamental-obstacles is to acquire all FO, approximately
standing for real obstacles according to distance data, and
that of the function motion-planning is to generate the next
position to which the robot should move according to a
certain method, respectively. The result of the motion
planning is to be recorded in path.

5, Extension to 3D Motion Planning

Let us consider motion planning of a 3D robot like a
PlJMA 560, whose first three joint angles are defined as 00,
01, and 02 from the base, respectively. A global or local 3D
C-space must be built. What we should consider is the first
joint’s mapping. K. Sun and V. Lumelsky addresses the
problem of collision-free motion planning of a 3D robot
manipulator with sliding joints in an unknown environment
in [I O] . In their paper, sensors are installed on the arm to
detect a contact with an obstacle. However, this approach is
not suitable for a robot PUMA 560 with revolute joints. In
our simulation, we furnish “distance” sensors on all four
sides of the third link of the revolute robot. Thus, they can
receive not only information considering motion of the
second and third link, just like the case of a planar robot
discussed above, but also information about the first link’s
motion. Some boundary points in a 3D obstacle can be
found and every point must be selected on a proper 00 plane
and FOi near them are to be mapped to generate a 2D C-
space. We can also use the critical points in every 2D space
to form a 2D C-space. That is , a partial 3D C-space can be
formed by generating several 2D C-spaces. One of our
simulations on robot PUMA 560 can be seen from Fig. 5 .

Fig. 5 . Motion planning for a PUMA 560 robot

271

Using the above method, the robot can sense the
environment information once it starts to move. When the
robot moves to the next position according to the last
planning, it should decide whether the critical points in each
80 plane are changed. This is the same as for a 2D space. If
they are changed, the robot regenerates the C-space obstacle
and replans a path; otherwise it continues to the next
position and again decides if the C-space is changed. N o
more than the images of 40 fundamental obstacles are stored
even in 3D motion case.

6. Conclusions

In this paper, we present an approximate approach to fast
mapping obstacle from the W-space into the C-space based
on selecting critical fundamental obstacles, and we analyze
its computational complexity as O(1). Usually, the
approximation adopted provides sufficient information for
the manipulator to plan a realistic collision-free path in the
unknown environment. We discuss sensor-based obstacle
modeling in the C-space for a planar manipulator and extend
it to 3D operation. This C-space obstacle modeling makes
path searching quicker and simpler for practical use. In our
further research, we will implement this approach on a real
robot system, and especially we will study an effect of
sensors on planning performance.

Acknowledgments

This work is funded by National Science Foundation of
China under grant 69585004 and by Award Foundation of
Chinese Education Committee for Outstanding Young
Teacher.

References

[l] B. Faverjon, "Obstacle avoidance using an octree in the
configuration space of a manipulator", Proceedings lEEE
International Conference on Roholics, pp. 504-5 12.
I984

[2] T. Lozano-Perez, "A simple motion - planning algorithm
for general robot manipulators", IEEE Journal of
Robotics and Automation, RA-3, pp. 224-238, 1987

[4] V. Lumelsky, "Effect of kinematics on motion planning
for planar robot arms moving amidst unknown
obstacles", IEEE Journal of Robotics and Automation,
RA-3, pp. 207-223, 1987

[SI W. Li, "Automatic determination of collision-free paths
pp. 2 18- for general robots", Rohotersysteme, ~01.6,

244, 1990

[6] W. Li, "Fast mapping obstacles in the configuration
space", Robotersysteme, vo1.7, pp. 148-154, 1991

[7] W. Li and B. Zhang, "Solving the robotic 'pick-and-
place' pathfind problem", ASME Journal,
Manufacfuring Review, vo1.6, pp. 114-129, 1993

[8] V. Lumelsky, A. A. Stepanov, "Path planning strategies
for a point mobile automaton moving amidst unknown
obstacles of arbitrary shape", Algorithmica, v01.2, pp.
403-430, 1990

[9] Brady M et al., Robot ,Motion: Planning and Control.
MIT-Press, Cambridge, pp. 13, 1982

[lo] K. Sun, V. Lumelsky, "Path planning among unknown
obstacles: the case of a three-dimensional Cartesian
arm", IEEE Transactions on Robotics and Automation,
vo1.8, no.6, pp. 776-786, 1992

[3] C. W. Warren, J . C. Danos, and B. W. Mooring, "An
approach to manipulator path planning", International
Journal of Robotics Research, vo1.8, no.5, pp. 87-95,
I989

272

