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ABSTRACT

This paper presents an approach to sensor-based obstacle modeling in a configuration space for
manipulator motion planning in unknown environments. In order to achieve this objective, an
efficient algorithm is used to fast map obstacles based on defined fundamental obstacles in the
workspace and their images in the configuration space. A manipulator is assumed to be equipped
with “distance” sensors to detect obstacles in the local region. By computation of the critical points
of an obstacle based on information acquired by the “distance” sensors, an obstacle model in the
configuration space is constructed. By using this sensor-based configuration space modeling, robot
motion planning in unknown environments can be performed in realistic time frames.

1. INTRODUCTION

It is well known that motion planning based on sensors is a key issue of manipulator
application in the real world. One of the most widely used approaches to motion
planning, including obstacle mapping and path searching, is based on a configuration
space (C-space) modeling. The algorithms reported in [1, 2, 3] show that motion planning
in the C-space is accurate and efficient in static environments. However, these C-space
algorithms, such as cell decomposition, etc., are not suitable for sensor-based path
planning in unknown environments because there is lack of a model for connection
between the C-space algorithms and information from sensors. One of their deficiencies
is that large amounts of computational time are needed to deal with a robot's kinematics
and geometry as well as the obstacles’ geometry before searching for a path.

In [4], Lumelsky presents an interesting algorithm for motion planning in dynamic
environments. For a manipulator, its obstacle modeling in the C-space serves to compute
the collision boundaries between a robot and the obstacles. Because this modeling
approach has to solve the algebraic equations of the C-space obstacles in terms of the
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robot’s kinematics based upon a simplified geometric model of the robotic arm, it is also
a time consuming work.

In [5, 6, 7], we present approaches for fast mapping an obstacle from a workspace
(W-space) into a C-space. Its basis is to define some points in the W-space as fundamen-
tal obstacles and to precompute their C-space obstacles according to a robot’s kinematics
and geometry. Using the fundamental obstacles and their images in the C-space, we
propose an efficient algorithm for a C-space modeling based on “distance” sensors. Its
idea is to compute their approximate contours from the critical points of an obstacle
based on information acquired by the sensors. On the basis of this C-space modeling, we
adopt the algorithms proposed in [8] to plan a collision-free path.

This paper is organized as follows. First, considering a planar robot, Section 2 briefly
presents the concept of fundamental obstacles and gives the algebraic computation for
mapping the fundamental obstacles to the C-space. Section 3 proposes the method for
mapping complex obstacles by using the critical points. Section 4 presents an obstacle
modeling in the C-space based on sensor information for motion planning. Section 5
extends this method for motion planning in 3D space. Finally, Section 6 summarises the
work presented in this paper.

2. FUNDAMENTAL OBSTACLES AND THEIR IMAGES IN C-SPACE

Before we discuss the proposed approach, we introflwtdamental obstacles and
their images in the C-space. Since a two-link planar manipulator is the fundamental part
of a real manipulator, such as a PUMA 560 robot, we will use it to describe our basic
approach. Fig. 1 shows the W-space of the PUMA 560 manipulator. A grid is used to
discretize this W-space. Intersection points of verticals and horizontals on the grid are
defined as fundamental obstaclE®; = (x, y) shown in Fig. 2. EactFO; has two

important parameters:
r=yx+y?, (€
¢ = arctarElj , (2

X
wherer is the distance betwed¥O; and the original point, ang is the angle between
and theX axis. For example, in Fig. 2p andr are two parameters &Ojp. In [7], we
have discussed how to choose fundamental obstacles and to locate them in W- space.
Since FO; are independent of real obstacles in an environment, their C-space
obstacles, denoted WYO(FO;), can be precomputed in terms of the robot’s kinematics

and geometry. If join,, 65, and B are assumed to be zero, the analytical model of
computingCO(FO;) without considering the robot’s geometry can be written by

6= arctarEl] —arcta d; 3)
x @y -d )

h, = xcosg, + ysing,, 4)

L L A ©)

2a,
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Fig. 1. Fundamental area of a PUMA robot Fig. 2. Fundamental obstaclE®j,,
FOy,, FOi in the W-space

\/(\/x2+22 —azjz—a32 <d, <(d; +d,), (6)

h
6, = arctarEﬁ] -arctan ——=2—— |, ™
z +h2+2°-h2
0; = arctarE—hl —8C0 SHZJ -6, —arctal = ’
z+a,sinb, \/(hl—az cosb,)? +(z+a,sind,)? - a2

®)
whered, represents a point on the center line of the forearm shown in Fig. 3. Table 1

lists the DH-parameters,, d,, as, d; andds of the PUMA 560 robot. Dashed curves in
Fig. 4 showCO(FO;) without considering the geometry. Here, we suppose that the
fundamental area is located =0 due to the symmetry of the W-space. In order to
avoid collisions, CO(FO;) has to be modified by taking the robot's geometry into
consideration. Because of the thicknegg,of the forearm shown in Fig. 3, the forbidden

region of 6, becomes:

[Bumins Bumand = {arctarf%] - arctarﬁmj : arctarE%j - arcta{mﬂ :
X X X X
©)

Table 1. DH-parameters of the PUMA 560 robot

ay d, az ds ds
432.0 mm 149.5 mm —20.5 mm 432.0 mm| 56.5 mm
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Fig. 3. Geometric models for Fig. 4. The images of futamental obstacles in
mapping fundamental obstacles C-space

Similarly, the forbidden region of, and & must be enlarged by its upper boundary
6, and lower boundarg, :

Oy =65- arcsi{ﬁj + arcsi{d—fj , (10)
df d/
Gy =65 - arcsi{hj - arcsi{d—f] , (11)
d/ d/
= 9/ (Rnax = Rrin)
df - d4 +d6 ’ (12)

where R,,.x and R, are radii of the ends of the forearm in Fig. 3. Solid curves in Fig.
4 showCO(FO)) regarding the geometry. Fig. 2 shows fundamental obst&gs FO;,
and FOjc; Fig. 5 shows their corresponding imag€Og(FO;;), COgr(FO;,) and
CORr(FOic) in the C-space.

For computing complex C-space obstacles, we only need to save the imdg@g of
that are located along the positive half of the horizontal axi¥X©0#, denoted byM FO,,
since allCO(FO;) can be computed basis @O(MFO,) [6]. According to the DH-
parameters and, we obtain the number dfl FO (k=1, 2,..., 23) listed in Table 2. Table

3 gives a sample c€O(MFOy) saved in a database, Wherfé) is the number of points

that represents the upper boundary and the lower bounda@Gi{M FO,); Hgﬂm,

gkl Akl and 6K

2max ' “3min 3max

CO(MFO)).

are the minimal and maximal values @&, and &; for
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Table 2. Coordinates €O(M FOy)

MFO; = (40, 0) | MFO, = (80, 0) | MFO; = (120, 0)] MFO, = (160, 0)] MFOs = (200, 0)
MFOg = (240, 0)| MFO; = (280, 0)| MFOg = (320, 0)| MFO, = (360, 0)| MFO4, = (400, 0)
MFOy, = (440, 0)| MFO1, = (480, 0)) MFOy; = (520, 0)) MFO1, = (560, 0)) MFO15 = (600, 0)
MFO1 = (640, 0 MFO, = (680, 0)| MFOy4 = (720, 0)] MFOs = (760, 0)| MFO5, = (800, 0)
MFO,; = (840, 0 MFO,, = (880, 0)| MFO.; = (920, 0)

Table 3. A sample of the image of a fundamental obstsidO,, = (560, 0)

M F014 . (560, 0)
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Fig. 5. Image<COg(FO;,), COr(FOy,), Fig. 6. 2D obstacleSO, andSO, of the
CORg(FOy) in the C-space PUMA robot

3. MAPPING COMPLEX OBSTACLES BY CRITICAL POINTS

SinceFO; andCOR(FO;) describe the key relationship between the W-space and the
C-space, for a complex obstac&0O; in two dimensions, we can compute its C-space
obstacleCOR(S0;) according to

COR(S0)) = COR(FO;) O-+-0 COR(FOy) O--, (13)
whereFOy are the fundamental obstacles on border§0 Since the upper and lower

boundaries ofCOg(S0;), denoted byCOgr(SO;)upper and COr(SO;)lower, consist of
upper and lower boundaries GOr(FO;), respectively, the computation GOr(S0;)
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determines the boundaries of &IDr(FO;). A 2D obstacleS0; is shown inFig. 6 and all

FO related toSO; are shown asd’. All COg(FOy) should be computed together to
form CORr(S0;). It can be noted that some GOg(FO,) completely or partially overlap

with each other, and hence many irregular cells must be activated repeatedly by using the

cell decomposition approach for superimposBgr(SO)).

In our approachCOgr(S0;) is represented by their boundaries rather than their ir-
regular cells, and we propose an algorithm for obstacle mapping using the critical points
of an obstacle. The boundaries @0Og(S0;) for the joints 8 and 8,are formed when

the robot touches the boundary®0; from the exterior in each of the two cases [9]:
1. The robot links contact a vertex §O;;
2. The robot end-effector contacts an edg&af.

¥ I

@ (b) ©

Fig. 7. Critical points of an obstacles

It has been reported th&@Og(SO;) is most often formed whenever the robot arm
contactsSO; [4]. Hence we select sudRO; from equation (13) that can be contacted by
the robot links to improve mapping performance. According to these principles, we
define the followingFO; as the critical points, shown as’ ‘in Fig. 7. First, the funda-
mental obstaclé-O; with the minimumr, denoted byG1, is defined as a criticaFO;,

since it is the nearest fundamental obstacle to the original point, shown in Fig. 7a. Secon-
dly, the fundamental obstacleO; with ©;,, and ©y,,,, denoted byG, and G; are

defined as critical points shown in Fig. 7b. Finally, the fundamental obskag]evith the
minimum and maximun® , denoted byG, andGs, are also considered as critical points

of SO, as shown in Fig. 7c. The critical points’ images gove@g(SO;), because:

1. The critical pointG; contributes the largest collision area in the C-space among
all FO;;

2. The critical pointsG; and G;, which determine the forbidden regior®f
Oimax] for the joint 6;, can be contacted by the robot links;

3. The critical pointsG, and Gs also can be contacted by the robotic arm when the
arm stretches up, as shown in Fig. 7c.

On the assumption that the number E®; for modeling a 2D obstacl§O; is J, we
propose the followingAlgorithm 1 to compute the critical points f&O;:
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Algorithm 1:
find_critical_points():
Sepl.  rIyip =%, Opip =0, Oppay =0, ¢min =c0, and ¢max =-0,
Sep2. for j=1 to J do

Sep2.1.  r=4x2+y?;

E I’<rmin m Fin =15 91:j ﬂji:
Sep 22. 4 :arctarﬁll?
X

if ¢<@nnthen ¢, =¢; g, =| endif;
E ¢>¢maxm] ¢max:¢; gB:j @Ev

r j j
Sep23. n=| L] o =6l +0; o=l o

if e:lfrjn)in < Oymin then Oy, = er)in; g,=j endif;
if el(r]n)ax > Oymax then Oy, = ]Fr{q)ax; 0s =] endif;

ndfor j

endior |

where the symboﬂ[_]l takes the maximum integer that is smaller than the quotientgand

02, U3, 014 andgs are the sequence numbers of the critical po®isG,, Gs, G4 and Gs.
The computational complexity &ep 1 in Algorithm 1 is O(1) . Since equations (1) and

(2) can be performed by the finite number of fundamental operatiGshe com-
putational complexity ofstep 2.1-2.3 areO(2) . Hence the complexity ohAlgorithm 1 is

O +0O(J) . Since, obviously, is much smaller than the total number of fundamental
obstacles, the time complexity 8fgorithm 1 can be expressed (1) .

For the critical points, their images can be obtained on the basis of the database [5]
instead of by computing the robot’s kinematics and geometry as well as the obstacles’
geometry. In fact, determining the upper boundanCair(SO;),pper SEIVES to calculate
the upper boundary oa€Ogr(G1)uppes COR(G3)upper aNA COR(Gs)yppes While determining
CORr(S0))iower SETVES to compute the lower boundaryGdg(G1)iowern COR(G2)iower @aNd
CORr(Ga)iower- Therefore COr(S0i)upperaNd COR(S0i)iower CaN be expressed as:

COR (Sjoi )upper = COR (Gl)upper O COR (G 3)upper O COR (G 5)upper’ (14)

CO R (Sjoi )Iower =CO R (Gl)lower U COR (G Z)Iower tuco R (G 4)Iower' (15)

We propose the following algorithm to comp@©r (SO;)ppe;aNdCOR(SO)) ouer
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Algorithm 2:
generate_ C_space _obstacle():

O ©
Sep 1. I:)min :{ﬁ—‘; Pmax:\‘%J; M :Pmax_Pmin+1;
1

1
Sep2. for m=1to M do
Oy (M) =c0; Oy, (M) =~
end for m
Sep3. fori=g,, gs, gs do

(i) (i)
Sep 3.1. Jmin = lrglmm—‘ : a'max = \‘HlmaxJ :

S= Hlf:%in mOdAel; @ = Omax = Omin t1; T = Omin ~ Bin ;
Sep3.2. for k=110 w do
Vy = (1= 9)85(K) + 585, (K +1) ;
if vy > @y, (7 +k) then ©,,(r +k) =v, end if;
end for k;

S= elf:%in mOdAel; @ = Omax = Omin t1; T = Omin = Bin;
Sep4.2. for k=1 to « do
Vy = (1= 9)8y (K) + 56 (k+1) ;
if v; <Oy (7 +k) then @y (7 +k) =v; end if;
nd for k;
ri

@
—

nd

—
o

where the symboﬂj takes the minimum integer that is larger than the quotient, and the
symbol ‘mod’ takes the remainder. In all algorithms, the small leteis used to
represent the image of a point obstacle; while the capital |&@tés used to represent the
image of an obstacle except at the point obstacles. There@@a(SO;)uwper and
COR(SOi)iower are represented b®,,(m 3nd ©,(m) (m= 1, ...,M), and O,,(1)and
0,5 (1) as well as©,,(M )and ©, (M ) are the functions o, ,;, as well as®;,,-
The computational amount &ep 1 andStep 2 in Algorithm 2 is O(1) , and that ofStep
3 andStep 4 is alsoO(1) since the number a€Or(MFO,) in Table 1 is smaller than a
constant. Therefore, the total complexity Afgorithm 2 can be expressed (1) .

By using this algorithm, 2D obstacl&D, and SO in Fig. 6 can be mapped into the
C-space very fast. Fig. 8 shows the process of generating their in&@S0,) and

CO&(SOy). In order to compare mapping performance, 2D obstacles in Fig. 9 are mapped
into the C-space of the PUMA 560 robot using the following approaches:
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1) by solving the robot’s kinematics [11];

2) by computing “regular” and “singular” points [3];

3) by activating allFO; on borders of 2D obstacles [6, 12];
4) by determining critical points.
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Fig. 8. MappingSO; andSO, by their critical fundamental obstacles

Table 4 lists number of obstacles’ edges and points as well as the computational time
required. For comparison, the obstacles’ points are identical with the fundamental
obstacles on the obstacles’ borders. All algorithms are coded in C language.

In types 1 and 2, we should first enlarge the 2D-obstacles according to the robot’s ge-
ometry. For type 1, the algebraic equations are used to compute C-space obstacles of the
enlarged polygon; while for type 2, since the “regular” points’ images govern the C-space
obstacles, computational time mainly needs to deal with them. Thus, this type is faster
than type 1. In types 3 and 4, we cut computational time for enlarging obstacles since the
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robot’s geometry and kinematics are preprocessed. Base®oand CO(FO;), obstacle
mapping is to superimpose the images BD:; on the obstacles’ borders, hence
computational time is reduced. Using the proposed approach in this paper, only the criti-
cal points amongrO; are used to construct the C-space, hence this approach is fastest.

»ra —zrs L] - —

o

¥ i L] LRI}

Fig. 9. The comparison of computational time for 2D obstacles

Table 4. Computation time by different strategies

Obstacles Type 1 Type 2 Type 3 Type §
No. | Edges Points| CPU time| CPU time| CPU time | CPU time
(Sec) (Sec) (Sec) (Sec)
a 4 60 3.312 0.247 0.0448 0.0050p
b 5 52 2.221 0.256 0.0389 0.0049B
c 6 92 3.774 0.297 0.0686 0.0054p
d 7 52 2.692 0.322 0.0398 0.0049L

4. SENSOR BASED OBSTACLE MODELING IN C-SPACE
FOR MOTION PLANNING

One of the most important steps for motion planning in an uncertain world is obstacle
modeling based on sonar data. Using the mapping method given in the last section, we
present an approach to C-space obstacle modeling based on information obtained from
“distance” sensors are assumed to be attached to the second link of the robot. The
approach will be described through an example as shown in Fig. 10a-h.

The aim of motion planning is to find a collision free path from a start position to a
goal position. Building a C-space using the critical points of the obstacles in the W-space
is fast enough for a planner to give the path in real time. In an unknown environment,
however, we cannot get the entire knowledge of the environment in advance. Hence it is
very important to acquire information on obstacles from sensors.
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Fig. 10. An example of motion planning for a planar robot
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(k) 0]
Fig. 10. An example of motion planning for a planar robot (continued)
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In our study, “distance” sensors are distributed regularly on both sides of the second
link of the planar robot, as shown in Fig. 10a. Each sensor can return the vertical distance
(straight-up to the second link) between it and the obstacle. Thus the boundary points of
the obstacle in a local region can be found according to distance data. They are
approximated byO; and can be mapped into the C-space according to the precomputed
result of FO;. TheseFO; are shown by ¢’ in Fig. 10a and specify all the possible
collisions in the local region. In other word, if the robot does not contact th€xeit
will not collide with any obstacles when it moves in small steps. Here we consider only
thoseFO; situated on one side of the robot’s second link when we try to let the link move
toward them.

Once distance information on the local region is acquired, a C-space obstacle can be
formed according to the critical points of aFO;. Through computation using
algorithm 1, the critical points can be acquired and they are representetiyig. 10a
(In some cases, the critical points may number be 4, 3, or even 2). The image of the
obstacle in the local region in the C-space is displayed in Fig. 10b. Based on the C-space
modeling, then, the planner generates a local path to the goal point for robot motion in
small steps. If the robot arrives at the goal point, the planning is finished; Alternatively, if
it does not reach the goal point, it should rebuildr®; and critical points according to
updated information from the sensors, and once it is found that the critical points are
different from the last ones, the planner should re-plan a new route starting from this
point to the goal point. It should be remarked that only the curf&t computed from
the new information, are to be considered. We do not accumulate histb@asince
theseFO; would be far from robot and they do not affect the robot’s current planning.

In our example, the robot starts from the start point and finds that there is no
difference between the current critical points and the old ones when it moves to the
second and the third configurations. When it gets to the fourth position (as shown in Fig.
10c and 10d), it finds a different situation. Then, the C-space is rebuilt according to the
new critical points and the planner will generate a new path. Thus the work continues
until the goal is reached. Fig. 10a, 10c, 10e, 10g, 10i and 10k describe some consequent
configurations and the critical points’ positions, while Fig. 10b, 10d, 10f, 10h, 10j and
10l give the configuration spaces corresponding to Fig. 10a, 10c, 10e, 10g, 10i and 10k,
respectively. The thick solid line in each one of these C-space figures represents the
current C-space obstacle, while the other lines describe the old C-space obstacles. In Fig.
10i and 10k, no critical points can be found since the robot has passed the obstacle to the
goal point. In the other hand in Fig. 10j and 10I, no thick solid line is found, which means
that the current local C-space is an obstacle free space. The approach above can be
generalised by means of following algorithm.

Algorithm 3:
Sepl. old_g,=o,o0d_g,=w, 0ld_g;=w,0d_g,=cw,
andold _gs = ; current =start ; path[0] = start ;
i=0;
Sep 2. while current # goal do
Sep2.1. find_fundamental _obstacles();
Sep2.2.  9;, 9, 93, Ua, 95 = find_critical_point();
Sep 2.3, if old_g;#g;, orold_g,#g, orold_g;#gs or
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od_g,#9, orold_gs#0s

then
generate_ C_space_obstacle();

gy =old_g,; g, =0ld_g,; gz =old_gs;
g4:o|d_g4; 95:O|d_g5;

end if
Sep 2.4. next = motion-planning (current, goal);
current = next;
Sep2.5. pathi]=next; i=i+1;
end while

wherestart andgoal are separately the start position and goal position of the raiot,
0., 03, 0, and g have the same meaning as thoseAigorithms 1 and 2, while
old_g,;, old_g,, old_gs, old_g, andold _ g are used to keep old values of them,

respectively. The aim of the functidimd_ fundamental _obstacles is to acquire allFO;
approximately standing for real obstacles according to distance data, and that of the
functionmotion-planning is to generate the next position to which the robot should move
according to a certain method, respectively. The result of the motion planning is to be
recorded irpath.

5. EXTENSION TO 3D MOTION PLANNING

Let us consider motion planning of a 3D robot like a PUMA 560, whose first three
joint angles are defined &&,, &,, and 8, from the base, respectively. A global or local

3D C-space must be built. What we should consider is the first joint's mapping. K. Sun
and V. Lumelsky address the problem of collision-free motion planning of a 3D robot
manipulator with sliding joints in an unknown environment in [10]. In their paper,
sensors are installed on the arm to detect a contact with an obstacle. However, this
approach is not suitable for a robot PUMA 560 with revolute joints. In our simulation,
we furnish “distance” sensors on all four sides of the third link of the revolute robot.
Thus, they can receive not only information considering motion of the second and third
link, just like the case of a planar robot discussed above, but also information about the
first link’'s motion. Some boundary points in a 3D obstacle can be found and every point
must be selected on a propés plane and=O; near them are to be mapped to generate a

2D C-space. We can also use the critical points in every 2D space to form a 2D C-space.
That is, a partial 3D C-space can be formed by generating several 2D C-spaces. One of
our simulations on robot PUMA 560 can be seen from Fig. 11.

Using the above method, the robot can sense the environment information once it
starts to move. When the robot moves to the next position according to the last planning,
it should decide whether the critical points in eaghplane are changed. This is the

same as for a 2D space. If they are changed, the robot regenerates the C-space obstacle
and replans a path; otherwise it continues to the next position and again decides if the C-
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space is changed. No more than the images of 40 fundamental obstacles are stored even
in 3D motion case.

@

Fig. 11. Motion planning for a PUMA 560 robot

6. CONCLUSIONS

In this paper, we present an approximate approach to fast mapping obstacle from the
W-space into the C-space based on selecting critical fundamental obstacles, and we
analyze its computational complexity &{1) . Usually, the approximation adopted provi-

des sufficient information for the manipulator to plan a realistic collision-free path in the
unknown environment. We discuss sensor-based obstacle modeling in the C-space for a
planar manipulator and extend it to 3D operation. This C-space obstacle modeling makes
path searching quicker and simpler for practical use. In our further research, we will
implement this approach on a real robot system, and especially we will study an effect of
sensors on planning performance.
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MODELOWANIE PRZESZKOD W PRZESTRZENI
KONFIGURACYJNEJ DLA PLANOWANIA RUCHU
MANIPULATORAW CZASIE RZECZYWISTYM

Z WYKORZYSTANIEM SENSOROW

STRESZCZENIE

Praca przedstawia podeje z wykorzystaniem sensoréw do modelowania przeszkéd w przestrzeni
konfiguracyjnej dla planowania ruchu manipulatora w nieznasymadowisku. Aby osigna¢ ten

cel, skorzystano z efektywnego algorytmu szybkiego mapowania przeszkéd wykareggtuj
zdefiniowane podstawowe przeszkody w przestrzeni ¢ebp i ich obrazy w przestrzeni
konfiguracyjnej. Przyjto, ze manipulator jest wypogsany w sensor ,odlegkzi” do wykrywania
przeszkéd w jego otoczeniu. Obliczajpunkty krytyczne przeszkody na podstawie informaciji

z sensoréw, mma zbudowé model przeszkody w przestrzeni konfiguracyjnej. Stasupkie
modelowanie przestrzeni konfiguracyjnej, ina prowadzi planowanie ruchu w nieznanym
srodowisku w czasie rzeczywistym.



