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Design of an Enhanced Hybrid Fuzzy P-1D Controller for  counterpart. This approach keeps the simple structure of the PID

a Mechanical Manipulator controller so that it is not necessary to modify any hardware parts
of the PID control system for implementation. Its sufficient stability
W. Li, X. G. Chang, Jay Farrell, and F. M. Wahl condition [21] shows that the stability behavior remains unchanged

when replacing PID control by FUZZY-PID control. However, this
Abstract_We propose in this paper an enhanced FUZZY R-ID FUZZY P+ID controller suffers from a conflict between reducing
controller to improve control performance in both dynamic transient the steady-state error and.decreasmg the rise time Whgn it is used
and steady-state periods for mechanical manipulators under uncertainty. 0 control mechanical manipulators. In order to solve this prpblem,
The FUZZY P+ID controller adds only two additional parameters to be we propose an enhanced FUZZ¥-RD controller for mechanical
tuned relative to the original PID controller. One of these parameters is manipulators by expanding its rule base from nine to 25 rules, as
mainly used to reduce a steady-state error. The other is used to speed up g\ in Fig. 2. Consequently, a desired performance in both transient
the dynamic response. A simulation study and experimental results for a d d iod b i hi d h the simulati
two-link manipulator with uncertainty demonstrate the superior control ~ Nd steady state periods can be easily achieved. Both the simulation
performance of the proposed FUZZY P}ID controllers. study and experimental results of control on a two-link manipulators
Index Terms—Fuzzy logic control, PID control hybrid system, robotics with load uncertainty demonstrate the superior control performance of

[I. ENHANCED Fuzzy P+ID CONTROL SCHEME
|. INTRODUCTION

Fig. 1(a) shows a conventional PID controller for a mechanical ma-

Industrial manlpula_ltors ar_e_ofFen equipped with conventl_onal I:’IRpuIator. Its control signal for a joint variable;(#) or ¢;, is computed
controllers due to their simplicity in structure and ease of design. Hoyy:

- L ‘ X I)'/combining proportional, integral, and derivative terms
ever, when using a PID control, it is difficult to achieve a desired leve
of control performance, since dynamic equations for mechanical ma-
nipulators are tightly coupled and can be highly uncertain (e.g., due to
load changes). It is well known that fuzzy logic (FL) controllers based
on fuzzy sets [1] are efficient for control of systems with uncertaintyhereKe;, K1:, and K'; are the controller parameters andt) =
[2]-[4]. One of the most widely used design methods for FL controllefs:(t) — #:(t). Its discretized and incremental form can be expressed
is to define membership functions of linguistic variables and to form@S
late fuzzy rules by control engineers [4]-[6]. However, it is a time con- B i
suming process to optimize these fuzzy parameters. Another approach ATi(k) = Kpilei(k) - ei(k = 1] + KiTei(k)
to designing a FL controller is to adapt a rule base and/or membership Ko, Oi(k) = 20i(k — 1) + 0i(k —2) @)
functions until a desired control performance is achieved [7], [11]. Al- r
though provably stable algorithms exist [12]-{17] for special forms g%, 5 its structural simplicity, the PID controller is widely used in

nonlinear systems (e.g., those satisfying matching conditions), stagl@yiq| of industrial manipulators. To improve its control performance,

adaptive approaches for general uncertain nonlinear systems do ”OW@propose the hybrid FUZZY -PID controller shown in Fig. 1(b),

exist. . . . which is formed by using an incremental FL controller in place of the
Recently, fuzzy-logic and conventional-techniques have be

- ‘ ] _(?Poportional term. The integral and derivative terms remain the same
combined to design FL controllers. The hybrid controllers can provide

7i(t) = Kpiei(t) + K1 / ei(t)dt — Kpibi(t) 1)

better control performances than PID alone. Furthermore, their ATi(k) = Kp; Aui(k) + KuTei (k)
stability conditions can be analyzed. For example, Hao [18] was one 0:(k) — 26,(k — 1) + 8:(k — 2)
of the pioneer in the formulation of a hybrid controller and analyzing — Kp; T (3)

its control performance. Also, important work in [19] and [20]

analyzed the bounded-input/bounded output stability of FUZZY PBhereAu; (k) is the output of the incremental FL controller. The in-
and FUZZY P¥-FUZZY D control systems by the so-called “smallcremental FL controller has two inputg k) andé(k), and an output,
gain theorem.” In [21] a new design approach for hybrid FUZZY:.(k). In [21], a FUZZY P controller with nine rules is proposed and
P+ID controller was proposed based on such sufficient stabiliiys membership functions are given in Fig. 2(a). The division of the op-
conditions. The hybrid controller is constructed using an incrementating area D into 36 cells based on the nine rules is defined by the
FL controller to replace the proportional term of a conventional PIBuin function operating on the membership functions. In this paper, the
controller. It is easy to design the FUZZY4#D controller since it enhanced FUZZY P controller with 25 rules is proposed. Its member-
only has one additional parameter to be adjusted relative to its P$Dip functions (NB, NS, ZO, PS, PB) are defined relative to Fig. 2(b)

as follows:
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roe <x<pj P 1 2 3|4 |3 s [*W
pla.pb) = ¢ F—o ~ ®) :
P ) 7 8 9 |10 |MN 12
1 < o
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In this study, the variable is e(k) or é(k). Thus,e(k) andé(k) z
can be represented by.{b, e.us, e.zo, e.ps, e.pb) and €.nb, é.us, /e L B A 3 R CO
é.zo, é.ps, é.pb), respectively. Foru(k), we defineo.nb = —AX, o % |z |2 s x| o
oms = —v,0.z0 = 0, 0.ps = v ando.pb = . For the following —
discussion we choose = 3 and~ = «. The fuzzy rule base of the N 3t | 32| B[4 ]|3B| 3
incremental FL controller is fixed, as shown in Table |, which is used to 1
characterize the relationship between fuzzy inputs and fuzzy outputs. ()

In the rule base shown in Table I, only Zadeh’s logical “AND” (i.e., the
MIN operator) is required. Since the control actions are described in a &K

fuzzy sense, the “center of mass” defuzzification method [18]-[20] is Mo A NS N Ps . e
used to transform fuzzy control actions into crisp outputs as shown in -B = 0 o B _e;‘)
(9) at the bottom of the page. mv ey sfey e
Due to the MIN-operation each fuzzy region will be represented by B o
" . . . . . 12 ] 13 14 186 18 17 18 19 20
five output functions. According to the defined membership functions b
of (4)—(8), the “min” implementation of the “and” operator, and the #2272 | 24| 25|26 | 27| 28|28 | 30
fuzzy rule base in Table I, the incremental FL controller is expressed P 0 | o2l 9 | e | a5 | o | o | 38 |30 |
by the hundred functions a
4 42 43 44 45 46 47 48 49 50
Z0
Au(k) = FLC(e(k), é(k)) % 51 | 52|53 |54 |65 |58 |57 |58 |58 | a0
PN . -a
= {Au(l)(k), . All(l)(l{), e Au(wo)(k‘)} (10) 61 | 62|63 |64 | 65 |66 [ 67 | 68 | 69 | 70
NS
n 2| ||| ] eire| s
that each depend on the same two parameteend 5. Note that -b " Tol o
FLC(e(k), é(k))is a continuous function of both inputs. Also, since -p bl Il Il Ml B
(10) is an antisymmetrical function, we have wo | o0 | o2 03] os |5 |os | 07| e8| s | 100
AP (k)= =AYy i=1,...,50. (11) ®)

S (24) (1. ; NROYIAY _ Fig. 2. Membership functions along each axis are specified along the
As an example, we takéu (k) to explain howAu™ (k) is com left and top edges. The combined input regions that result from the “min”

puted. In region 24¢(k) € [—a, —a], é(k) € [a, b]). Therefore, as jmplementation of the “and” operation are shown in the interior of the operating
shown in Fig. 3 and Table I, the following rules are activated: region. (a) Controller with nine rules. The “min” operation results in 36 distinct

RuleA) If e(k) = NS andé(k) = PB thenAu(k) = o.ps = 7. regions. (b) Controller with 25 rules. The “min” operation results in 100

RuleB) If e(k) = NS andé(k) = PS thenAu(k) = o.zo = 0.  distinctregions.

RuleC) If e(k) =ZO andé(k) = PBthenAu(k) = o.pb = A.

RuleD) If e(k) =ZO andé(k) = PSthenAu(k) =o.ps =7. in the same range [0.5, 1.0], the MIN-operation is con-
For RuleA, we have).5 < pi(e.ns) < 1and0 < p(é.pb) < 0.5,and trolled as follows: If | — e(k)] < |é(k)|, {n(ens) AND
thus{j(e.ns) AND p(é.pb)} = min(pu(e.ns), u(é.pb)) = p(é.pb)  p(é.ps)} = min{p(e.ns), p(é.ps)} = plens); If |—e(k)| > |é(k)],
andAu(k) = o.ps = «. For RuleB, we have0.5 < p(emns) < 1 {u(e.ns) AND p(é.ps)} = min{pu(e.ns), u(é.ps)} = p(é.ps). The
and 0.5 < pu(é.ps) < 1. Sincep(e.ns) and p(é.ps) change corresponding output value iSu(k) = o.zo = 0. For RuleC, we

Z{membership value of inpuk output corresponding to the membership value of ifiput

> {membership value of inphit
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TABLE | o : .
Fuzzy RULE BASE OF THEINCREMENTAL FUZZY LOGIC CONTROLLER " | FUZzZY P+ID Control ~ @=0.4 £=10
with twenty-five Rules £=1.08 6=1.0
16 - -
\ T Yref
\Au NB NS Z0 PS PB
e 08 N
FUZZY P+ID Control
PB z0 PS PB PB PB 66 | with nine Rules
£=0.18
04 +
PS NS Z0 PS PB PB
02 t
Z0 NB NS Z0 PS PB 0.0 R
0 5 10 Time 15(s)
NS NB NB NS 20 PS Fig. 4. Comparison of performance of the FUZZY and enhanced FUZZY
P+1D controllers.
NB NB NB NB NS Z0

NB NS héé PB
-8 -2 0 a B w
4 1
NB NS é‘h PB
-B \—m/ o o B &M i

Fig. 3. Control actions in region 8.

have( < p(e.zo) < 0.5 and0 < u(é.pb) < 0.5. Sinceu(e.zo) and Fig. 5. Two-link mechanical manipulator used for simulation experiments.
u(é.pb) change in the same range [0, 0.5], the MIN-operation is con-

trolled as follows: If| — ¢ (k)| < [é(k)|, {n(e.20) AND p(é.pb)} = achieved by the controller of [21]. Itis also much easier to tune the en-
H““{“(e’f‘o)' p(é.pb)} = p(e.zo); If | - (k)] > |e(k).|' {p(e20)  hanced FUZZY RID than its original FUZZY R-ID because the orig-
AND p(é.pb)} = min{p(e.zo), p(épb)} = u(é.pb). The ina| FUZZY PHID required a compromise between the dynamic tran-
corresponding output value u(k) = o.pb = f. For RuleD, gjent response and steady-state error due to the availability of a single
we havel < p(e.zo) < 0.5and0.5 < p(éps) < 1, and thus  ning parameter. In [22], the sufficient stability conditions for the en-

{u(e.z0) AND p(é.ps)} = min(u(e.z0), p(é.ps)) = n(e.20)  panced FUZZY R-ID controller are discussed based on the “small gain
andAu(k) = o.ps = «. By the “center of mass” formula (8), we theory” [23], [24].

have (12), as shown at the bottom of the page, where 0.5«
andb = 0.5(« + /). By substituting (4)—(8) and the correspondinq”
output valuesAu* (k) in the Appendix results. The Appendix lists
the equations for{Au™ (k), ..., Aul(k), ..., Au®D(k)}. In In this section, we simulate control performance of the two-link me-
the enhanced hybrid FUZZY D controller, there exist only two chanical manipulator, sketched in Fig. 5. The dynamic equations of the
additional parameters andj to be tuned. The parametermainly manipulator are given in [6]. First, we tune the PID control parameters
affects the steady-state error; white mainly affects the dynamic based on the approaches in [25] and [26] to obtain acceptable control
response. performance. It is very difficult to achieve good control performance
In order to compare the enhanced FUZZ¥I® controller with the  from the manipulator by PID control due to the nonlinearity and uncer-
previous nine rule FUZZY RID controller, Fig. 4 shows the time re- tainty. Table Il lists the manipulator data and the controller parameters.
sponse of a nonlinear system controlled as in [21] and controlled adVe then design the parameters of the enhanced FUZENDRon-
described in the this section. It can be seen that the control perfooller based on its original PID controllers. Based on the stability con-
mance achieved by the enhanced FUZZ¥IB is better than that ditions of the FUZZY R-ID controller in [22], the parameter&7;

SIMULATION STUDY ON CONTROL OF ATWO-LINK MANIPULATOR

w(e.pb) X o.ps + p(e.ns) x 0.z0 + p(é.pb) x 0.pb + p(e.zo) X 0.ps
pu(é.pb) + p(e.ns) + p(é.pb) + p(e.zo) ’

u(é.pb) X 0.ps + p(é.ps) X 0.70 + p(e.z0) X 0.pb + p(e.z0) X 0.ps
p(é.pb) + p(é.ps) + p(e.zo) + pfe.zo)

a<elk)<-a, a<ék)<b (12)

if |(ens)| < |pu(é.ps)]|
AuPD (k) =

, if |p(e.ns)| > |pu(é.ps)|
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TABLE I
MANIPULATOR DATA AND CONTROLLER PARAMETERS

Manipulator Data

my my ll lz R] Rz
15.91kg 11.36kg 0.4325m 0.4325m 0.09m 0.1lm
PID Controller Parameters
Kp1=500Nm/rad K;=400Nm/(rad.s) Kp1=100(Nm.s)/rad
Kp,=400Nm/rad Kp=300Nm/(rad.s) Kpy=60(Nm.s)/rad
FUZZY P+ID Controller Parameter €
Joint 1 K;l =29 34Nm/rad 0c1=0.20; B1=034
Joint 2 K;Z =10.97Nm/rad Cl.2=0. 15; f)2=0.41
TABLE Il

CONTROL PERFORMANCE SPECIFICATIONS

Settling time Overshoot steady-state error

Joint1 | Joint2 | Joint1 | Joint2 Joint 1 Joint 2

0,e11=60° PID 1.732s | 2.334s | 5.34° 5.46° -0.05° | -0.187°
Orerz=50° FUZZY P+ID 0.436s | 0.474s | 0.22° 0.006° 0.012° | 0.0000°
Oren1=60° PID (load change) 0.462s | 1.138s | 0.778° | 1.986° | -0.004° [ -0.169°
Orer=50° FUZZY P+ID (load change) 0.442s | 0.486s | 0.114° | 0.001° | 0.002° | 0.0015°

and K5, of FUZZY P controllers are reduced, as listed in Table .
In the next step, the additional parametefa,, 3:) and (-, 32) of
the FUZZY R+ID controllers are adjusted to improve control perfor-
mance. As discussed above, increasimpcreases the rise time. Based
on experience, the ratio gfanda should be [1.5, 3.0]. Table Il lists the
parametersd;, 51) and ¢z, 52) used in the enhanced FUZZ#D ‘ : s ‘ : ;
controllers. 0 0.5 1 1.5 Tlms [s] 2.5 3 3.5 4
In the simulation studies, the sampling tiffidhas been chosen to be

— Fx=0; Fy=0; Nz=0
=== Fx=25N; Fy=30N; Nz=20Nm
------ Reference

Joints 1 and 2 [degree]

600

N
2mes; the initial joint angle®, (0) andfd»(0) were set to be 0 We use £ 400 e ey e
the overshoof, (in this paper defined as difference between the de- 5,43 . Abplod torcue of oint 2 without load
sired and the maximum joint angle), the settling timand steady-state 5, \
error ey to quantify the control performance. Here, we choose step 'g
changes in configuratiord.s1 = 60°, 6.2 = 50°) for the com- §'2°°'
manded trajectory. The solid lines of the top graphs in Fig. 6 show  “®; %3 1 15 2 25 s as 4
the dynamic responses of joints 1 and 2 obtained by the PID (left) Time [s]
and enhanced FUZZY -PID (right) controllers. The bottom graphs % 60 7~ ‘ ‘ ‘
in Fig. 6 show the applied torque at each motor joint. In the transient & wol
phase, PID control yields the overshoots for joints 1 and 2/pf;) = % o Fyor o
5.34° and M,y = 5.46° and the settling timeg,;) = 1.732s and 3 20f -—= Fx=25N; Fy=30N; Nz=20Nm
t2) = 2.334s. By enhanced FUZZY RID control, the overshoot is g/ Reference
reduced tal/,(1y = 0.22° andM,,(») = 0.006°, and the settling times C o : v T 2s s e s

shorten tot;y = 0.436 s andt.») = 0.474 s. In steady-state, PID Time [s]
control yields steady-state errorsqf.;y = —0.050° andeg.(»y = : .
—0.187°. The enhanced FUZZY-PID control yields steady-state er-
rors for joints 1 and 2 of¢.(1y = 0.012° andeq.(»y = 0.000°. Fig. 6
shows that the Enhanced Fuzzy I control achieves better perfor-
mance (shorter settling time and less overshoot) with smaller peak ap-

=== Applied torque of joint 1 without load
~— Applied torque of joint 2 without load

200 i,

Torque of Joints 1 and 2
o
-
1

. 200 V
plied torque. ‘ , . ‘ . ,

In the next simulation, we investigated the effects of load changeson = “®c o5 1+ 15 2 25 s a5 4
control performance. The forces and moment of the load are changed Tims [¢]

tobef, = 25N, f, = 30N, n. = 20N m. The reference joint angles _ ) . .
remain unchanged. The dotted curves in the top graphs of Fig. 6 sHd& 6. Time responses of a manipulator in the presence of load changes. The

- tgp figures show the joint responses under PID (left) and enhanced FUZZY
the time response to the step commands after the load changes. lnF&-E'% (right) control. The dashed, solid, and bold dashed lines represent

case, the change in overshoot from the unload to the load case is aQiitommanded response, the unloaded response, and the loaded response,
AM,y = =5.12° = and AM,) = —5.454°. The change in respectively. The bottom plots show the applied torque signals for the PID
(left) and enhanced FUZZY-PID (right) control for the unloaded case. The
1The subscripts denote the robot joint to which the parameters refer. dashed and solid lines correspond to the joint 1 and joint 2 torque, respectively.
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Fig. 7. Experimental direct drive two-link manipulator with a movable mass.
0.1 Mass at joint 0y
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B2(1) (20
10 T r r - = T
Pl ~ 1 e
20t % /V 20
PID Control
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(c) (d)

Fig. 8. Manipulator time responses for quad impulse and step control. (a) Joint time responses. (b) Applied torque to joints one and two. (Qe3piohsase
(d) Applied torque to joints one and two.
is aboenhanced FUZZY RID control performance is much more robust to

settling times from the unload to the load case

Aty = —1.27s and Aty, = —1.196s. The change in changes in the load than is PID control.

steady-state errorde;,;) = —0.046° and Ae, oy = —0.018°.

Using enhanced FUZZYPID control, all variations from t?e unload IV, EXPERIMENTS ONCONTROL OF ATWO-LINK MANIPULATOR

to the load case are much more smallsitf,(y, = —0.106° = and

AM,y = 0.005°, Aty = —0.006s and Aty5y = —0.012s, Fig. 7 shows a direct drive two-link manipulator developed by
Aesy = 0.01° and Ae 2y = —0.0015°. It is clear that the the Institute for Robotics and Process Control, Technical University
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of Braunschweig, Germany. On the second link, a movable mass V. CONCLUSION

is mounted, which can be placed close to the second joint or near_ . )
the tip of the link, hence it changes the inertial parameters of the | IS Paper presents an enhanced FUZZKIP controller with 25

manipulator. Thus, the manipulator is an ideal testbed to examifii€s: By using this controller, good performance in both transient and
control performance in the presence of load uncertainty. The hardwgfgady-state periods can be achieved. It is practical for improving the
system consists of a Window NT-based PC computer, the power stggatrol performance of manipulators which already are control_led by
of the motors, and an I/O-Card which is reading the encoder valde® YPe controllers. The structure of the FUZZ¥-D controlleris
and writing the new motor values. In the following experiments, th&e"Y SImple, since itis constructed by replacing the proportional term in
sample timel" of the control system is chosen to be:s, and both the conventional PID controller with an incremental fuzzy logic con-
of the initial anglesf1 (0) and6,(0) are set to be 9’Oar;d 0 Ge. troller. On the basis of the PID type controllers, only two additional

both links in downward positions). First, the mass is located at tfgrameters have to be adjusted to implement the FUZZYDRcon-

joint shown in Fig. 7. In this case, we use the approaches in [2% ller. T_hese two parameters aIIothe controll_e_r_to behavg dlffe_rently,
and [24] to tune the PID controllers to obtain an acceptable contf§fPending on the values efand¢, without sacrificing the simplicity
performance. Actually, it is already very hard to further improve th@! the PID control structure. Thus, it is easy to achleye a desired con-
control performance by tuning the PID controller parameters, becaJ& Performance by tuning the FUZZYRD controller's parameter.

the applied joint torque already reaches its limit value. Based on tHefact the FUZZY PrID parameters are not sensitive with respect to
PID controller parameters, we adjust the additional parametensd dynamic behavior of the system as compared with the PID parameters.

3 of the FUZZY PFID controllers to improve control performance.The resulting FUZZY R-ID performance is less sensitive than PID

The thin-solid curves in Fig. 8(a) show the step control responsg@Ntrol to changes in the dynamic model.

achieved by the PID controllers. The thick-solid curves in Fig. 8(a)
show the step time responses achieved by the FUZZYDPcon-
trollers. It is clear that control performance is improved after the PID
controllers are replaced by the FUZZYHD ones. The solid and  Thjs Appendix contains the FL rules whan= 3 andy = a
dotted curves in Fig. 8(b) plot the applied torque for joints 1 and 2

APPENDIX

generated by the PID and FUZZ®D controllers, respectively. The Au(l)(k) —0 e(k) < =B; B < é(k). (A1)
maximum torque generated by PID control is much bigger than that . ale(k)+ 3)
required by the FUZZY RID control. Furthermore the applied joint Au® (k) = ﬁ
torque required by PID control reaches its limit at the initial stage. _3 <a 1) < —oe B < o(k 5
This implies that the FUZZY RID controllers require less energy to B < elk) < —a; < k). (A-2)
control the manipulator. AP (k) =5+ (8 — a)e(k)

In the next experiment, the adjustable mass is moved to the tip g
of the second link. The reference command for joint 1 is chosen as —a <e(k) <0; 8 <é(k). (A.3)
a quad impulse signal. The reference command for joint 2 remains A, (6:7: 8.9, “’)(k) =3 0 < e(k); B <élk). (A.4)
unchanged. The joint responses and applied torques are shown in 1y alé(k) = B)
Fig. 8(c) and (d). The time response for joints one and two shown in AutY = T G—a)
Fig. 8(c), demonstrate two features of the FUZZ¥IP controllers ) ., )
that are superior to the PID controllers. First, notice the effect of e(k) S,,_‘B“ b < ék) < 6. (A-5)
gravity on the control performance. The quad impulse reference for _M if |pe(e.nb)| < |p(é.pb)]
joint 1 was specified so that joint 1 would change position a few A2 — (2¢(k) = 38+ a)’ -
times while joint 2 should be (nominally) stationary. The joint 1 ale(k) +e(k)) . .
command contains two step changes: one frof ©0112.47; and 2e(k)+ 33— a) if [(e.nb)] > |u(é.pb)]
the otherfrqm 1_12.4’7t0 9C°. Hence, the effect of gravity on dynamic —B<e(k) < =b, b<ék) <3 (A.6)
responses is different for upward and downward motion. For the a(é(k) + e(k)) _ ;
PID controllers, the tracking error, shown by the thin-solid curve in e + 38 — ) if |u(enb)| < |u(é.ps)|
Fig. 8(c), from top to bottom is greater than the one from bottom to Au® = (2e(k) + 36 — o)
top due to the effect of gravity. However, the enhanced FUZZYIP __ale(k) +e(k) lu(e-nb)| > [1(éps)|
controllers yield very small tracking errors in both cases, shown by (26(k) — 38+ )’ e ep
the thick-solid curve in Fig. 8(c). These demonstrate that the FUZZY —b<elk)<—a, b<ék)<g. (A.7)
P+ID controllers can effectively compensate gravity. Second, we o2é(k)y = (B = a)?e(k) — a?
discuss the coupling torque effects on control performance. In this (26(k) — 35 + a)
experiment, the second joint first moves to its reference value; while . . o
the first joint remains stationary. By using PID control, the first joint Agl® = if p(e.ns)| < fule.pb)
deviates from its reference value because of the second joint motion. ! 2(8% — o®)e(k) + a?é(k) + af? — 24°
After the second joint reaches its reference value, the first joint is (8 — @)(2e(k) + 3a)

controlled to step between its reference values. In Fig. 8(c), it can

. ) o ; if . < >.pb
be seen that the second link swings because it is coupled to the first if [p(e.ns)| < [p(é.pb)]

link which is changing its joint position. By using enhanced FUZZY - < e(k’).S —a, b < é(k) < 5. (A-8)
P+I1D controllers, however, the coupling torque effects are effectively afe(k) = é(k))
compensated. This experiment demonstrates that the FUZEND P (2¢(k) — )

controllers are superior with respect to performance robustness as (15)
compared to the PID controllers. The solid and dashed curves in Au 26(k) — (8% — at)e(k) — af?
Fig. 8(d) represent the torques computed by the FUZZMDP and a”élk - (*5 “0 Jelk) = o

PID controllers, respectively. It can be seen that the maximum torques a(2é(k) =34 +a)

of both joints using the FUZZY RID controller are significantly if [pe(ens)| < [p(é.ps)]

smaller than those of the PID controllers. —a<e(k)<0,b<é(k)<p. (A.9)

i n(ens)] < |n(é.ps)]




Au(m,m,m)(k) =3
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(o + B)é(h) - 257
2e(k) =30+ a)
aé(k) 4 28e(k)
(2e(k) + )
0<elk) < a. b < é(h) < 4.
(a4 Be(k) — a(28 + «)
(2e(k) — 3a)
if |p(e.z0)| < |p(é.ps)|
(o + B)e(k) — 257
(2é(k) — 30+ «)
it [1(e.s0)] > [n(e.00)
a<e(k)<a, b<ék)<g.
a<e(k); g <eék).
a(é(k) = B)
(B—a)

e(k) < =3, a < é(k) < b.
a(é(k) + e(k))
(2¢(k) — 3+ 8)’

alé(k) + e(k)) e .
el +35—a)’ if [u(e.nb)| > |pe(é.ps)|
B < e(k) < b, a < é(k) < b (A.14)

alé(k) +e(k)) . .
T e 430 —3) if [pe(enb)] < |p(é.pb)]

alé(k) + e(k))
2e(k) —3a+ 5)’
—b<ek) < —a, a<élk)<b.
(a+ B)elk) + (8 — a)e(k) — 203

2e(k) = 3a + 3)

it Js(ens)] < 1(é.po)

(8% — a®)e(k) + o*e(k) + ap? = 22°
(8 — a)(2e(k) + 3a)

if |u(e.ns)| > |u(é.ps)|
—a<elk) < —a, a <é(k) <.
ale(k) — é(k))

(o — 2e(k))

it Jis(ens)] < 1(é.0D)

(B4 a)e(k) + (8 — a)e(k) — 2a°
(2¢(k) - 3o+ 3)

if |u(e.ns)| > |u(é.pb)|
—a<e(k) <0, a<élk)<b.
203e(k) 4+ (B — a)?e(k) + o* (B + )

a(2é(k) — 36 + «)

if |u(e.zo)| < |u(é.ps)|
a(é(k) + 28e(k))

(2e(k) + @)

if |pu(e.z0)| > |u(é.ps)|

0<e(k)<a, o <é(k)<h.
(a+ Be(k) — a(28 + «)
(2e(k) — 3a)

if [u(e.z0)| < |u(é.pb)]

2086(k) 4+ (8 — a)%e(k) — o (8 + @)
a(2é(k) — 38 + )

it [n(c.r0)| > (.pb)]
0<e(k)<a, a <é(k) <.

f Ju(e70)] < |1(é.b)|
Aut® =

i 1(e.20)] > u(é.pb)]
(A.10)

A =

(A.11)
(A.12)

Au®Y =
(A.13)

it (o) < [1(é.p9)
Au®? =

Au®® =
if |p(e.nb)| > |p(é.pb)|

(A.15)

Au®® =

(A.16)

Au®® =

(A.17)

Au®®) =

(A.18)

Au®?) =

(A.19)

Aq(5:29:30) (1)

Au®Y

=0

Au®? =

Au®?)

Ay

Au®?)

N

Au®?)

Au®®

a<elk); a<é(k)<p. (A.20)
g4 (8 —a)e(k)
o
e(k) <=5, a<é(k) <a. (A.21)

_aPe(k) + (8% = a®)é(k) + a(20” — %)
(8 = a)(2é(k) = 3a)
i lj(e-nb)] < Ju(é.p9)
e(k) + (8 —a)?e(k) — ap?
a(2e(k)+ 38 — «)
if |p(e.nb)| > |pu(é.ps)|
—f<e(k)<—=b, a<élk)<a.

(A.22)

(B4 a)e(k) + (8 — a)é(k) 4 247
(B — a)(2é(k) — 3a)
it Jp(enb)] < pu(é.0)
a?e(k) 4+ (82 = a?)é(k) + a(2a® — 5%)
B (8 — a)(2¢(k) — 3a)
if |p(e.nb)| > |p(é.zo)]
—b<elk) < —a, a<ék)<a.

(A.23)

a(é(k) + e(k))
(3a — 2¢é(k)) ’
a(é(k) 4 e(k))
(2e(k) + 3a) ’
—a<e(k) < —a, a<é(k)<h.

i (e.ns)] < [n(éps)|

i [u(ens)| > [pu(é.ps)]
(A.24)

afé(k) +e(k))
(a=2é(k))
a(é(k) +e(k))
(3a — 2e(k)) ’
—a<e(k) <0, a<eé(k)<h.

if |u(e.ns)| < |u(é.zo)|

if |t(e.ns)| > |p(é.zo)]
(A.25)
(8 = a)e(k) — aé(k) + 207
(2¢(k) - 3a)
if |u(e.zo)| < |u(é.ps)|
(8 4 a)e(k) + ac(k)
(2e(k) + 3c)

if |p(e.zo)| > |p(é.ps)|
0<e(k)<a, « <é(k)<h.

(A.26)

(8 — a)e(k) — aé(k) + 207
(3 — 2e(k))
if |u(e.zo)| < |u(é.zo)|
(8 = a)e(k) — aé(k) + 2a*
(3 — 26(k))
if |p(e.z0)| > |p(é.z0)|
a<e(k)<a, a<é(k)<h.

(A.27)
(B+ «)é(k) — ala+253)
(2¢é(k) — 3a)
if [p(e.ps)| < |p(é.ps)]
(8% — a®)e(k) 4+ 2a3e(k) — o (o + B)
a(2e(k) —3a+ 3)

if [p(e.ps)| > |n(é.ps)]
a<e(k)<b, a<élk)<b.

(A.28)
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(8 + a)e(k) — 23*
(2e(k) — 38 + )

if |u(e.ps)| < |p(é.zo)]

(B4 a)e(k) — ala+20)
(2¢(k) — 3c)

if |pu(e.ps)| > |p(é.zo)|
b<e(k)<3, a<ék)<b.
A (kY= 8 B<elk); a<é(k)<a.
(B —a)e(k)

A =

(A.29)
(A.30)
AultV = -0+
«
(k) < =3, 0< é(k) < a.
ale(k) - (k)
(26(k) + o)
if |u(e.ns)| < |u(é.zo)|
(8 = a)?é(k) — a’e(k) — a®3
a(2e(k)+ 30 — @)
if |u(e.ns)| > |u(é.zo)|
—F<e(k) < —b, 0< éE) < a
(B —a)é(k) + (B + a)(k) + 2a°
(2e(k) 4+ 3 — )
if |u(e.nb)| < |u(é.zo)|
ale(k) — é(k))
(2R +a)
if |u(e.nb)| > |pu(é.z0)|
—b<elk) < —a, 0<e(k) < a.
a(é(k) +e(k))
alé(k) + e(k))
(2e(k) — 3a) '
—a < e(k) < —a, 0<é(k) <a.
alé(k) + e(k))
(o — 2e(k))
_afé(k) +e(k))
(2é(k) + )
—a<e(k) <0, 0<é(k) < a.
(B + «)é(k) + ae(k)
(2é(k) + «)
i [(e.0)] < u(é.0)
(B4 a)e(k) + ae(k)
(2e(k) + )
f [ne.20)] > u(é.10)
0<e(k)<a 0<é(k)<a
(8 — a)é(k) — ae(k) + 202
(3a — 2e(k))
f 1(e.20)] < u(é.ps)
(B4 a)e(k) + ae(k)
(2é(k) + «)
if |p(e.zo)| > |u(é.ps)|
a<e(k)<a, 0<é(k)<a.
23é(k) + ae(k)
(2é(k) + «)
if |u(e.ps)| < |u(é.zo)|
(8 — a)*é(k) + 2aBe(k) — o*(3 + @)
a(2e(k) —3a+ 3)
if |p(e.ps)| > |p(é.z0)|

(A.31)

Aut*? =

(A.32)

Au* =

(A.33)
if [p(ens)| < |p(é.z0)]

Aut =
if |p(e.ns)| > |p(é.z0)|

(A.34)

i [u(ens)] < [n(é.ps)]

Aut*®) =
if |p(e.ns)| > |u(é.ps)|

(A.35)

Au1® =

(A.36)

Au" =

(A.37)

Aut® =

a<e(k)<b, 0<é(k)<a.
(B+a)e(k) — 257

(A.38)

if [pe.ps)| < p(e.ps)|

At = ) (e(k)=33+a)’
2080 + aelh) if |p(e.ps)| > |p(é.ps)|
(2¢(k) + )
b<e(k)< B, 0<é(h) <a (A.39)
AuPO (k) =3 B8 <e(k); 0<é(k)<a. (A.40)
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