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Plume Mapping via Hidden Markov Methods
Jay A. Farrell, Senior Member, IEEE, Shuo Pang, and Wei Li

Abstract—This paper addresses the problem of mapping likely
locations of a chemical source using an autonomous vehicle oper-
ating in a fluid flow. The paper reviews biological plume-tracing
concepts, reviews previous strategies for vehicle-based plume
tracing, and presents a new plume mapping approach based
on hidden Markov methods (HMMs). HMMs provide efficient
algorithms for predicting the likelihood of odor detection versus
position, the likelihood of source location versus position, the most
likely path taken by the odor to a given location, and the path
between two points most likely to result in odor detection. All four
are useful for solving the odor source localization problem using
an autonomous vehicle. The vehicle is assumed to be capable of
detecting above threshold chemical concentration and sensing the
fluid flow velocity at the vehicle location. The fluid flow is assumed
to vary with space and time, and to have a high Reynolds number
(Re 10).

Index Terms—Autonomous vehicles, hidden Markov methods
(HMMs), online mapping, online planning, plume tracing.

I. INTRODUCTION

OLFACTORY-BASED mechanisms have been hypoth-
esized for a variety of biological behaviors [10], [39],

[43]: homing by Pacific salmon [18]; homing by green sea
turtles [25]; foraging by Antartic procellariiform seabirds
[30], foraging by lobsters [1], [3], [9]; foraging by blue crabs
[42]; and mate-seeking and foraging by insects [6], [7], [26].
Typically, olfactory-based mechanisms proposed for biological
entities combine a large-scale orientation behavior based in part
on olfaction with a multisensor local search in the vicinity of the
source. The long-range olfactory-based search is documented
in moths at ranges of 100 m–1000 m [12], [34] and in Antartic
procellariiform seabirds over thousands of kilometers [30].

This paper considers the development of algorithms to repli-
cate these feats in autonomous vehicles. The goal of the au-
tonomous vehicle will be to locate the source of a chemical that
is transported in a turbulent fluid flow. Because the ultimate in-
tent is to implement these algorithms on autonomous vehicles,
the computational efficiency of the resulting algorithms is a key
concern. Such autonomous vehicle capabilities have applica-
bility in searching for environmentally interesting phenomena,
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unexploded ordinance, undersea wreckage, and sources of haz-
ardous chemicals or pollutants.

An initial approach to designing an autonomous vehicle
plume-tracing strategy might attempt to calculate a concentra-
tion gradient, with subsequent plume tracing based on gradient
following. Gradient-following-based plume tracing has been
proposed for a few biological entities that operate in low
Reynolds number environments [5]; however, gradient-based
algorithms are not feasible in environments with medium to
high Reynolds numbers [11], [21], and [28]. At low Reynolds
numbers, the evolution of the chemical distribution in the flow
is dominated by molecular diffusion and the concentration field
is reasonably well defined by a continuous function with a peak
near the source. At medium and high Reynolds numbers, the
evolution of the chemical distribution in the flow is turbulence
dominated [35]. The eddies of the turbulent advection process
disperse the chemical by stretching and folding the chem-
ical-containing parcels. The result of the turbulent diffusion
process is a highly discontinuous and intermittent distribution
of the chemical [21], [29].

If a dense array of sensors were distributed over an area,
through which a turbulent flow was advecting a chemical, and
the output of each sensor were averaged for a suitably long
time (i.e., several minutes), then this average chemical distri-
bution would be Gaussian [37], [38]. The required dense spa-
tial sampling and long time-averaging, however, makes such an
approach inefficient for implementation on a vehicle. In addi-
tion, only decameters from the odor source in the direction of
the flow the gradient is too shallow to detect in a time-aver-
aged plume. For an “instantaneous” plume, the gradient is time-
varying, steep, frequently in the wrong direction, and would re-
quire numerous sensors. Therefore, gradient following is not
practical.

It is known that the instantaneous odor distribution will be
distinct from the time-averaged plume [21], [28]. The major
differences include: the time-averaged plume is smooth and
unimodal, while the instantaneous plume is discontinuous
and multimodal; the time-averaged plume is time invariant
(assuming ergodicity) while the instantaneous plume is
time-varying; and, instantaneous concentrations well above the
time-averaged concentration will be detected much more often
than predicted by the Gaussian plume model. Such time-av-
eraged plumes are useful for long-term exposure studies, but
are not useful for studies of responses to instantaneously
sensed odor [11], [28]. One of the reasons that olfaction is
a useful long distance sensor is the fact that instantaneous
concentrations well above the time-average are available at
significant distances from the source [17]. The challenge for
using olfaction on autonomous vehicles is to design effective
algorithms to determine the odor source location even though
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the odor source concentration is not known, the advection
distance of the detected odor is unknown, and the flow varies
with both location and time.

Various studies have developed biomemetic robotic plume-
tracing algorithms based on olfactory sensing. Belanger and
Willis [4] presented plume-tracing strategies intended to mimic
moth behavior and analyzed the performance in a “wind tunnel-
type” computer simulation. The main goal of that study was
to improve the understanding of moth interaction with an odor
stimulus in a wind tunnel. Grassoet al. [15]–[17] evaluated
biomimetic strategies and challenge theoretical assumptions of
the strategies by implementing biomimetic strategies on their
robot lobster. Robots that replicate biological approaches for
plume tracing are also described in [19], [20], and [23]. Liet
al. [24] developed, optimized, and evaluated a counter-turning
strategy inspired by moth behavior. The fundamental aspects of
these research efforts are sensing the chemical, sensing or esti-
mating the fluid velocity, and generating a sequence of searcher
speed and heading commands such that the motion is likely to
locate the odor source. In each of these papers, the algorithms
for generating speed and heading commands use only instanta-
neous (or very recent) sensor information. Typical orientation
maneuvers include: sprinting upwind upon detection, moving
crosswind when not detecting, and manipulating the relative ori-
entation of a multiple sensor array to either follow an estimated
plume edge or maintain the maximum mean reading near the
central sensor.

Turbulent diffusion results in filaments of high concentration
odor at significant distances from the source, but also results in
high intermittency [2], [21], [27]–[29]. Intermittency increases
with downflow distance both due to the meander of the instan-
taneous plume caused by spatial and temporal variations in the
flow, and due to the increasing spread with distance of the fila-
ments composing the instantaneous plume. High intermittency
and large search areas motivate the need to acquire as much in-
formation as is possible from each odor detection event.

Engineered plume-tracing devices have sensing and compu-
tational capabilities that may not be available to biologicial enti-
ties. For example, an autonomous system may be able to record
flow velocity and sensed concentration as a function of time and
the vehicle position. Therefore, it is of interest to construct algo-
rithms to effectively utilize these additional sensing and compu-
tational capabilities. This paper applies HMMs to the problem
of odor source localization. This methodology results in algo-
rithms for predicting likelihood of odor detection versus posi-
tion, likelihood of source location versus position, the path most
likely to have been taken by odor to a given location, and the
path between two points that is most likely to detect odor.

The assumptions made herein relative to the chemical and
flow are that the chemical is a neutrally buoyant and passive
scalar being advected by a turbulent flow. The autonomous ve-
hicle (or robot) is assumed to be capable of sensing position,
concentration, and flow velocity. The concentration sensor is
a binary detector. We analyze the plume mapping problem in
two dimensions. A main motivation for implementing the map-
ping algorithms in two dimensions is the computational simpli-
fication achieved; however, neutral buoyancy of the chemical
or stratification of the flow [36] will often result in a plume of

Fig. 1. Vehicle mapping, planning, and control architecture.

limited vertical extent. Crawling insects and marine creatures re-
strict their odor source search to the bottom flow region. There is
also evidence that moths stabilize altitude while tracing plumes
[32]. The algorithms presented herein do extend directly to the
three-dimensional (3-D) problem, but implementation for three
dimensions requires significantly more computation.

A table summarizing the notation used in this paper is given
in Appendix III.

II. A UTONOMOUSVEHICLE-BASED PLUME TRACING

The plume-tracing problem can be divided into two subprob-
lems. First, assuming that at theth time instant a record
of the flow velocity and concentration
detection history at the vehicle location

is available, construct a map indicating which re-
gions are likely to contain the odor source. Second, based on
the source likelihood map (SLIM), plan paths that can accumu-
late information useful for improving the map, maximize the
likelihood of the detection of odor, or maximize the likelihood
of finding the source. Source likelihood mapping is useful for
decreasing the time to find the source and in situations where,
mission constraints require the vehicle to enforce a minimum
standoff distance from the source. Also, even when the primary
vehicle goal is to find the location of the source, if the vehicle
fails to achieve this primary goal it is better to provide a SLIM
than to return with no information. This paper focuses on the
solution of these problems using HMMs [31], [33].

A typical vehicle hardware, control, guidance, mapping,
and planning architecture is shown in Fig. 1. The figure
shows that the assumed inputs to the online source likeli-
hood mapping (OSLIM) system are sensed concentration

, vehicle location , and flow velocity
. The online planner would

optimize a desired vehicle trajectory based on the OSLIM. The
guidance system generates heading and speed commands to the
controller to achieve the trajectory desired by the planner. This
paper only considers algorithms useful to the OSLIM problem.

Assuming that odor is detected at , the basic idea of the
online mapping algorithm is to use for the flow velocity
record and the detection record at the vehicle
location to estimate the likely previous tra-
jectory of the chemical detected at . Accumulation of such
odor trajectories across many detection events will allow con-
struction of the OSLIM. Note that lack of odor detection can
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be used similarly to decrease the OSLIM in appropriately de-
fined regions. This paper presents computationally efficient al-
gorithms for the required computations.

For example, if the flow velocity field was known,
where denotes an arbitrary location in the search area, then
the trajectory of the parcel detected at timeby the detector at
location could be calculated as

This backward integration calculation shows that the flow field
is a function of both position and time. It also shows that the du-
ration of integration is not known. When odor is detected
at , the calculation provides a trajectory along which the
source is located. When odor is not detected at, by a per-
fect sensor, the calculation provides a trajectory along which the
source is not located.

The vehicle is not equipped with perfect detectors or with
global flow velocity information. Olfactory sensing is charac-
terized by very low false alarm rates, but potentially high missed
detection rates. The high missed detection rate is due to the
patchy distribution of chemical caused by turbulent diffusion.
These stochastic factors must be accounted for in the mapping
algorithms. The uncertainty in for , especially
since only is available, results in increasing
uncertainty as the duration of the backward time integration in-
creases. The likelihood mapping algorithms must account also
for this distribution of possible trajectories from the source to
the detector. For on-vehicle implementation this algorithm most
be carefully constructed for computational feasibility. HMMs
are manipulated herein to produce such algorithms.

III. M ODEL REPRESENTATION

A. Flow Velocity Sensor Processing

Mapping and planning algorithms compute at a lower rate
than guidance and control algorithms. Therefore, in typical ap-
plications, there are sensor readings per mapping algorithm
update interval. The mapping algorithm will use the mean flow
vector over these measurements

(1)

(2)

where . Note that for notational conve-
nience, we have dropped the explicit representation of flow as
a function of position. All measurements occur at the location
of the sensor on the vehicle. The mapping algorithm will use
the peak concentration measurement over theconcentration
measurements [i.e., ]. Be-
cause detection events are rare, this ensures that no detection
events are missed.

Fig. 2. Cellular subdivision of the region to be searched.

B. Plume Map Representation

Both for computational feasibility, and to construct a model
suitable for the HMM approach, a rectangular region is defined
that covers the search area that is of interest. A set of coordinates
for and an cellular subdivision of this rectangular area is
defined as shown in Fig. 2.

Define a vector of cells that covers the
area of interest, where . Let count over
cells in the direction. Let count over cells in the
direction. Knowledge of the vehicle position allows direct cal-
culation of the indexes of the cell containing the vehicle.
Given and , the index of the cell element is .
The inverse mapping from to is

(3)

(4)

where is the greatest integer less than or equal to
, and is the remainder of divided by .

Therefore, the notations and are equivalent. In addi-
tion, one additional cell is introduced. As will be shown
later, this extra cell simplifies some later computations and nor-
malizations. This cell can be conceptualized as the environment
outside the search area. Therefore, when odor leaves the search
area, it enters cell .

Let represent the probability that there is an
odor source in . The vector is initially un-
known. This vector can be converted to an array and
interpreted as the OSLIM. This map is one of the items that
we will be attempting to estimate. Note that if it is assumed
that there is exactly one source in the region of interest, then

. Initially, if there is no prior information about the
source location, then is initialized uniformly as .
The vector can be initialized nonuniformly, if prior informa-
tion about source location is known.

C. Hidden Markov Plume Model

The hidden Markov plume model (HMPM) is represented by
the parameter vector where is the
source probability vector (see Section III-B),is the state tran-
sition matrix, and is the detection probability vector.

Let represent the probability of the transition of de-
tectable odor from to . Then

(5)
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is the matrix of cell transition probabilities at time. Since
represents the source probability vector, if we define

, then represents the probability that
odor from the source released atis in cell at time .
Furthermore, we interpret as the probability that odor
from cell leaves the search region at time. Note1 that
since all odor in must go someplace at , we have the
constraint that . The definition of based
on is given in Appendix II. For certain computations, the
zeroth row and column will not be important; therefore, we
define for .

The detection probability vector is the probability of de-
tecting odor in each cell if there is detectable odor in that cell.
Since the sensor performance is assumed to be independent
of the sensor location, the elements ofare identical and can
be represented by a known constanttimes a unity vector.
The probability of detecting odor in at time is therefore

, where represents the probability of
cell containing detectable odor at time. An efficient algo-
rithm for calculation of is presented in Section IV-A.

Corresponding to the traditional HMM literature, three prob-
lems are of interest.

1) Use the model to predict , where repre-
sents the probability of the observed set of concentration
detection events denoted by.

2) Use the model to estimate the state sequencethat
yielded the observations.

3) If is not known, then find the model that maximizes
. Since is known and for and
can be computed from the flow velocity history, the

main issue is the estimation of(or for ).
Letting representdetection(i.e., )
andno detection(i.e., ) events at the vehicle location
at time . Then, the observation vector at timeis

The sequence of cells most likely to have been transitioned by
the odor to result in the detection event is denoted by

. Determination of is a stochastic
extension of the backward integration discussed in Section II.
The appropriate algorithm is presented in Section IV-C2.

IV. HIDDEN MARKOV-BASED TOOLS

This section adapts methods from HMM [31], [33] to
the solution of important questions applicable to developing
an OSLIM and to defining useful trajectories related to the
plume tracing and source localization problems. Section IV-A
addresses the first problem stated in Section III-C: how to use
the model to predict . Section IV-B presents
an algorithm for calculating the likelihood of a source in
cell producing odor that is detected in cell at time .
Section IV-B1 presents an algorithm for estimation of the
unknown quantity of the HMM model . Section IV-C2

1This constraint holds for a 3-D problem even for a two-dimensional (2-D)
implementation. For example, the cells can be considered as having either fixed
height. Odor leaving the vertical edges has then left the search area (i.e., entered
C ).

presents an algorithm for determining, given, the most likely
path that odor would have taken between two cells at two given
times. Section IV-C3 presents an algorithm for determining the
connected path between two cells that is most likely to detect
odor.

A. Plume Location Likelihood Map

The probability of each detection event is (by Baye’s rule for
conditional probabilites)

(6)

where
cell containing ;
detection probability given that the cell contains
detectable odor;
probability that contains detectable odor at
time due to the continuous release of odor by
the source starting at .

Since is a known fixed constant, the key issue is calculation
of .

Introduce the intermediate variable that represents
the probability that contains detectable odor at time
due to an odor release only at time. Let

be the vector storing this variable for each cell. Since
is the source probability vector, . The

calculation of must account for the transi-
tion probability from all other cells to cell . Therefore,

. In vector notation,
and

for
for
for

(7)

where . Let
. The computational of for the case

requires matrix multiples of dimension ,
which requires Floating point OPerationS (FLOPS) at
each step. Alternatively, can be calculated as

which requires FLOPS per time update. The computa-
tion of by (7) can be rewritten in either of the following
recursive formulations:

for (8)

or

(9)
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Fig. 3. One forward propagation step for the plume map�� (t) by (8) where
a is the transition probability from celli to cellk.

The computation of (8) is illustrated in Fig. 3. Equation (8) re-
quires FLOPS per time update. Due to the update of,
(9) requires FLOPS per time update.

The variable accounts for the transport of the odor
released at the single instant. The variable that
accounts for a continuous release of odor fromto time
is then calculated as

(10)

where the factor of is introduced to maintain
. This expression reduces, using (8), as

(11)

for . This algorithm is summarized in Table I. Since this
recursive relation depends only on the most recentmatrix,
the past matrices would not need to be stored. This recursive
computation of by (11) requires FLOPS per
time step.

The variable could also be calculated using (9) as

(12)

where , which sat-
isfies the recursion relation

(13)

TABLE I
ALGORITHM TO GENERATE A PLUME

LIKELIHOOD MAP FOR THEHYPOTHESIZEDSOURCELIKELIHOOD VECTOR

�, WHERE� (t ; t ) DENOTES THEPROBABILITY OF THERE BEING

DETECTABLE ODOR IN CELL k AT TIME t DUE TO CONTINUOUSRELEASE FOR

t 2 [t ; t ] AND a ARE ELEMENTS OF THESTATE TRANSITION MATRIX

DETERMINED BY THE FLOW

The th row of represents the probability at , given a
continuous release of odor starting at, from a source in
that there is detectable odor in any other cell. Since this recur-
sive relation depends only on the most recentmatrix, the past

matrices do not need to be stored. The recursive computa-
tion of by (12) requires FLOPS per time step.
The recursive computation of by (13) requires
FLOPS per time step.

The algorithms of (11) and (12) are forward calculations
that, given the model, project the probability of odor being in
any cell. For (11), the first iteration initializes the probability

based on the hypothesized probability vector repre-
sented by . Subsequent iterations calculate the probabilities
at time based on the probabilities at time and the
transition probabilities . By embedding the vector
in the computation at each time, the algorithm of (11) is able
to be implemented with significantly fewer computations
than are required for the algorithm of (12). The savings is the
result of implementing a vector-matrix product instead of the
matrix-matrix product necessary in (13).

In spite of the fact that the algorithm of (12) requires addi-
tional computation, the form of (12) is important, since in the
model is the only unknown. The parameter is calcu-
lated based on the fluid flow. Therefore, (12) allows prediction
of the plume likelihood map (probability that each cell contains
detectable odor) that would result from any hypothesized source
probability vector . The algorithm of (11) would require com-
plete recalculation from to the present time; although (12)
has a higher per time step computational load, it may have a
lower computational load when computations will be required
for different hypothesized values of. Interpreting as
a plume likelihood map calculated for the current estimate of,
allows a planner to construct trajectories based on maximizing
the likelihood of contacting the plume that would result from a
hypothesized .

B. Odor Path Likelihood Map

It will be useful to have an algorithm to predict the proba-
bility, given the flow history, that a source in any given cell has
transported odor to . To this end, let denote
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TABLE II
ALGORITHM TO GENERATE A MAP � (t ; t ) OF THELIKELIHOOD OF CELL i

GENERATING ODOR AT TIME t THAT TRANSITIONS TOCELL j AT TIME

t , WHERE a ARE ELEMENTS OF THESTATE TRANSITION MATRIX

DETERMINED BY THE FLOW

Fig. 4. Graphical illustration for the derivation of the odor path likelihood map
� (t ; t ) by the backward propagation algorithm of (14) wherea is the
transition probability from celli to cellk.

the probability that odor released in transitions to
for . With this definition, is initialized as

if
if

where and for the present timeis fixed. The desired
algorithm is derived below based on the HMM backward prop-
agation algorithm of [33, Sect. III-A].

The parameter can be calculated by the
algorithm in Table II. To understand this algorithm,
consider Fig. 4. For , the probability of
odor transitioning from to is simply

since there is a single transition
path. Since , this can also be expressed as

.
For , the probability of odor transitioning from

to must account for all possible transition
sequences from cellto cell in steps. In spite of the
huge number of possible paths (i.e., ), HMM methods
provide a convenient algorithm. At time, there are possible
next cells. By Bayesian arguments

Let . Since
is known, can be propagated backward

through time for any as

(14)

For a fixed , this propagation of backward to time
requires all for to be available. Computa-

tion of would require vector-matrix multiplies
(i.e., FLOPS) per time step. This process would
be repeated at requiring vector-matrix multi-
plies. Therefore, as written the algorithm has computational and
memory requirements that grow with time. Note however that

where the transition matrix was defined after
(7). If is available, then

; therefore, can be propa-
gated forward in time as each new becomes available.
Then, the likelihood of each cell at time propagating
detectable odor to cell at time is updated as

(15)

where is trivial to
define when is known and is updated based on

and . The update of (15) has fixed memory and
computational requirements.

Therefore, by maintaining the state transition matrix
, we have that theth row of repre-

sents a map of which cells are likely to contain detectable odor
if odor were released in . The th column of
represents a map of the likelihood of each cell containing the
source that release odor at that was transported to .
An important advantage of maintaining is that
different rows or columns are available as they may be needed
without any recomputation.

Computation of accounts only for transitions
from cell at time to cell at time . Because we do not
know the propagation time (i.e., we do not know the
time at which the detected chemical was released), we must
account for all possible release times by defining

(16)

where is the first time that data was available, ,
and is fixed. The parameter is the number of backward time
propagation steps. Selection of this parameter is constrained
by computational load and the duration of time for which the
flow velocity vector is available. Equation (16) is not efficient
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in terms of computation or memory. A recursive version of this
algorithm is developed as follows:

where is propagated recursively by (13).
Therefore, by maintaining the superposition matrix

, we have that theth row of represents a
map of which cells are likely to contain detectable odor if odor
were released continuously in for . The th
column of represents a map of the likelihood of each
cell containing a source whose continuous release would result
in odor being transported to . An important advantage
of maintaining is that different rows or columns
(representing different source and destination locations) are
available as they may be needed, without any recomputation.
The disadvantage is the amount of computation required to
maintain .

1) Source Likelihood Map (SLIM):If odor is detected in
at , then for indicates which cells
are likely to have contained the source that resulted in the de-
tected odor in . The variable can therefore be
useful for adaptation of the source probability vector. Simi-
larly, if odor is not detected in at time , then
indicates which cells are unlikely to contain the source. In the
following, .

Using these ideas, we adapt the estimate of the source likeli-
hood vector as follows. Assuming that no prior information is
available about the location of the source in the search area, we
initialize uniformly over the region as

. The update of is defined as

when odor is detected in

when odor is not detected in

In the detection case, if is a probability vector, then
will be a probability vector (i.e., . In the

latter (no detection) case, must be normalized so that its
one norm again has magnitude one and each element of
is in . The design parameters of this algorithm areand

. In the case where the probability of missed detection is high,
then should be small. Both parameters must be positive with
magnitude less than one.

It is important to note the distinction between and
. The vector keeps track of the credit each cell

deserves for a detection/no detection event inat time .
The vector accumulates the information across
all detection/no detection events (i.e., for ) to estimate
the likelihood that each cell contains the source.

TABLE III
VITERBI ALGORITHM WHERE � (t ) IS THE PROBABILITY OF THE MOST

LIKELY CELL SEQUENCE TOC AT TIME t ; a ARE ELEMENTS OF THESTATE

TRANSITION MATRIX DETERMINED BY THE FLOW, AND  (t ) IS THE INDEX

OF THEMOSTLY LIKELY CELL TO TRANSPORTODOR TOCELL j AT TIME t

C. Most Likely Paths

The Viterbi algorithm (VA) [14], [40] can be adapted to
generate paths through the cell space that are useful to the
source localization problem. Section IV-C1 reviews the VA.
Section IV-C2 adapts the VA to compute the most like path
taken by odor between cells and . Section IV-C3
adapts the VA to compute the connected path between cells

and that is most likely to result in odor detection.
In a time-varying flow field, these two paths are distinct.

1) Viterbi Algorithm (VA): The VA is a recursive, optimal
solution to the problem of estimating the state sequence of a
discrete-time, finite-state Markov process observed in memo-
ryless noise. In its most general form, the VA may be viewed
as a solution to the problem of maximuma posteriori (MAP)
probability estimation of the state sequence between two states
of a finite-state discrete-time system. The VA is summarized
in Table III where is the probability, given at , of
the most likely cell sequence to at time is the
index of the most like cell transitioning to ; and

is the most likely cell sequence
to . The first step initializes the probability of the most
likely cell sequence based on. Step 2 calculates the proba-
bility of the most likely cell transition to cell at time based
on the probability of the most likely cell sequences to each cell
at time and the cell transition probabilities at . At the
same time, we use to record the cell number, which is
the mostly likely cell to transport odor to cellat time .

Consider the following simple example of a three-state ap-
plication of the VA to a generic (nonplume tracing) application.
Assume that

and

At time and
where stands for not possible. At time

and . Therefore, the most
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likely state sequence to is .
At time and .
Therefore, the most likely state sequence to is

.
2) Most Likely Odor Path Between and : For

the plume-tracing application, direct application of
the VA, using through calculated using

, generates the most likely odor
path (i.e., cell sequence) to any desired final cell location (i.e.,

) for an assumed . If is used then the resulting cell
sequence accounts for odor sources in all cells with thevector
appropriately weighting each cell.

Alternatively, if for the VAs is defined to be zero in all cells
except for being 1.0 in cell , then the resulting sequence
is the most likely odor path (i.e., cell sequence) between the
specified start location and the end location .

The VA finds the most likely cell sequence forward through
time. This cell sequence could also be calculated backward
through time according to the following.

1) Initialize: and
where is the Kronecker Delta.

2) Recursion:

3) Termination:

(17)

where is the probability of the most likely
cell sequence between and is
the index of the most likely next cell from ,
and are the in-
dexes of the most likely cell sequence between
and . For the discussion of subsequent sec-
tions, let where

, denote the most likely path
traveled by the odor between and .

Note that either the forward or the backward VA would re-
quire that all be available for . For the method
given in Appendix B, this only requires that
be stored. Note also that the algorithm implicitly assumes a
known starting time. Because the starting time is not known,
one approach is to use the Backward VA and to choose

where is defined by (17).
3) Most Likely Odor Detection Path From : This subsec-

tion defines an algorithm to calculate the connected cell se-
quence between and at the present time that is most likely
to detect odor, for the given model. Since is a map
of the likely plume locations, the algorithm for finding a con-
tiguous cell sequence between and that maximizes the
probability of detection is as follows:

1) Initialize: and
where is the Kronecker Delta.

2) Recursion:

3) Termination:

where is a neighbors function such that

if is a neighbor of
otherwise

is a likelihood function proportional to the probability of
detecting odor in each cell along the most likely odor detection

step cell sequence between and at is the
index of the most likely previous cell to is the number
of cells in the sequence and
are the indexes of the most likely odor detection cell sequence
between and . The neighbors function is straightforward
to define. One approach is given in Appendix I.

The logic of this algorithm is as follows. Since is pro-
portional to the probability of odor detection along thestep
cell sequence between and that is most likely to detect
odor, the vector is initialized to correctly represent the fact
that the only zero step sequence must start and end in. For

is updated based on the likelihood of detection
in and the likelihood of detection in all cells along the
step sequences to the neighbors of. Note that if there is no

step cell sequence betweenand , then .

V. EXAMPLES

This section presents examples of the application of the algo-
rithms that are contained in the body of this paper. In all the ex-
amples, the search region is a rectangle defined by
m and m. The cellular subdivision of this rec-
tangle uses so that . For each of
the example figures, the source is located at m,
which is in (i.e., column , row ).

Figs. 5–8 show the coordinates of each corner in the corre-
sponding corner. The map is computed over the entire region for
each figure. The search area that is of interest is the smaller rec-
tangle indicated by the dashed line. The regular grid of arrows
indicate the local flow velocity at the tail of the arrow at the time
the plot was generated. The plume resulting from a continual
release of odor, turbulent diffusion, and advection by the tem-
porally and spatially varying fluid flow is the grey-scale mean-
dering path of circular filaments that begins at
m. The plume simulation model is described in [13].

For Figs. 5 and 6, the flow field is defined by the simula-
tion model and varies with both space and time as a function of
time-varying boundary conditions. Fig. 5 shows the result of cal-
culating , plotted as a grey-scale map,2 using the flow

2Note that�(65; 0) is a vector in< whereN = mn. The map is produced
by converting�(65;0) to ann�m matrix and coloring each cell according to
the value of the corresponding matrix element.
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Fig. 5. Plume map�(65; 0) from the forward algorithm assuming the source is inC . The array of arrows indicates the local flow velocity at the tail of the
arrow. The coordinates of each corner are indicated in each corner. The dashed rectangle indicates the desired search area. The array of grey-scale rectangles
indicates the size of�(65;0) in each cell, where darker cells have higher probability of containing the plume. The grey-scale patchy trail indicates the simulated
odor concentration as a function of position (i.e., the plume). The plume shape is time-varying as determined by the advection of the time-varying flow field.

Fig. 6. Map representation of�� (54; 0) from the backward algorithm for odor detection occurring inC (54). The array of arrows indicates the local flow
velocity at the tail of the arrow. The coordinates of each corner are indicated in each corner. The dashed rectangle indicates the desired search area.The array of
grey-scale rectangles indicates the size of�� (54;0) in each cell, where darker cells have higher probability of transitioning detectable odor to the cell containing
the vehicle at the time of the calculation. The grey-scale patchy trail indicates the simulated odor concentration as a function of position (i.e., the plume). The
plume shape is time-varying as determined by the advection of the time-varying flow field. The trail of dark arrows moving from near the top edge down toward
the plume indicates the trajectory that the vehicle followed. The initial vehicle position att = 0 was inC .

velocity measured at each time-varying vehicle location. For the
computation

for
otherwise

where (i.e., ) is the cell index contain
the true source location. This choice ofallows the plume like-
lihood predicted by to be directly compared with the actual
plume. The plume likelihood map is maximum directly down
flow of the source. The plume likelihood map decreases rapidly
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Fig. 7. Most likely path traveled by the odor betweenC (0) andC (44) shown by the grey-scale rectangles. The array of arrows indicates the local flow
velocity at the tail of the arrow (att = 44 s). To produce this graphic, the flow was artificially forced to be uniform over the region and to be 1 m/s in thex direction
for till t = 30 s. Fort > 30 s, the flow was forced to be uniform over the region and to be 1 m/s in the y direction. The coordinates of each corner are indicated in
each corner. The dashed rectangle indicates the desired search area. The grey-scale patchy trail indicates the simulated odor concentration as a function of position
(i.e., the plume). The plume shape is time-varying as determined by the advection of the time-varying flow field.

in the crossflow direction and more slowly in the downflow di-
rection. The spread of the likelihood map increases with the
downflow distance from . All of these features are physically
reasonable. If were selected differently, then the plume likeli-
hood map shape would not change, but its overlay on the region
would be shifted to start at . If was selected to have more
than one nonzero element, the algorithm is still valid without
change. The resulting plume map would effectively be the ap-
propriately scaled superposition of each separate source.

Fig. 6 shows a vehicle trajectory (The vehicle trajectory is
indicated by the trail of arrows starting in (i.e.,
) at . The direction of each arrow indicates the vehicle

heading). and a grey-scale map of where is
defined by the cell containing the vehicle at the time the odor is
detected. The map of has its maximum immediately upflow
of the vehicle locations. The map ofdecreases rapidly in the
crossflow directions and more slowly in the upflow direction.
The map spreads out as it proceeds farther upflow.

For Figs. 7 and 8, we (artificially) imposed a uniform flow
field over the entire region so that the validity of the resulting
paths can be clearly observed. This uniform flow field for Figs.
7 and 8 is defined by

for s
otherwise.

(18)

Fig. 7 shows the most likely path traversed by the odor be-
tween and . Fig. 8 shows the 25 cell path be-
tween and at time = 44 s that is most likely to de-
tect odor. Note that these two paths are distinct. The algorithms

presented in the body of this paper are valid for any record of
flow velocities. For this example, we purposefully enforced the
uniform flow field defined in (18) to allow the reader to easily
verify the two paths that are shown.

VI. CONCLUSION

The algorithms presented herein were based on HMMs. Al-
gorithms are presented for: 1) determining which cells are likely
to contain detectable odor based on measured flow information
and an assumed source probability vector; 2) determining which
cells are likely to have resulted in odor at a point where it was
detected (or not detected) based on measure flow data; 3) es-
timating a source probability vector; 4) determining the most
likely path that odor took from an assumed source location to
a cell that is of interest; and 5) determining the path of a given
length between two given locations that is most likely to en-
counter odor. This path is interesting, because detection events
produce the largest change to the source probability vector,
which is the only unknown portion of the HMM.

The algorithm given in Appendix II for computing assumes
that the flow velocity vector is spatially invariant. This assump-
tion is not true, but is necessary based on the one vehicle as-
sumption. The negative effects of this assumption will be sig-
nificant if the search area contains significant terrain features
that locally affect the flow or if the temporal variations of the
flow are rapid enough that their propagation across the search
region should be addressed. The temporal effects can be allevi-
ated by choice of the search time for appropriate environmental
conditions. The effect of this spatial invariance assumption is
also decreased by the fact thatis estimated online based on
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Fig. 8. Twenty-five step path betweenC andC that is most likely to detect odor at timet = 48 is shown by the grey-scale rectangles. The array of arrows
indicates the local flow velocity at the tail of the arrow (att = 48 s). To produce this graphic, the flow was artificially forced to be uniform over the region and to be
1 m/s in thex direction for till t = 30 s. Fort > 30 s, the flow was forced to be uniform over the region and to be 1 m/s in they direction. The coordinates of each
corner are indicated in each corner. The dashed rectangle indicates the desired search area. The grey-scale patchy trail indicates the simulated odor concentration
as a function of position (i.e., the plume). The plume shape is time-varying as determined by the advection of the time-varying flow field.

detection events. Becauseis largest near the location of the
detection event, the largest changes toare near this location.

Note that the magnitude of the sensed chemical has not played
a role in the derivations thus far. This is beneficial, because the
accuracy of the sensor is not critical. A binary chemical de-
tector is sufficient. The approach might be improved by incorpo-
rating information about the magnitude of the sensed chemical.
To date, this approach has not been pursued. Challenges to in-
corporating the magnitude of include the fact that the source
strength is not known and the fact that the sensor is not neces-
sarily detecting the peak concentration of the parcel of odor in
its vicinity.

Future work is still necessary to estimate the appropriate
duration of the backward integration. Several approaches are
possible. The fluid dynamics literature [36] provides methods
for estimating the downflow distance from the source based on
characteristics of the measured chemical. Alternatively, using
the hidden Markov approaches described herein, the following
ideas are of interest.

1) Propagate both the most likely odor path (MLOP) and the
most likely detection path (MLDP) backward from the
vehicle location. Find the points at which they intersect.
Each intersection point is an estimate of the source loca-
tion.

2) Let . The set , where is a
threshold, defines a set of points likely to be on both the
MLDP and MLOP.

Processing of such sets of cells could provide an alternative
means to estimate the SLIM represented by. Such approaches

work better when the flow varies significantly; however, there
may be many points of intersection when the flow velocity is
nearly constant.

One method for computation of the matrixis given in Ap-
pendix II. This approach yields a that is very sparse, con-
taining only nine distinct nonzero elements. This approach, run-
ning on a 300–MHz computer, implements all four of the maps
in the example section, a vehicle simulation, an environment
simulation, and a planner in better than realtime. The main as-
sumptions of that definition of are that the flow is uniform
over the region and that is smaller than the cell length.
Many alternative approaches to calculatecan be constructed.
For example, can be generalized to account for uncertainty
in cell transitions due to the temporal variation in the flow over
each sample period.

This paper has only addressed the mapping portion of the
overall problem. A planner is also required to determine the
maneuvers that the vehicle should perform. The quality of the
map will be strongly affected by the decisions of the planner.
The planner must also address various mission objectives, en-
ergy and safety constraints. The planner used in the examples
section commands the vehicle to enter the neighboring cell that
presently has the highest probability of detecting odor (i.e., the
1-step MLDP). The planner and map interact since both recom-
pute at 1 Hz. The resulting vehicle trajectories move across the
flow while finding the plume and up the flow following odor
detection. These characteristics are similar to those exhibited by
various biological entities [24]. Starting from a random location
in a 100 100 m search area, the vehicle typically locates the
source in less than 300 s using a velocity of 1 m/s.
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TABLE IV
NOTATION SUMMARY

APPENDIX I
NEIGHBORSFUNCTION

For the algorithms used in the main body of this paper, it is
useful to have a function that returns a vectorcontaining the
indexes of the cells adjacent to cell. This function is referred
to as the neighbors function.

Let a rectangular region be divided into a grid of cells.
The cells will be indexed as and . For a
nonedge cell, its (inclusive) neighboring cells are

If it is desirable to represent this set of indexes by a vector
with the index mapping , then in -space the
neighbors of cell are

Each edge of the region must be treated separately, by replacing
the cell indexes that are outside of with zero,
since the zero cell represents the exterior region. For example,
the upper edge (noncorner) cells of the region would have neigh-
boring cells represented by
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and

(19)

The neighbors along the other edges and corners are defined
similarly.

APPENDIX II
TRANSPORTMAPPING

This appendix discusses one method to calculate the matrix
, based on reasonable physical assumptions and the data avail-

able to the vehicle.
Let the rectangular search area be defined by the corners:

and . The length of the region in the
and directions are and . The cell width

in the and directions are and .
Assume that is small enough so that on a
component-wise basis and can be assumed constant over
each time increment. The first portion of this assumption im-
plies that material in any cell that is transported by the fluid flow
moves a distance less than one cell width in the time.

The matrix represents the percentage amount
(or probability) of material in being transported to

by the fluid flow. is a square matrix of dimension
. With the assumptions of the previous paragraph, the matrix

is sparse with at most nine nonzero elements per row. This
fact greatly simplifies the HMM calculations and reduces the
memory requirements (from to ). Assuming that
the fluid flow is spatially invariant, results in the conclusion that
these nine nonzero values are the same in each row. This as-
sumption is not strictly true, but is the best that can be done
with the information available to the vehicle. This assumption
greatly reduces both the computation and the memory require-
ments of the algorithm (from to 9).

The actual definition of based on is tedious. For
nonedge cells there are eight distinct cases to address. Edge cells
require additional attention. Here, we include only the case of
a nonedge cell where and . In this case, odor
in cell can only transition to cells and

. The probability of transition of detectable material to
each of these cells is, respectively

The remaining elements of this row of the matrix are zero.
Note that this definition of has the required property that each
row of sums to one. Each row of can be efficiently com-
puted using the neighbors function given in Appendix I.

APPENDIX III
NOTATION

Table IV summarizes the notation used throughout the paper.
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