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Abstract—This paper systemically discusses a procedure for 
evaluating and validating an odor source identification 
algorithm derived from moth-inspired plume tracing 
strategies. We evaluate and validate the proposed source 
identification algorithm as follows. First, we identify the source 
of a virtual chemical plume with significant filament 
intermittency and meander via a simulated underwater 
vehicle. Second, we validate the source identification algorithm 
using the virtual chemical plume and a real underwater 
vehicle in a swimming pool. Finally, we run in-water tests to 
trace a Rhodamine dye plume developed in near-shore ocean 
environments characterized by turbulence, tides and waves, 
and to identify its source via the underwater vehicle at Da Lian 
Bay in China. 

Keywords- Insect-inspired robots; chemical plume tracing; 
underwater vehicle; odor source identification 

I. INTRODUCTION  
Olfactory-based mechanisms have been hypothesized for 

biological behaviors, e.g., foraging by lobsters [1], foraging 
by blue crabs [2], mate seeking and foraging by moths [3]. 
Koehl et al. [4] further reported how lobster olfactory 
antennules hydro-dynamically alter the spatiotemporal 
patterns of concentration in turbulent odor plumes. Recently 
there has been interest in developing autonomous vehicles 
capable of chemical plume tracing (CPT) [5]. Vergassola et 
al. [6] generalized CPT issue as “'infotaxis' searching 
without gradients”. Belanger and Willis [7] presented plume 
tracing strategies, including counter-turning strategies, 
intended to mimic moth behavior and analyzed the 
performance in a computer simulation. Li et al. [8] evaluated 
and optimized the moth-inspired plume tracing strategies in 
a simulated plume with significant meander and 
intermittency of plume puffs. Grasso et al. [9] evaluated 
biomimetic strategies and challenged theoretical 
assumptions of the strategies by implementing biomimetic 
strategies on their robot lobster. Russell [10] included 
robotic implementation of algorithms that estimate statistics 
of the plume such as the plume centroid and experiments 
where the chemical is constrained to a multiple-duct tunnel 
system. Marques et al. [11] performed plume tracing tests 
using mobile robots in laboratory environments. Recently, Li 
[12] used six robots to localize an odor source in a laboratory 
environment. Figure 1 shows our recent in-water CPT 

mission for odor source identification in near-shore ocean 
environments at Da Lian Bay China. 

 

 
Figure 1. A field test run of plume source identification via an underwater 

vehicle at Da Lian Bay on October 10, 2010 
 
Autonomous underwater vehicles (AUVs) with CPT 

capabilities would be valuable for searching for deep-sea 
hydrothermal vents, finding unexploded ordnance in near-
shore environments, and monitoring pollutants or localizing 
sources of hazardous chemicals in harbor. The strategies 
proposed in [8] were implemented on a REMUS underwater 
vehicle with a single chemical sensor for the in-water test 
runs in November and April 2002 at the San Clemente 
Island of California and in June 2003 in Duck, North 
Carolina [13][14]. The field experiments successfully 
demonstrated tracking of chemical plumes over 100 m and 
source identification on the order of tens of meters in the 
near shore, oceanic fluid flow environments, where plumes 
were developed under turbulence, tides and waves. The 
most recent CPT in-water tests via an AUV at Da Lian Bay 
in China were documented in [15] to validate the moth-
inspired CPT strategies. 

This paper systemically discusses a methodology for 
validating source identification algorithms, which are 
abstracted from the moth-inspired plume tracing strategies 
based on a single chemical sensor. First, we identify the 
source of a virtual chemical plume with significant filament 
intermittency and meander via a simulated underwater 
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vehicle. Second, we validate the source identification 
algorithm using the virtual chemical plume and a physical 
underwater vehicle in a swimming pool. Finally, we run in-
water tests to identify a Rhodamine dye plume source via 
the underwater vehicle at Da Lian Bay in China.  

II. SOURCE IDENTIFICATION ALGORITHM 

A. Last chemical detection point (LCDP) 
We derive a source identification algorithm from the two 

moth-inspired plume tracing behaviors: Maintain-Plume and 
Reacquire-Plume. Maintain-Plume is broken down into 
Track-In and Track-Out activities because of intermittency 
of a chemical plume transported in a fluid flow environment 
[8]. The Reacquire-Plume behavior is to reacquire contact 
with the plume in the situation where chemical has not been 
detected for at least a few seconds. A cloverleaf-shaped 
trajectory or its variant [13][14] was used to implement the 
Reacquire-Plume behavior for casting the lost chemical 
plume. We choose the length of each leaf by considering that 
the minimum value is constrained to be larger than the tracer 
turning radius, e.g., 10–15 meters for the REMUS vehicle. 
Note that one leaf is aligned with the down-flow direction 
for the tracer to rediscover the chemical when it has passed 
the source location. 

A chemical detection point at which the tracer loses 
contact with the chemical plume for λ seconds is defined as a 
LCDP, e.g., point ( lastx , lasty ) in Figure 2. During a 
Reacquire-Plume activity, the tracer either detects the 
chemical or completes the cloverleaf trajectory Nre times (Nre 
= 2 or 3 for the in-water tests). If Nre repetitions are 
completed without a chemical detection, the tracer reverts to 
Find-Plume [13]. In the moth-inspired CPT strategies, the 
chemical sensor works as a “binary detector”. The Boolean 
value is “1” if the chemical concentration is above the 
threshold. 

B. Patterns for source identification 
The LCDPs are separated along the axis of the plume 

when the tracer is far from the source location, while the 
LCDPs are clustered in the vicinity of the source when the 
tracer is approaching the source location. The tracer usually 
exits the plume and moves up flow from the source when it 
traces the plume to the source location. When this situation 
occurs, the tracer also activates Reacquire-Plume to 
rediscover the plume on a cloverleaf trajectory. As a result 
of the frequent switching between Maintain-Plume and 
Reacquire-Plume, the tracer generates a pattern with a 
number of cloverleaf trajectories in the vicinity of the 
source location, as shown in Figure 2. Such a distribution of 
the LCDPs is employed to facilitate development of the 
source identification algorithm.  

The tracer detects a new LCDP and inserts its node into 
the priority queue when it switches its behavior from 
Maintain-Plume to Reacquire-Plume. The queue sorts the 
LCDP nodes in a new coordinate system, defined in order 
of the current up-flow direction, 180+dirf . Its x-axis is 

aligned with the dirf direction, and its origin is located at 
( lastx , lasty ).  

 
Figure 2. Patterns for identifying the odor source using the LCDPs. 

 
Table I: Pseudo Code for SIZ_F algorithm 

ALGORITHM SIZ_F ( Q[1,… Nall] ) 
   //Identifying the source location by SIZ_F algorithm 
   //Input: Priority queue Q[1,… Nall] 
   //Output: Status of source identification 
 if ( Nall ≥ Nini ) 
        Sort Q in the order of the current up-flow direction 
        L[1,… Nall] ← Q[1,… Nall] ; n1 ← Nall  // L is a list 
        status ← false  
   while n1 ≥ Nmin do 

           Calculate ),( )()( m
last

m
last yx  of all LCDPs in the queue; 

           Find maxp  with maxD  in Eq. (2) 
           if  maxD  > Fε  
               remove maxp  from L;  n1←n1-1  
           else 

 status ← true; break  
           if status = true 

 return  ),( )1()1( f
last

f
last yx  as the source location 

          else
 return  no source location identified     
  else
           return  no source location identified    

 

C. SIZ_F algorithm 
The SIZ_F algorithm maintains all LCDPs in the order 

of the current up-flow direction using the priority queue. 
SIZ_F holds a constant size, Fε , and makes the source 
identification by the following iterative construct: First, 
SIZ_F calculates ( )(m

lastx , )(m
lasty ) of all the LCDPs; Second, 

SIZ_F find the point, maxp , with the largest distance to 
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from the priority queue, where a superscript  f indicates that 
the LCDPs are sorted in the order of the most recent up-
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flow direction, and Nall is the total number of LCDPs 
detected during a CPT mission. If maxD  is greater than Fε , 
SIZ_F removes the LCDP with maxp  from the set of 
LCDPs. These calculations repeat until all remaining 
LCDPs are close enough to ( )(m

lastx , )(m
lasty ). If the number of 

the remaining LCDPs is greater than Nmin, SIZ_F identifies 
its most up-flow LCDP as the odor source. Table I lists the 
pseudo code of the SIZ_F algorithm with three parameters: 
the SIZ_F size, Fε , the initial value, Nini, and the integer, 
Nmin, which indicates the minimum number of LCDPs 
remaining inside SIZ_F for the source identification. The 
SIZ_F algorithm also has two the adjustable parameters Fε  
and Nmin. The SIZ_F algorithm uses an iterative construct to 
cluster LCDPs inside SIZ_F. The parameter, Nini, defined in 
the algorithms works as a filter to block some invalid 
LCPDs, only when Nmin is very small. 

III. ALGORITHM EVALUATION AND VALIDATION 

A. Virtual plume and simulated unerwater vehicle 
We evaluate the SIZ_F source identification algorithm 

via an underwater vehicle in a simulated fluid-advected 
environment [17], which upgrades the version [18] by 
expanding the filament-based plume model from two-
dimensions to three dimensions. The upgraded version 
allows us conveniently to define multiple vehicles and 
plume sources, as shown in Figure 3. This plume model 
addresses the major characters that challenge CPT 
algorithms, such as significant intermittency between 
chemical filaments, significant plume meander, noise and 
uncertainty of sensors, and magnitude and direction 
variation of flow fluid at time and location. The operation 
area is specified by [0,100] × [-50, 50] in meters. The 
filament release rate is 5 filaments per second, the 
simulation time step is 0.01 s, and the mean fluid velocity is 
1.0 m/s. The measured fluid flow is corrupted by additive 
noise that is white normal random process. The plume 
source is located at (10, 0) in meters, which is unknown to 
the vehicles fleet. The home location is defined as (110, 40) 
in meters outside the operation area.  

For evaluation studies, we implement the dynamics of 
an underwater vehicle developed by State Key Laboratory 
of Robotics, Shenyang Institute of Automation, Chinese 
Academy of Sciences for our evaluation studies [15]. 
Simulations continue 1000 CPT test runs without 
duplications of the trajectory, the odor-hit points, and the 
LCDPs. We define a CPT test run as a cycle the vehicle 
starts at its home location and returns the home location. 
The test run fails (in this case, the vehicle returns the home 
location with record “over-time” test run) if the vehicle 
cannot identify the source location within the time limit 
Tmax=1000.0 s (this limit can be used to measure CPT 
performance in simulation studies and viewed as the energy 
remaining for vehicle back home in the field tests). The 

optimized algorithm achieves the mean identification time 
in about 3 minutes and the success rate about 90%. 

 

 
Figure 3. Olfactory-based chemical plume tracing and source identification 

in a simulated fluid-advected environment 

B. Virtual plume and real underwater vehicle 
Before our in-water test runs, we need to investigate the 

effect of sensor noise and vehicle dynamics on chemical 
source identification, so we validate the proposed algorithm 
using the virtual chemical plume and the underwater vehicle 
that run in a swimming pool. The simulated chemical sensor 
and fluid detector detect the chemical concentration, and 
fluid direction and magnitude in the simulated flow fluid 
environment. Our plume tracing algorithm generates the 
vehicle commands which control the real vehicle maneuver 
in the swimming pool. Figure 4 shows a test run of tracing 
the virtual plume via the underwater vehicle in swimming 
pool. The study shows that the average accuracy of the 
source identification is about 0.18m. 

 
Figure 4. Chemical plume tracing and source identification using a virtual 

plume and a real underwater vehicle 

C. Rhodamine dye plume and real underwater vehicle 
The underwater vehicle for our field tests is equipped 

with multiple sensor sensors, including an underwater 
fluorometer to detect the Rhodamine plume and a Doppler 
Velocity Log (DVL) to measure vehicle’s velocity relative 
to the sea bottom and the reference water layer which is 2 m 
below the sensor head with sample rate 2-3 Hz. 

We perform our in-water test rum to validate the 
proposed source identification algorithm at Da Lian Bay on 
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October 10, 2010. Figure 5 displays the trajectory of an 
underwater vehicle activity during plume tracing and source 
identification. We conduct five CPT missions to identify the 
source location of the Rhodamine dye plume shown in 
Figure 6. Missions 4 and 5 identified the source locations 
with accuracy 8.38 meters and 29.42 meters relative to the 
nominal source location, respectively.   

 

 
Figure 5. An in-water test of chemical plume tracing and source 

identification via the underwater vehicle 
 

 
Figure 6. Rhodamine dye plume developed in near-shore 

ocean environment at Da Lian Bay 

IV. CONCLUSIONS 
We validate the SIZ_F algorithm in near-shore ocean 

environments. The in-water tests achieve source declaration 
accuracy relative to the source location on the order of tens 
of meters, which is similar to the test results provided in 
[13]. The first three CPT missions fail due to the following 
reasons: First, shifts of the boat which releases Rhodamine 
dye heavily affect distribution of the Rhodamine dye. 
Second, tuning algorithms of processing the data measured 
by DVL. Finally, the parameter Fε  of SIZ_F algorithm is 
selected too small. Our further research will address 
chemical plume tracing and source identification in 3-D 
dimensions. 
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