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Plume Mapping via Hidden Markov Methods

Jay A. Farrell Senior Member, IEEEShuo Pang, and Wei Li

Abstract—This paper addresses the problem of mapping likely unexploded ordinance, undersea wreckage, and sources of haz-
locations of a chemical source using an autonomous vehicle oper-ardous chemicals or pollutants.
ating in a fluid flow. The paper reviews biological plume-tracing An initial approach to designing an autonomous vehicle

concepts, reviews previous strategies for vehicle-based plume | traci trat iaht aft t lculat ¢
tracing, and presents a new plume mapping approach based plume-tracing strategy might attempt to calculate a concentra-

on hidden Markov methods (HMMs). HMMs provide eficient  tion gradient, with subsequent plume tracing based on gradient
algorithms for predicting the likelihood of odor detection versus following. Gradient-following-based plume tracing has been

position, the likelihood of source location versus position, the most proposed for a few biological entities that operate in low
likely path taken by the odor to a given location, and the path  paynolds number environments [5]; however, gradient-based

between two points most likely to result in odor detection. All four lgorith t feasible i . t ith di ¢
are useful for solving the odor source localization problem using algorthms are not reasibie in environments with- medium to

an autonomous vehicle. The vehicle is assumed to be capable ohigh Reynolds numbers [11], [21], and [28]. At low Reynolds
detecting above threshold chemical concentration and sensing the numbers, the evolution of the chemical distribution in the flow

fluid flow velocity at the vehicle location. The fluid flow is assumed  js dominated by molecular diffusion and the concentration field
t(ORVeaZV‘g?)Space and time, and to have a high Reynolds number 5 reasonably well defined by a continuous function with a peak
' _ _ near the source. At medium and high Reynolds numbers, the

Index Terms—Autonomous vehicles, hidden Markov methods evolution of the chemical distribution in the flow is turbulence
(HMMs), online mapping, online planning, plume tracing. dominated [35]. The eddies of the turbulent advection process
disperse the chemical by stretching and folding the chem-

l. INTRODUCTION ical-containing parcels. The result of the turbulent diffusion

. rocess is a highly discontinuous and intermittent distribution

LFACTORY-BASED mechanisms have been hypot gf the chemicalg[zi] [29]

esized for a variety of biological behaviors [10], [39], If a dense array of sensors were distributed over an area,

[43]: homing by Pacific saimon [18]; homing by green Sefjhrough which a turbulent flow was advecting a chemical, and

turtles [25]; foraging by Antartic procellariiform seabirdﬁhe out ;
; i ) put of each sensor were averaged for a suitably long
[30], foraging by lobsters [1], [3], [9]; foraging by blue crab ime (i.e., several minutes), then this average chemical distri-

[42].; and mate-seeking and forag_ing by insects [6], [.7]’ [2.6 tion would be Gaussian [37], [38]. The required dense spa-
Typically, olfactory-based mechanisms proposed for biologic, | sampling and long time-averaging, however, makes such an

entities combine a large-scale orientation behavior based in pé’f}Sbroach inefficient for implementation on a vehicle. In addi-
on olfaction with a multisensor local search in the vicinity of thﬁo only decameters from the odor source in the direction of

fsourceﬁ The Iong—rar;gi%g Ifac'i%rg(-)basidz Se;‘fh 'z Fiozumerﬁs? flow the gradient is too shallow to detect in a time-aver-
In moths at ranges o m- m [12], [34] and in ntartlgtged plume. For an “instantaneous” plume, the gradient is time-

procellariiform seabirds over thousands of kilometers [30]. arying, steep, frequently in the wrong direction, and would re-

This paper c0n§|ders the developm'ent of algorithms to rep uire numerous sensors. Therefore, gradient following is not
cate these feats in autonomous vehicles. The goal of the Hactical

tonomous vehicle will be to locate the source of a chemical t atIt is known that the instantaneous odor distribution will be

is transported in a turbulent fluid flow. Because the ultimate inytinct from the time-averaged plume [21], [28]. The major
tent is to implement these algorithms on autonomous vehicl erences include: the time-averaged plur’ne is' smooth and

the computational efficiency of the resulting algorithms is a keLYnimodaI, while the instantaneous plume is discontinuous

concern. SUCh. autonomous vehicle c'apabilit?es have applicayy multimodal; the time-averaged plume is time invariant
bility in searching for environmentally interesting phenomen?assuming ergodicity) while the instantaneous plume is

time-varying; and, instantaneous concentrations well above the
time-averaged concentration will be detected much more often
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the odor source concentration is not known, the advection
distance of the detected odor is unknown, and the flow varies
with both location and time.

Various studies have developed biomemetic robotic plume-
tracing algorithms based on olfactory sensing. Belanger and @
Willis [4] presented plume-tracing strategies intended to mimic Uy
moth behavior and analyzed the performance in a “wind tunnel-
type” computer simulation. The main goal of that study was
to improve the understanding of moth interaction with an odor
stimulus in a wind tunnel. Grasset al. [15]-[17] evaluated
biomimetic strategies and challenge theoretical assumptions of
the strategies by implementing biomimetic strategies on th&fp- 1+ Vehicle mapping, planning, and control architecture.
robot lobster. Robots that replicate biological approaches for
plume tracing are also described in [19], [20], and [23]eLi |imited vertical extent. Crawling insects and marine creatures re-
al. [24] developed, optimized, and evaluated a counter-turniggrict their odor source search to the bottom flow region. There is
strategy inspired by moth behavior. The fundamental aspects@o evidence that moths stabilize altitude while tracing plumes
these research efforts are sensing the chemical, sensing or ¢s#i. The algorithms presented herein do extend directly to the
mating the fluid velocity, and generating a sequence of searcligfee-dimensional (3-D) problem, but implementation for three
speed and heading commands such that the motion is likelydignensions requires significantly more computation.
locate the odor source. In each of these papers, the algorithma table summarizing the notation used in this paper is given
for generating speed and heading commands use only instaiigappendix |11
neous (or very recent) sensor information. Typical orientation
maneuvers include: sprinting upwind upon detection, moving
crosswind when not detecting, and manipulating the relative ori-
entation of a multiple sensor array to either follow an estimated The plume-tracing problem can be divided into two subprob-
plume edge or maintain the maximum mean reading near feens. First, assuming that at thith time instantt; a record
central sensor. of the flow velocity(u. (p. (¢:)), uy (p»(t:))) @and concentration

Turbulent diffusion results in filaments of high concentratiodetection historyc(p.(t:), t;)) at the vehicle locatiop, (t;) =
odor at significant distances from the source, but also results(ir(#;), y(¢;)) is available, construct a map indicating which re-
high intermittency [2], [21], [27]-[29]. Intermittency increasegions are likely to contain the odor source. Second, based on
with downflow distance both due to the meander of the instatie source likelihood map (SLIM), plan paths that can accumu-
taneous plume caused by spatial and temporal variations in b information useful for improving the map, maximize the
flow, and due to the increasing spread with distance of the filbkelihood of the detection of odor, or maximize the likelihood
ments composing the instantaneous plume. High intermittenafyfinding the source. Source likelihood mapping is useful for
and large search areas motivate the need to acquire as mucli@ereasing the time to find the source and in situations where,
formation as is possible from each odor detection event. mission constraints require the vehicle to enforce a minimum

Engineered plume-tracing devices have sensing and comptandoff distance from the source. Also, even when the primary
tational capabilities that may not be available to biologicial entiehicle goal is to find the location of the source, if the vehicle
ties. For example, an autonomous system may be able to redaits to achieve this primary goal it is better to provide a SLIM
flow velocity and sensed concentration as a function of time atfian to return with no information. This paper focuses on the
the vehicle position. Therefore, it is of interest to construct algselution of these problems using HMMs [31], [33].
rithms to effectively utilize these additional sensing and compu-A typical vehicle hardware, control, guidance, mapping,
tational capabilities. This paper applies HMMs to the problemnd planning architecture is shown in Fig. 1. The figure
of odor source localization. This methodology results in algshows that the assumed inputs to the online source likeli-
rithms for predicting likelihood of odor detection versus posihood mapping (OSLIM) system are sensed concentration
tion, likelihood of source location versus position, the path mostp, (¢;), t;), vehicle location p,(¢;), and flow velocity
likely to have been taken by odor to a given location, and thét;) = (u.(p.(t:)),u,(ps(t:))). The online planner would
path between two points that is most likely to detect odor.  optimize a desired vehicle trajectory based on the OSLIM. The

The assumptions made herein relative to the chemical aguidance system generates heading and speed commands to the
flow are that the chemical is a neutrally buoyant and passigentroller to achieve the trajectory desired by the planner. This
scalar being advected by a turbulent flow. The autonomous y&&per only considers algorithms useful to the OSLIM problem.
hicle (or robot) is assumed to be capable of sensing position Assuming that odor is detectediat(t; ), the basic idea of the
concentration, and flow velocity. The concentration sensor @siline mapping algorithm is to use foy < ¢; the flow velocity
a binary detector. We analyze the plume mapping problemriecord{«(p,(t;)t;) j’:o and the detection record at the vehicle
two dimensions. A main motivation for implementing the magecation{c(p.(t;),t;)}j-, to estimate the likely previous tra-
ping algorithms in two dimensions is the computational simpljectory of the chemical detectedat(t; ). Accumulation of such
fication achieved; however, neutral buoyancy of the chemicadlor trajectories across many detection events will allow con-
or stratification of the flow [36] will often result in a plume of struction of the OSLIM. Note that lack of odor detection can
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be used similarly to decrease the OSLIM in appropriately de- .Y [1.m] (Z.Y)
fined regions. This paper presents computationally efficient al- c | e _ e
gorithms for the required computations.

For example, if the flow velocity field:(p,t) was known, [nl| - - | Cim
wherep denotes an arbitrary location in the search area, then . ) . . <
the trajectory of the parcel detected at titpdy the detector at
locationp,(¢;) could be calculated as

)
=]

5

Si

per) = pult) + | “ulpe(s),s) ds, T < 1. y

Fig. 2. Cellular subdivision of the region to be searched.
This backward integration calculation shows that the flow field _
is a function of both position and time. It also shows that the dB- Plume Map Representation

ration of integratiori; — 7 is not known. When odor is detected Both for computational feasibility, and to construct a model
atp,(t;), the calculation provides a trajectory along which thgyitable for the HMM approach, a rectangular region is defined
source is located. When odor is not detecte(a}, by a per- that covers the search area that is of interest. A set of coordinates
fect sensor, the calculation provides a trajectory along which thg and ann x m cellular subdivision of this rectangular area is
source is not located. defined as shown in Fig. 2.

The vehicle is not equipped with perfect detectors or with pefine a vector of cells’ = [C4, ..., Cy] that covers the

global flow velocity information. Olfactory sensing is characarea of interest, wher& = mn. Leti € [1,m] count over
terized by very low false alarm rates, but potentially high misseg|is in thex direction. Letj € [1,7n] count over cells in the
detection rates. The high missed detection rate is due to H)fection. Knowledge of the vehicle position allows direct cal-
patchy distribution of chemical caused by turbulent diffusiomylation of the(i, j) indexes of the cell containing the vehicle.
These stochastic factors must be accounted for in the mappgigen; and;, the index of the cell elementis= i + (j—1)m.

algorithms. The uncertainty in(p.(s), s) for s < ¢, especially The inverse mapping frorh to (i, j) is
since only{u(p,(t;),t;)}’—, is available, results in increasing

uncertainty as the duration of the backward time integration in- i(k) =rem(k—1,m)+1 3)
creases. The likelihood mapping algorithms must account also () = k-1 1 4
for this distribution of possible trajectories from the source to j(k) = int + )

the detector. For on-vehicle implementation this algorithm most ] ) )
be carefully constructed for computational feasibility. HMm&vhereint(n,m) is the greatest integer less than or equal to

are manipulated herein to produce such algorithms. (n/m), andrem(n, m) is the remainder of. divided by .
Therefore, the notation§’; ; and Cj, are equivalent. In addi-

tion, one additional cell’j is introduced. As will be shown
I1l. M ODEL REPRESENTATION later, this extra cell simplifies some later computations and nor-
malizations. This cell can be conceptualized as the environment
outside the search area. Therefore, when odor leaves the search
Mapping and planning algorithms compute at a lower ratgrea, it enters cell;.
than guidance and control algorithms. Therefore, in typical ap-Let 0 < 7, < 1 represent the probability that there is an
plications, there ar@/ sensor readings per mapping algorithnodor source irCy.. The vectorr = [r1, ..., m] is initially un-
update interval. The mapping algorithm will use the mean flokhown. ThisN vector can be converted to anx m array and
vector over thes@/ measurements interpreted as the OSLIM. This map is one of the items that
we will be attempting to estimate. Note that if it is assumed
M tha}\g there is exactly one source in the region of interest, then
Uy (t;) = € Z U (ti—1 + kdt) (1) 2k=1 7k = L.Initially, ifthere s no prior information about the
M~ source location, then is initialized uniformly asr; = (1/N).

A. Flow Velocity Sensor Processing

LM The 7 vector can be initialized nonuniformly, if prior informa-
uy(t;) = i Z wy(ti_y + kdt) (2) tion about source location is known.
k=1

C. Hidden Markov Plume Model

wheredi = (#; —ti—1/M). Note that for notational conve-  The higden Markov plume model (HMPM) is represented by
nience, we have dropped the explicit representation of flow ag parameter vectok = [r, {A(ti)}f_o. b] wherer is the

a function of position. All measurements occur at the locatiagrce probability vector (see Section I1I-B,is the state tran-
of the sensor on the vehicle. The mapping algorithm will usgtion matrix, andb is the detection probability vector.
the peak concentration measurement overitheoncentration | et 4,,(¢;) represent the probability of the transition of de-

measurements [i.ex(t;) = maxg=1, a(c(ti—1 + kdt))]. Be-  tactable odor fronCy,(¢;) to Cy(t;41). Then
cause detection events are rare, this ensures that no detection

events are missed. A(ty) = [an(t:)] € RNF)X(N+1) (5)
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is the matrix of cell transition probabilities at time. Since presents an algorithm for determining, givie,rthe most likely
m represents the source probability vector, if we defingath that odor would have taken between two cells at two given
ao;(t;) = mj, thenag;(¢;) represents the probability thattimes. Section IV-C3 presents an algorithm for determining the
odor from the source released #tis in cell C; at timet;. connected path between two cells that is most likely to detect
Furthermore, we interpretyo(¢;) as the probability that odor odor.
from cell C} leaves the search region at time Notel that
since all odor inC(¢;) must go someplace &t,,, we have the A. Plume Location Likelihood Map
constraint th_aEfio aj(t;) = 1. The definition ofA(¢;) based  Tne probability of each detection event is (by Baye’s rule for
onu(t;) is given in Appendix Il. For certain computations, the,qnditional probabilites)
zeroth row and column will not be important; therefore, we
defineA(t;) = [aw(t;)] € RV*N for k,1 € [1, N].

The déte)ctio[n pEol:))Lbility vectds is the [prob]slbility of de- P(D(pu(ti))) = pouw(ts, o) (6)
tecting odor in each cell if there is detectable odor in that cell.
Since the sensor performance is assumed to be independaemtre

of the sensor location, the elementsbadire identical and can  Cj, cell containingp, (¢;);

be represented by a known constantimes a unity vector. M detection probability given that the cell contains
The probability of detecting odor i@, at timet; is therefore detectable odor;

brag(t;) = pak(t;), whereay (t;) represents the probability of — «a(t;,t9) probability thatC) contains detectable odor at
cell k£ containing detectable odor at timg An efficient algo- time ¢; due to the continuous release of odor by
rithm for calculation ofw(¢;) is presented in Section IV-A. the source starting ap.

Corresponding to the traditional HMM literature, three probSincep is a known fixed constant, the key issue is calculation

lems are of interest. of ay(7,t0), T € [to, ]

1) Use the modeA to predictPy(0), wherePy(O) repre- Introduce the intermediate variabig (¢;, ¢,) that represents
sents the probability of the observed set of concentratiéfe Probability that’;, contains detectable odor at time> ¢,
detection events denoted by, due to an odor release only at time Let

2) Use the modeh to estimate the state sequengdhat
yielded the observations. ati to) = [@r(ti,to), -, an(ti to,)]

3) If X is not known, then find the modél that maximizes

P;(0). Sinceb is known andu;; for i € [1, N] andj € . . . .
[0, N] can be computed from the flow velocity history, thebe the vector storing this variable for each cell. Since

main issue is the estimation of(or ag; for j € [1, N]). T IS th? source probability vectow(to,t,) = . The.
. Lo calculation of a;(¢1,t,) must account for the transi-
Letting D(p,(t;)) € {0,1} representetection(i.e., D = 1)

andno detectior(i.e., D — 0) events at the vehicle locatign tion probability from all other cells to cell. Therefore,
= _ N _ .

. 7 . L t1,t _ to,t t,). In vector notation,

at timet,. Then, the observation vector at tirés it to) L=y ¥ (tos o) ari(to)

aty,t,) = E(to,tO)A(f@) and
O = [D(pu(t1)), - - -, D(pu(ti))]-

0, for t, < t,
The sequence of cells most likely to have been transitioned by atn,t,) = L, B for t, =1, (7
the odor to result in the detection evedfp,,(¢;)) is denoted by s H?:_OI A(t;), fort, >t

extension of the backward integration discussed in Section\}\}here "R = A(t A(t). Let ®(t £y =
The appropriate algorithm is presented in Section IV-C2. 1= Alty) (to) .- Altn). (bn+1, )

S(D(p,(t;))). Determination ofS(D(p,(t;))) is a stochastic

[Tj_o A(t;). The computational ofb(t,1,t,) for the case
t, > to requiresnmatrix multiples of dimensionV x N,
IV. HIDDEN MARKOV-BASED TOOLS which requiresO(nN?) Floating point OPerationS (FLOPS) at
This section adapts methods from HMM [31], [33] toeach step. Alternativelyp(¢,+1,t,) can be calculated as
the solution of important questions applicable to developing
an OSLIM_and to defining usgful_trajectorles relatec_i to the B(tp,ty) = Btn_1,to)A(tn_r)
plume tracing and source localization problems. Section 1V-A

addresses the first problem stated in Section IlI-C: how to use | ) 3 .
the model) to predictPy(D(py(t;))). Section IV-B presents which requiresD(N?®) FLOPS per time update. The computa-

an algorithm for calculating the likelihood of a source ifion Of@(fn,%o) by (7) can be rewritten in either of the following

cell i producing odor that is detected in cdllat time¢,. ecursive formulations:

Section IV-B1 presents an algorithm for estimation of the B

unknown quantityr of the HMM model A. Section 1V-C2 atn,to) = @(tn_1,to)A(tn—_1), fort, >t, (8)
1This constraint holds for a 3-D problem even for a two-dimensional (2-I:5?r

implementation. For example, the cells can be considered as having either fixed

height. Odor leaving the vertical edges has then left the search area (i.e., entered B
Co). atn,to) = TP(tn, to). 9
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i (th1,to)

L(th1,to)
c=2

C=k
At to)

aN(th ytO)

Fig. 3. One forward propagation step for the plume raqt) by (8) where

a;p is the transition probability from cellto cell k.
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TABLE |
ALGORITHM TO GENERATE A PLUME
LIKELIHOOD MAP FOR THEHYPOTHESIZED SOURCE LIKELIHOOD VECTOR
7, WHERE o (%, , t,) DENOTES THEPROBABILITY OF THERE BEING
DETECTABLE ODOR IN CELL k AT TIME t,, DUE TO CONTINUOUS RELEASE FOR
t € [to,t,.] AND a;;, ARE ELEMENTS OF THESTATE TRANSITION MATRIX
DETERMINED BY THE FLOW

1. Initialize: o;(to,t,) =m; fori=0,...,N.

2. Induction:

ak<tn7 to) =

N
ai(tn-1,%t0)aik (tn—
n+1(7rk+"; i(tn—1,to) ik (tn 1))

fork=1,...,N.

3. Termination: Pr(Ci(tn,t0)|A) = b(k)ak(tn,to)

The computation of (8) is illustrated in Fig. 3. Equation (8) re-
quiresO(N?) FLOPS per time update. Due to the updateof

(9) requiresO(N?) FLOPS per time update.

Theith row of ¥(¢,,) represents the probability at, given a

The variablex(t,, t,) accounts for the transport of the odorcontinuous release of odor startingtaf from a source inC;

released at the single instant The variableay(t,,t,) that
accounts for a continuous release of odor freymo time ¢,

is then calculated as

n

1 _
tnto) = > altn.t;)
i=0

where the factor of(n + 1) is introduced to maintain

lla(tn, )|l = 1. This expression reduces, using (8), as

i n—1
1 _
alt, ty) = — |+ > (atn-1,;)Altn-1))
L j:o
1 i n—1
= I A(tn_1,t5) | At,_
e [T | 5 otinereti) | Aln-)
1 B
= —ry 1[7r]+na(tn,17to)A(tn,1)]

for n > 0. This algorithm is summarized in TabIeJ. Since this
recursive relation depends only on the most recennatrix,

the pastA matrices would not need to be stored. This recursi : -
FLOPS per lated based on the fluid flow. Therefore, (12) allows prediction

computation ofx(t,,,t,) by (11) requiresD(N?)
time step.

The variablen(t,,, t,) could also be calculated using (9) as

! iﬂ'@(tn,tj)

a(tn,to) o

n+1

T
n+1

= U (tn, 1)

(10)

(11)

(12)

that there is detectable odor in any other cell. Since this recur-
sive relation depends only on the most rec&mhatrix, the past

A matrices do not need to be stored. The recursive computa-
tion of a(t,,t,) by (12) require)(N?) FLOPS per time step.
The recursive computation &(,,, ) by (13) require$) (N ?)
FLOPS per time step.

The algorithms of (11) and (12) are forward calculations
that, given the model, project the probability of odor being in
any cell. For (11), the first iteration initializes the probability
a(t,,t,) based on the hypothesized probability vector repre-
sented byr. Subsequent iterations calculate the probabilities
at time ¢,,1 based on the probabilities at timg and the
transition probabilitiesa;;(¢,). By embedding the vector
in the computation at each time, the algorithm of (11) is able
to be implemented with significantly fewer computations
than are required for the algorithm of (12). The savings is the
result of implementing a vector-matrix product instead of the
matrix-matrix product necessary in (13).

In spite of the fact that the algorithm of (12) requires addi-
tional computation, the form of (12) is important, since in the
Jodel, 7 is the only unknown. The parametax(,, ) is calcu-

of the plume likelihood map (probability that each cell contains
detectable odor) that would result from any hypothesized source
probability vectorr. The algorithm of (11) would require com-
plete recalculation from, to the present time; although (12)
has a higher per time step computational load, it may have a
lower computational load when computations will be required
for different hypothesized valuesof Interpretingyy (.., t,) as

a plume likelihood map calculated for the current estimate, of
allows a planner to construct trajectories based on maximizing
the likelihood of contacting the plume that would result from a
hypothesizedr.

B. Odor Path Likelihood Map

whereW(t,,,t,) = (1/n+ 1)[I + Y123 ®(t,.¢;)], which sat-

isfies the recursion relation

Uty t,) = [N (tn_1,to)A(t,_1) + 1.

n+1

(13)

It will be useful to have an algorithm to predict the proba-
bility, given the flow history, that a source in any given cell has
transported odor t6';(¢.). To this end, let;; (¢, tr) denote
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TABLE I
ALGORITHM TO GENERATE AMAP 3; (1, t ) OF THE LIKELIHOOD OF CELL ¢
GENERATING ODOR AT TIME ¢ THAT TRANSITIONS TOCELL j AT TIME
tr,, WHERE @;;, ARE ELEMENTS OF THE STATE TRANSITION MATRIX
DETERMINED BY THE FLOW

1. Initialize: B;;(tr,tL) = d;; where d;; is the Kronecker delta function and j denotes the cell of
interest.
2. Induction:
N
Bij(tr,tr-1) = ;aw(t/-l)ﬂk;(tutf)» fe[F+1,L].

3. Termination

(a) Bij(tr,tr) is the probability that odor released in C;(tr) transitions to Cj(tz). The vector
Bij(tr,tr) for j fixed represents a map of which cells are likely to have transported odor released
at tr to Cj(tr).

(b) Alternatively, 78;;(¢z,tr) is the probability of odor transitioning to Ci(tz) when ‘tile odor

sources have the distribution 7.

Bii(tto)
C

Bai(tu,to)
C

Bi(teter) ﬁN»lé(:.l;w!x)

BuiCtut)
Cn
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Let Bj(tr,tr) = [Bj(tr,tr),...,0On;i(tr,tr)]". Since
B(tr,tr) is known, 3;(tr,tr) can be propagated backward
through time for anyr < ¢y as

Bi(tr,tr) = A(tr)B(tr, tri1). (14)

For a fixedty,, this propagation of;(¢r., tr) backward to time

tr requires allA (t;) for & € [F, L) to be available. Computa-
tion of 3;(t 1., t) would requireL — F' vector-matrix multiplies
(i.e., (L — F)N? FLOPS) per time step. This process would
be repeated at, ., requiring L — F' + 1 vector-matrix multi-
plies. Therefore, as written the algorithm has computational and
memory requirements that grow with time. Note however that

Bi(tr.tr) (tr)B

A it try1)
A(tr)A(tpyr) -~ Atr—1)Bi(tr,tr)
(tp,tr)B;(te,tr)

where the transition matrix?(¢y,tr) was defined after
(7). If ®(tp_1,trp) is available, then ®(¢r,tr) =

®(tr_1,tr)A(tr_1); therefore,®(t;_1,tr) can be propa-
gated forward in time as each ne(t;) becomes available.
Then, the likelihood of each cell at time- propagating

detectable odor to cefl at timety,4; is updated as

Fig.4. Graphicalillustration for the derivation of the odor path likelihood map

B:;(tr.t;_1) by the backward propagation algorithm of (14) wherg is the
transition probability from cell to cell k.

the probability that odor releaseddh (¢ ) transitions ta”; (¢, )
for tp > tr. With this definition,5(¢, ¢ty ) is initialized as

0, if i#j
ﬂij(t“t’?):{t if Lij

Bi(toti,tr) = ®(tot1,tr)Bi(tot1,to+1) (15)

WheI'Eﬂj(tL+1,tL+1) = Aj = [61j, .. .,6Nj]T is trivial to
define whenj is known and®(t;1,tr) is updated based on
®(tr,tr) andA(tr). The update of (15) has fixed memory and
computational requirements.

Therefore, by maintaining the state transition matrix
®(tp41,tr), we have that théth row of ®(¢r41,tr) repre-

wherei € [1, N] and for the present timgis fixed. The desired sents a map of which cells are likely to contain detectable odor

algorithm is derived below based on the HMM backward progrodor were released i¥; (¢ ). Thejth column ofd(

agation algorithm of [33, Sect. llI-A].

trt1,tr)
represents a map of the likelihood of each cell containing the

The parameter(J;;(t.,tr) can be calculated by thegource that release odorat that was transported 6 (¢1,).
algorithm in Table Il. To understand this algorithmpap important advantage of maintaining(tz1,tr) is that

consider Fig. 4. Fortp = tr_1, the probability of
odor transitioning fromC;(t;—1) to Ci(tr) is simply

different rows or columns are available as they may be needed
without any recomputation.

Bir(tr,tr—1) = aix(tL-1) since there is a single transition Computation of3;;(t1,¢») accounts only for transitions
path. Sincedix(tr,tr) = b, this can also be expressed agom celli at timetr to cell k at timet .. Because we do not

Bir(tr,tr—1) = a(tr—1) = Zj-\;oaz’j(tL—l)ﬂjk(tL,tL)-

know the propagation time, — ¢ (i.e., we do not know the

Forip < tr1, the probability of odor transitioning from time ¢, at which the detected chemical was released), we must
Ci(tr) to Cx(ty) must account for all possible transitionaccount for all possible release times by defining

sequences from cellto cell k in L — F' steps. In spite of the

huge number of possible paths (i.eN)“~ ), HMM methods
provide a convenient algorithm. At timiethere areV possible
next cells. By Bayesian arguments

WE

Bij(tr,tr) = Bik(try1,tr)Br;(tr, trs1)

?r
Il
—

I
M=

@ik (tF)Bri(te, trs1)-

El
Il
—

L
- 1
Sei(tn,tg) = —— Gt t; 16
/k;( L, 0) L—I—l;ﬂk]( L, ) ( )
wheret is the first time that data was available=1, ..., N,

andj is fixed. The parametelt is the number of backward time
propagation steps. Selection of this parameter is constrained
by computational load and the duration of time for which the
flow velocity vector is available. Equation (16) is not efficient
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in terms of computation or memory. A recursive version of this TABLE Il
; ; . VITERBI ALGORITHM WHERE 0; (. ) IS THE PROBABILITY OF THE MOST
algorithm is developed as follows: LIKELY CELL SEQUENCE TOC'; AT TIME t},, a;; ARE ELEMENTS OF THESTATE

1 L TRANSITION MATRIX DETERMINED BY THE FLOW, AND ¢; (¢, ) IS THE INDEX
2 OF THEMOSTLY LIKELY CELL TO TRANSPORTODOR TO CELL j AT TIME t;,
Bi(tr, to) = I+1 ;ﬂj(tL7ti) J K
I 1. Initialize: §;(tg) = m;, 1 <i < N and 9;(¢0) = 0.
1
] [@(tr,t:)Bj(tr, tr)] 2. Recursion:
=0
1 - b) 5 t
“I+1 (Z @ (tr, m) Biltr,tr) ) = g iltese (ol
i=0

1<j<N1<k<L
= U(tr,t0)B;(tL, tr)

where¥(ty, ) is propagated recursively by (13).

Therefore, by maintaining the superposition matrix L .
U(tr,to), we have that theth row of U(¢r,t,) represents a > Termination: gi(t) =J, gj(te) = Yg;(ten) (o)
map of which cells are likely to contain detectable odor if odor )
were released continuously () for f € [0,L]. Thejth C. Most Likely Paths
column of ¥(tr,to) represents a map of the likelihood of each The Viterbi algorithm (VA) [14], [40] can be adapted to
cell containing a source whose continuous release would resjgherate paths through the cell space that are useful to the
in odor being transported t6';(¢7,). An important advantage source localization problem. Section IV-C1 reviews the VA.
of maintaining ¥(tr,o) is that different rows or columns Section IV-C2 adapts the VA to compute the most like path
(representing different source and destination locations) ag&ken by odor between cell; (tr) andC;(t1,). Section IV-C3
available as they may be needed, without any recomputati@@apts the VA to compute the connected path between cells
The disadvantage is the amount of computation required dQ(¢, ) andC (¢, ) thatis most likely to result in odor detection.
maintainW. In a time-varying flow field, these two paths are distinct.

1) Source Likelihood Map (SLIM)if odor is detected it 1) Viterbi Algorithm (VA): The VA is a recursive, optimal
att = tr, theng;(tr,to) for i € [1, N] indicates which cells solution to the problem of estimating the state sequence of a
are likely to have contained the source that resulted in the dfiscrete-time, finite-state Markov process observed in memo-
tected odor irCy (¢ ). The variable3;,.(t., to) can therefore be ryless noise. In its most general form, the VA may be viewed
useful for adaptation of the source probability vectoriSimi-  as a solution to the problem of maximuarposteriori (MAP)
larly, if odor is not detected i, at timetr, thenf;(tz,%0) probability estimation of the state sequence between two states
indicates vyhich cellsﬁare unlikely toicontain the source. In the a finite-state discrete-time system. The VA is summarized
following, Bk (tL) = [Bik(tr.to), ..., Bnk(tr.to)]” . in Table IIl whereé;(t;) is the probability, givenr at ty, of

Using these ideas, we adapt the estimate of the source likgiie most likely cell sequence ©; (1)) attimety,; ¢, () is the
hood vectorr as follows. Assuming that no prior information isindex of the most like cell transitioning t6;(t1.); and g =

;i (te)

arg llélias-xN[&i(tk—l)aij(tk—l)]

available about the location of the source in the search area, ME(Q% q; (tr—1)s- -, q; (t1)] is the most likely cell sequence
initialize 7 uniformly over the region ag = [1,...,1]/N € to C;(t1). The first step initializes the probability of the most
RN. The update of: is defined as likely cell sequence based on Step 2 calculates the proba-
(1= e)it(tr_1) + eq-Lele) bility of the most likely cell transition to cef at timet,. based
JTNL=1) T S E () on the probability of the most likely cell sequences to each cell
A(tr) = when odor is dete}cted i (11,) at timet;_, and the cell transition probabilities &t_; . At the
€)T(tn1) — €cpsio s same time, we use(t;) to record the cell number, which is
(L+ €)(tro1) — ot i @; d the cell number, which |
when odor is not detected il (1,). the mostly likely cell to transport odor to cellat timet,,.

Consider the following simple example of a three-state ap-
plication of the VA to a generic (nonplume tracing) application.
Assume thatr = [1,0, 0]

In the detection case, #f(t;—1) is a probability vector, then
#(tr,) will be a probability vector (i.e.||7(¢%)]|]1 = 1). In the
latter (no detection) casé(t;) must be normalized so that its

one norm again has magnitude one and each eleméi(t pj F0.60 040 0.00]
is in [0, 1]. The design parameters of this algorithm arend A(0)= [0.00 1.00 0.00
e4. In the case where the probability of missed detection is high, 0.00 1.00 0.00
thene. should be small. Both parameters must be positive with, 4 ) .
magnitude less than one. (025 0.25 0.50]
_ It is important to note the distinction betweeritr) and A(2)=A(1)= | 0.00 1.00 0.00].
Br(tr). The vectorf(tr) keeps track of the credit each cell 0.00 050 0.50

deserves for a detection/no detection evenfjnat timet,.

The vector#(tz) accumulates theél(#;) information across Attimet = 1,6(1) = [0.60,0.40,0.00] and+(1) = [1,1, np]
all detection/no detection events (i.e., fof [0, L]) to estimate wherenp stands for not possible. At time = 2,6(2) =
the likelihood that each cell contains the source. [0.15,0.40,0.30] and#(2) = [1,2,1]. Therefore, the most
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likely state sequence t682(2) is S1(0) — S2(1) — S2(2). 2) Recursion:

Attime ¢ = 3,8(3) = [0.04,0.40,0.15] and+(3) = [1,2,3].

Therefore, the( gnost[ likely state ]sequiégc)e S(g(?)) i]s pom (ki +1) = 1213?N[am(tf’tO)Ne”(m)“”(k)]

51(0)—>51(1)—>53(2)—>53(3> ISnSN,OSkSS—l
2) Most Likely Odor Path Betweea®;(¢,) andC;(tf): For Gm(k + 1) = arg max_[am(ts, to)Nen(m)un(k)]-

the plume-tracing application, direct application of 1<n<N '

the VA, using A(t;) through A(t;) calculated using  3) Termination:

u = J[u(ts),...,u(ty)], generates the most likely odor . . .

path (i.e., cell sequence) to any desired final cell location (i.e., % (s) =1, q;i(k)= 1/’4;*(’6—1)(/‘3 -1

Cj(ty)) for an assumed. If # is used then the resulting cell P () = 1gla<xN[7rmam(tf,tO)Nen(m)un(s +1)]

sequence accounts for odor sources in all cells withrthector -

appropriately weighting each cell. whereNe, (m) is a neighbors function such that
AIternativeI.y, ifr fo_r the VAs is defined to be zero in all cells 1, if C, isaneighbor ofC,,

gxcept for be'|ng 1.0in cetUi(tS_), then the resulting sequence Nen(m) = { 0, otherwise

is the most likely odor path (i.e., cell sequence) between the _ . -

specified start locatio; (¢, ) and the end locatiof; (¢). um (k) is alikelihood function proportional to the probability of

The VA finds the most likely cell sequence forward througfetecting odor in each cell along the most likely odor.detection
time. This cell sequence could also be calculated backwdidtep cell sequence betweeh andC,, atiy, (k) is the
through time according to the following. index of the most likely previous cell 6,,,(k), s is the number

1) Initialize: v (t7) = 0 andpm(ts) = Smji 1 < m < N of cells in the sequence and = [¢}(s), ¢/ (s — 1),...,¢(0)]

wheres.. - is the Kronecker Delta == are the indexes of the most likely odor detection cell sequence

2) Recursion: ' betweenC; andC;. The neighbors function is straightforward

' to define. One approach is given in Appendix .
o (te) = max [apun (tr ) tin (tra1)] The logic of this algorithm is as follows. Singg, (k) is pro-
lsn<N portional to the probability of odor detection along thetep
1<n<N.s+1<k<f-1 cel sequence betwees, andC; that is most likely to detect

Y (tr) = arg max_[@mn (tr) tin (Err1)]- odor, the vectoy:(0) is initialized to correctly represent the fact
1<n<N .
== that the only zero step sequence must start and eng.ifror
3) Termination: k > 0, u. (k) is updated based on the likelihood of detection
i} _ . in C,,, and the likelihood of detection in all cells along the 1
g; (ts) =i, a7 (tk) = Vgz 1 1) (te—1) step sequences to the neighborgigf. Note that if there is no
fm (ts) = 11<na<XN[7rmamn(t5)un(t1)] (17) k step cell sequence betweéhandC;, theny,, (k) = 0.
where u,,,(tx) is the probability of the most likely V. EXAMPLES

cell sequence betweef,, (tx) and Cj(ty), Ym(tk) IS This section presents examples of the application of the algo-
the index of the most likely next cell frond’,.(tx), rithms that are contained in the body of this paper. In all the ex-
and ¢* = [gf (L), qj(t1), .., qj(t5)] are the in- 5pples the search region is a rectangle defined By[0, 100]
dexes of the most likely cell sequence betw&&iis) m andy e [-50,50] m. The cellular subdivision of this rec-
and Cj(ty). For the discussion of subsequent seqyngle usesn = 40, n = 25 so thatN = 1000. For each of
tions, let MLOP(m, A(ts), ..., A(t;—1), A(j)) Where ihe example figures, the source is locatettay) = (20, 0) m,
A(j) = [61j---,0n;], denote the most likely path yhich is inCyes (i.e., column= 8, row = 13).
traveled by the odor betwee(t.) andCj (). Figs. 5-8 show the coordinates of each corner in the corre-
Note that either the forward or the backward VA would responding corner. The map is computed over the entire region for
quire that allA(#;) be available fov € [t,, ;). For the method each figure. The search area that is of interest is the smaller rec-
given in Appendix B, this only requires thdt.,(¢;),u, (%)} tangle indicated by the dashed line. The regular grid of arrows
be stored. Note also that the algorithm implicitly assumesj@gdicate the local flow velocity at the tail of the arrow at the time
known starting time. Because the starting time is not knowghe plot was generated. The plume resulting from a continual
one approach is to use the Backward VA and to chdgse  release of odor, turbulent diffusion, and advection by the tem-
max, (u;(tx)) Wherep;(tx) is defined by (17). porally and spatially varying fluid flow is the grey-scale mean-
3) Most Likely Odor Detection Path Frofil;: This subsec- dering path of circular filaments that beging(aty) = (20, 0)
tion defines an algorithm to calculate the connected cell sgr. The plume simulation model is described in [13].
quence betwee@; andC'; at the present time thatis mostlikely For Figs. 5 and 6, the flow field is defined by the simula-
to detect odor, for the given modgl Sincea(t,,t,) isamap tion model and varies with both space and time as a function of
of the likely plume locations, the algorithm for finding a contime-varying boundary conditions. Fig. 5 shows the result of cal-
tiguous cell sequence betweéh and C; that maximizes the culatinga(65,0), plotted as a grey-scale mausing the flow

probability of detection is as follows: 2 .
e el L _ _ Note thaix(65, 0) is a vector ifR™ whereN = mn. The map is produced
1) Initialize: 1y, (0) = 0 andum (0) = dmjoun(ty,to), 1 < by convertingx(65,0) to ann x m matrix and coloring each cell according to
m < N whereé,,; is the Kronecker Delta. the value of the corresponding matrix element.
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Fig. 5. Plume mam (65, 0) from the forward algorithm assuming the source i€ins. The array of arrows indicates the local flow velocity at the tail of the
arrow. The coordinates of each corner are indicated in each corner. The dashed rectangle indicates the desired search area. The array aftgneyescale re
indicates the size af(65,0) in each cell, where darker cells have higher probability of containing the plume. The grey-scale patchy trail indicates the simulated
odor concentration as a function of position (i.e., the plume). The plume shape is time-varying as determined by the advection of the timewéejthg flo
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Fig. 6. Map representation @%,(54, 0) from the backward algorithm for odor detection occurrin€igio(54). The array of arrows indicates the local flow
velocity at the tail of the arrow. The coordinates of each corner are indicated in each corner. The dashed rectangle indicates the desiredHeaerhegret.
grey-scale rectangles indicates the siz8qf, (54, 0) in each cell, where darker cells have higher probability of transitioning detectable odor to the cell containing
the vehicle at the time of the calculation. The grey-scale patchy trail indicates the simulated odor concentration as a function of positopldinee) i he
plume shape is time-varying as determined by the advection of the time-varying flow field. The trail of dark arrows moving from near the top edgeadbwn to
the plume indicates the trajectory that the vehicle followed. The initial vehicle positibe=at was inCl, .

velocity measured at each time-varying vehicle location. For tierek = 488 (i.e.,7 = 8, j = 13) is the cell index contain
computation the true source location. This choicefoéllows the plume like-
lihood predicted by to be directly compared with the actual
_J1, fori=k plume. The plume likelihood map is maximum directly down
= { 0, otherwise flow of the source. The plume likelihood map decreases rapidly
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Fig. 7. Most likely path traveled by the odor betweBss(0) andCsss(44) shown by the grey-scale rectangles. The array of arrows indicates the local flow
velocity at the tail of the arrow (at= 44 s). To produce this graphic, the flow was artificially forced to be uniform over the region and to be 1 m/g idithetion

for till ¢ = 30 s. Fort > 30 s, the flow was forced to be uniform over the region and to be 1 m/s in the y direction. The coordinates of each corner are indicated in
each corner. The dashed rectangle indicates the desired search area. The grey-scale patchy trail indicates the simulated odor concenttadionfgsosifion

(i.e., the plume). The plume shape is time-varying as determined by the advection of the time-varying flow field.

in the crossflow direction and more slowly in the downflow dipresented in the body of this paper are valid for any record of
rection. The spread of the likelihood map increases with tlflew velocities. For this example, we purposefully enforced the
downflow distance fron@’y,. All of these features are physicallyuniform flow field defined in (18) to allow the reader to easily
reasonable. Ik were selected differently, then the plume likeliverify the two paths that are shown.

hood map shape would not change, but its overlay on the region

would be shifted to start af’;.. If = was selected to have more VI. CONCLUSION

than one nonzero element, the algorithm is still valid without he algorith d herei based |
change. The resulting plume map would effectively be the a _The algorithms presented herein were based on HMMs. Al-

propriately scaled superposition of each separate source. orithms are presented for: 1) determining which cells are likely
Fig. 6 shows a vehicle trajectory (The vehicle trajectory o contain detectable odor based on measured flow information
indica.ted by the trail of arrows starting @, (i.e.,i = 24, j = and an assumed source probability vector; 2) determining which

2) att — 0. The direction of each arrow indicates the VehiCI8e|ls are likely to have resulted in odor at a point where it was
heading). and a grey-scale mapf(54, 0) wherek — 619 is detected (or not detected) based on measure flow data; 3) es-

defined by the cell containing the vehicle at the time the odorltil%;nating a source probability vector; 4) determining the most

detected. The map ¢f has its maximum immediately upflow ely path_that .odor took from an assgmed source Iocatiqn 0
of the vehicle locations. The map Gfdecreases rapidly in the & cell that is of interest; and 5) determining the path of a given

crossflow directions and more slowly in the upflow directio [ength between two given locations that is most likely to en-

The map spreads out as it proceeds farther upflow counter odor. This path is interesting, because detection events
For Figs. 7 and 8, we (artificially) imposed a uniform fIOWproduce the largest change to the source probability vector

field over the entire region so that the validity of the resultin}ﬁlh'Ch is the only unknown portion of the HMM.

paths can be clearly observed. This uniform flow field for Figs The algorithm givenin Appendlx_ll for_computmg assumes
7 and 8 is defined by that the flow velocity vector is spatially invariant. This assump-

tion is not true, but is necessary based on the one vehicle as-
sumption. The negative effects of this assumption will be sig-
(tay11,) = { (1,0), for # <30s (18) nificant if the search area contains significant terrain features
(0,1), otherwise. that locally affect the flow or if the temporal variations of the
flow are rapid enough that their propagation across the search
Fig. 7 shows the most likely path traversed by the odor besgion should be addressed. The temporal effects can be allevi-
tweenCj,s3(0) andC3gs(44). Fig. 8 shows the 25 cell path be-ated by choice of the search time for appropriate environmental
tweenC3gs andClygg at timet = 44 s that is most likely to de- conditions. The effect of this spatial invariance assumption is
tect odor. Note that these two paths are distinct. The algorithmiso decreased by the fact thais estimated online based on



860 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003

i I
{0.0,-50.0) (100.0,-50.0)

1

t

t t 1 t t t 1 1 t t

1 t t t t t t t t t

t - “ --------- . y . . T --------- 1‘ --------- T ------- t
00500) 4 4 4 4 4 4 " 4 (100.0,50.0)

Fig. 8. Twenty-five step path betweéfyss andC, 7, that is most likely to detect odor at time= 48 is shown by the grey-scale rectangles. The array of arrows
indicates the local flow velocity at the tail of the arrow{at 48 s). To produce this graphic, the flow was artificially forced to be uniform over the region and to be
1 m/s in ther direction for till# = 30 s. Fort > 30 s, the flow was forced to be uniform over the region and to be 1 m/s ip theection. The coordinates of each
corner are indicated in each corner. The dashed rectangle indicates the desired search area. The grey-scale patchy trail indicates the rsiontatemadicdo

as a function of position (i.e., the plume). The plume shape is time-varying as determined by the advection of the time-varying flow field.

detection events. Becaugeis largest near the location of thework better when the flow varies significantly; however, there
detection event, the largest changes tare near this location. may be many points of intersection when the flow velocity is
Note that the magnitude of the sensed chemical has not play®g@rly constant.
a role in the derivations thus far. This is beneficial, because theOne method for computation of the matekxis given in Ap-
accuracy of the(t) sensor is not critical. A binary chemical deendix Il. This approach yields A that is very sparse, con-
tector is sufficient. The approach might be improved by incorp&ining only nine distinct nonzero elements. This approach, run-
rating information about the magnitude of the sensed chemidaing on a 300-MHz computer, implements all four of the maps
To date, this approach has not been pursued. Challenges tdfinthe example section, a vehicle simulation, an environment
corporating the magnitude oft) include the fact that the sourcesimulation, and a planner in better than realtime. The main as-
strength is not known and the fact that the sensor is not necégmptions of that definition oA are that the flow is uniform
sarily detecting the peak concentration of the parcel of odor @yer the region and thdu|dt is smaller than the cell length.
its vicinity. Many alternative approaches to calculatean be constructed.
Future work is still necessary to estimate the appropria@ €xample A can be generalized to account for uncertainty
duration of the backward integration. Several approaches Hreell transitions due to the temporal variation in the flow over
possible. The fluid dynamics literature [36] provides methodach sample period.
for estimating the downflow distance from the source based onThis paper has only addressed the mapping portion of the
characteristics of the measured chemical. Alternatively, usifyerall problem. A planner is also required to determine the

the hidden Markov approaches described herein, the followifggneuvers that the vehicle should perform. The quality of the
ideas are of interest. map will be strongly affected by the decisions of the planner.

both th likelv od h q The planner must also address various mission objectives, en-
1) Propagate both the most likely odor path (MLOP) an tnﬁgy and safety constraints. The planner used in the examples

mos_t likely d_etecupn path (MLDP) bapkward from thesection commands the vehicle to enter the neighboring cell that

Veh'd? Iocat|0|_’1. F'”O_' th_e pomts.at which they Intersecbresently has the highest probability of detecting odor (i.e., the

Each intersection point is an estimate of the source IOCf‘—'step MLDP). The planner and map interact since both recom-

tion. _ ) pute at 1 Hz. The resulting vehicle trajectories move across the

2) Letey = apfiy. The sets = {Cy |cx > 7}, whererisa  qo, while finding the plume and up the flow following odor

threshold, defines a set of points likely to be on both tht‘f“etection. These characteristics are similar to those exhibited by

MLDP and MLOP. various biological entities [24]. Starting from a random location
Processing of such sets of cells could provide an alternativea 100x 100 m search area, the vehicle typically locates the
means to estimate the SLIM representedrb$uch approaches source in less than 300 s using a velocity of 1 m/s.
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TABLE IV
NOTATION SUMMARY

ak(tfvts)
dk(tfvts)

Bij(ts,ts)
Bij(ts,ts)

d¢(%)

A= [m, A(t), b]
T

e (35)

U

ai(t;)

br

c(p(t:))
m
n

pv(ti)
9

t;

u(t;) = (ug(ti), uy(t:))
A(t:) = [an(ti)]

A(t) = [an(t:)]
C(pv(ti))
Ly(t) = X

The probability of there being detectable odor in Cy at time ¢y due to
the continual release of odor for ¢ € [t,ty].

The probability of detectable odor in Cj at time t; due to the one time
release of odor at ;.

The probability of odor released in Cj(t,) transitioning to C;(ty)

The probability of odor released for t € [ts,t] being detectable in Cj(ty)
Probability of the most likely cell sequence to Cj(t)

Hidden Markov model

Probability that there is an odor source in cell k

The index of the most like cell transitioning to C;(t)

Probability of detecting odor given that there is detectable odor in the bin
Probability of transition of detectable odor from Ck(t;) to Ci(ti+1)
Probability of detecting odor in cell k given that there is

detectable odor in cell &

Concentration at p at ¢;.

Number of x-axis subdivisions of the search area

Number of y-axis subdivisions of the search area

Vehicle location at time ¢;.

Most likely cell sequence to C;(T).

Time of the i-th set of measurements.

Flow velocity vector at time ¢; .

Matrix of transition probabilities, k, [ € [0, N]

Matrix of transition probabilities, k, [ € [1, N]

The vehicle cell at time t;.

The width of each cell at time ¢

The length of each cell at time ¢

Number of sensor measurements per computation interval.

Number of cells covering the region

The width of the searching area

The length of the searching area

APPENDIX |

NEIGHBORSFUNCTION

If it is desirable to represent this set(@f j) indexes by a vector
with the index mapping = i + (j — 1)m, then ink-space the
neighbors of celk are

For the algorithms used in the main body of this paper, it 18" = {k — 1 —m,k —m,k+ 1 —m,k — 1
useful to have a function that returns a vedtdrcontaining the kk+1,k—1+mbk+mk+1+m}.

indexes of the cells adjacent to cé
to as the neighbors function.
Let a rectangular region be divid

The cells will be indexed as;, ¢ € [1,m] andj € [1, n]. For a
nonedge cell, its (inclusive) neighboring cells are

[IThis function is referred

Each edge of the region must be treated separately, by replacing

ed into a gridwok m cells.  the(i, j) cellindexes that are outside[df m] x [1, n] with zero,

boring cells represented by

Ci—1,5—1 Ci—1,57 GCi—1,j5+1 Ci—1,0 Ci—1,5 Ci—1,5+1

Cij—1 Cij Cij+1

Ci,0 Cij Cij+1

Ci+1,j—1 Ci+1,5 Citl1,j+1- Ci+1,0 Ci+1,5 Ci+l,j+1

since the zero cell represents the exterior region. For example,
the upper edge (noncorner) cells of the region would have neigh-
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and ACKNOWLEDGMENT
k*={0,0,0,k — 1,k k+1,k—14+m,k+m,k+1+m}.

(19) The ideas presented here were inspired by the various meet-

ings related to the CPT and CSME programs and especially by
interactions with R. Cardé and J. Murlis.

The neighbors along the other edges and corners are defined

similarly.
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