
STUDIA Z AUTOMATYKI I INFORMATYKI
TOM 24 − 1999

Wei Li1, Zushun Chen1, Friedrich M. Wahl2, Krzysztof R. Kozłowski3

REAL-TIME SENSOR-BASED OBSTACLE MODELING IN
CONFIGURATION SPACE FOR MANIPULATOR

MOTION PLANNING

ABSTRACT

This paper presents an approach to sensor-based obstacle modeling in a configuration space for
manipulator motion planning in unknown environments. In order to achieve this objective, an
efficient algorithm is used to fast map obstacles based on defined fundamental obstacles in the
workspace and their images in the configuration space. A manipulator is assumed to be equipped
with “distance” sensors to detect obstacles in the local region. By computation of the critical points
of an obstacle based on information acquired by the “distance” sensors, an obstacle model in the
configuration space is constructed. By using this sensor-based configuration space modeling, robot
motion planning in unknown environments can be performed in realistic time frames.

1. INTRODUCTION

It is well known that motion planning based on sensors is a key issue of manipulator
application in the real world. One of the most widely used approaches to motion
planning, including obstacle mapping and path searching, is based on a configuration
space (C-space) modeling. The algorithms reported in [1, 2, 3] show that motion planning
in the C-space is accurate and efficient in static environments. However, these C-space
algorithms, such as cell decomposition, etc., are not suitable for sensor-based path
planning in unknown environments because there is lack of a model for connection
between the C-space algorithms and information from sensors. One of their deficiencies
is that large amounts of computational time are needed to deal with a robot's kinematics
and geometry as well as the obstacles’ geometry before searching for a path.

In [4], Lumelsky presents an interesting algorithm for motion planning in dynamic
environments. For a manipulator, its obstacle modeling in the C-space serves to compute
the collision boundaries between a robot and the obstacles. Because this modeling
approach has to solve the algebraic equations of the C-space obstacles in terms of the

1Tsinghua University, Department of Computer Science and Technology, Beijing, 100084, P.R. China,
e-mail:liwei@mail.tsinghua.edu.cn

2Technical University of Braunschweig, Institute for Robotics and Process Control, Hamburger Str. 267,
38114 Braunschweig, Germany, e-mail:f.wahl@tu-bs.de

3
Poznań University of Technology, Chair of Control, Robotics, and Computer Science, ul. Piotrowo 3a,

60-965 Poznań, Poland, e-mail:kk@ar-kari.put.poznan.pl

122 Wei Li, Zushun Chen, Friedrich M. Wahl, Krzysztof R. Kozłowski

robot’s kinematics based upon a simplified geometric model of the robotic arm, it is also
a time consuming work.

In [5, 6, 7], we present approaches for fast mapping an obstacle from a workspace
(W-space) into a C-space. Its basis is to define some points in the W-space as fundamen-
tal obstacles and to precompute their C-space obstacles according to a robot’s kinematics
and geometry. Using the fundamental obstacles and their images in the C-space, we
propose an efficient algorithm for a C-space modeling based on “distance” sensors. Its
idea is to compute their approximate contours from the critical points of an obstacle
based on information acquired by the sensors. On the basis of this C-space modeling, we
adopt the algorithms proposed in [8] to plan a collision-free path.

This paper is organized as follows. First, considering a planar robot, Section 2 briefly
presents the concept of fundamental obstacles and gives the algebraic computation for
mapping the fundamental obstacles to the C-space. Section 3 proposes the method for
mapping complex obstacles by using the critical points. Section 4 presents an obstacle
modeling in the C-space based on sensor information for motion planning. Section 5
extends this method for motion planning in 3D space. Finally, Section 6 summarises the
work presented in this paper.

2. FUNDAMENTAL OBSTACLES AND THEIR IMAGES IN C-SPACE

Before we discuss the proposed approach, we introducefundamental obstacles and
their images in the C-space. Since a two-link planar manipulator is the fundamental part
of a real manipulator, such as a PUMA 560 robot, we will use it to describe our basic
approach. Fig. 1 shows the W-space of the PUMA 560 manipulator. A grid is used to
discretize this W-space. Intersection points of verticals and horizontals on the grid are
defined as fundamental obstaclesFOi = (x, y) shown in Fig. 2. EachFOi has two
important parameters:

r x y= +2 2 , (1)







=

x

y
arctanϕ , (2)

wherer is the distance betweenFOi and the original point, andϕ is the angle betweenr

and theX axis. For example, in Fig. 2,ϕ and r are two parameters ofFOib. In [7], we

have discussed how to choose fundamental obstacles and to locate them in W- space.
Since FOi are independent of real obstacles in an environment, their C-space

obstacles, denoted byCO(FOi), can be precomputed in terms of the robot’s kinematics
and geometry. If jointθ4, θ5 , and θ6 are assumed to be zero, the analytical model of
computingCO(FOi) without considering the robot’s geometry can be written by















−+
−





=

2
2

22

2
1 arctanarctan

dyx

d

x

yθ , (3)

111 sincos θθ yxh += , (4)

2

2
3

22
2

22
1

2 2a

adazh
h

−−++= l , (5)

REAL-TIME SENSOR-BASED OBSTACLE MODELING ... 123

)(42
2
3

2

2
22 dddaazx +≤≤−





 −+ l , (6)















−+±
−





=

2
2

22
1

21
2 arctanarctan

hzh

h

z

hθ , (7)















−++−
−−








+
−=

2
3

2
22

2
221

3
2

22

221
3

)sin()cos(
arctan

sin

cos
arctan

aazah

a

az

ah

θθ
θ

θ
θθ ,

(8)

where�l represents a point on the center line of the forearm shown in Fig. 3. Table 1

lists the DH-parametersa2, d2, a3, d4 andd6 of the PUMA 560 robot. Dashed curves in
Fig. 4 showCO(FOi) without considering the geometry. Here, we suppose that the
fundamental area is located atθ1=0 due to the symmetry of the W-space. In order to
avoid collisions,CO(FOi) has to be modified by taking the robot’s geometry into
consideration. Because of the thickness,dw, of the forearm shown in Fig. 3, the forbidden
region ofθ1 becomes:

[] 













 −−














 +−






=

x

dd

x

d

x

dd

x

d ww 5.0
arctanarctan,

5.0
arctanarctan, 2222

max1min1 θθ .

(9)

Table 1. DH-parameters of the PUMA 560 robot

a2 d2 a3 d4 d6

432.0 mm 149.5 mm –20.5 mm 432.0 mm 56.5 mm

Fig. 1. Fundamental area of a PUMA robot Fig. 2. Fundamental obstaclesFOia ,
FOib, FOic in the W-space

124 Wei Li, Zushun Chen, Friedrich M. Wahl, Krzysztof R. Kozłowski

Similarly, the forbidden region ofθ2 andθ3 must be enlarged by its upper boundary
θ3U and lower boundaryθ3L:









+







−=

ll d

d

d

R f
U arcsinarcsin max

33 θθ , (10)









−







−=

ll d

d

d

R f
L arcsinarcsin max

33 θθ , (11)

64

minmax)(

dd

RRd
d f +

−= l , (12)

where maxR and minR are radii of the ends of the forearm in Fig. 3. Solid curves in Fig.

4 showCO(FOi) regarding the geometry. Fig. 2 shows fundamental obstaclesFOia, FOib

and FOic; Fig. 5 shows their corresponding imagesCOR(FOia), COR(FOib) and
COR(FOic) in the C-space.

For computing complex C-space obstacles, we only need to save the images ofFOi,
that are located along the positive half of the horizontal axis onXOZ, denoted byMFOk,
since all CO(FOi) can be computed basis onCO(MFOk) [6]. According to the DH-
parameters andδ, we obtain the number ofMFOk (k=1, 2,..., 23) listed in Table 2. Table

3 gives a sample ofCO(MFOk) saved in a database, wheret k
ν
() is the number of points

that represents the upper boundary and the lower boundary ofCO(MFOk);
][

min2
kθ ,

][
max2
kθ ,][

min3
kθ and][

max3
kθ are the minimal and maximal values of2θ and 3θ for

CO(MFOk).

Fig. 3. Geometric models for
mapping fundamental obstacles

Fig. 4. The images of fundamental obstacles in
C-space

REAL-TIME SENSOR-BASED OBSTACLE MODELING ... 125

Table 2. Coordinates ofCO(MFOk)

MFO1 = (40, 0) MFO2 = (80, 0) MFO3 = (120, 0) MFO4 = (160, 0) MFO5 = (200, 0)

MFO6 = (240, 0) MFO7 = (280, 0) MFO8 = (320, 0) MFO9 = (360, 0) MFO10 = (400, 0)

MFO11 = (440, 0) MFO12 = (480, 0) MFO13 = (520, 0) MFO14 = (560, 0) MFO15 = (600, 0)

MFO16 = (640, 0) MFO17 = (680, 0) MFO18 = (720, 0) MFO19 = (760, 0) MFO20 = (800, 0)

MFO21 = (840, 0) MFO22 = (880, 0) MFO23 = (920, 0)

Table 3. A sample of the image of a fundamental obstacleMFO14 = (560, 0)

MFO14 = (560, 0)

k (14))(
min2
kθ)(

min3
kθ)1()(

3
k
Lθ)2()(

3
k
Lθ …)()()(

3
kk

L tνθ
)(ktν

)(
max2
kθ)(

max3
kθ)1()(

3
k
Uθ)2()(

3
k
Uθ …)()()(

3
kk

U tνθ

3. MAPPING COMPLEX OBSTACLES BY CRITICAL POINTS

SinceFOi andCOR(FOi) describe the key relationship between the W-space and the

C-space, for a complex obstacleSjOi in two dimensions, we can compute its C-space

obstacleCOR(SjOi) according to

COR(SjOi) = COR(FO1) ∪∪ L COR(FOk) L∪ , (13)

whereFOk are the fundamental obstacles on borders ofSjOi Since the upper and lower

boundaries ofCOR(SjOi), denoted byCOR(SjOi)upper and COR(SjOi)lower, consist of

upper and lower boundaries ofCOR(FOi), respectively, the computation ofCOR(SjOi)

Fig. 5. ImagesCOR(FOia), COR(FOib),
COR(FOic) in the C-space

Fig. 6. 2D obstaclesSO1 andSO2 of the
PUMA robot

126 Wei Li, Zushun Chen, Friedrich M. Wahl, Krzysztof R. Kozłowski

determines the boundaries of allCOR(FOi). A 2D obstacleSjOi is shown inFig. 6 and all

FOk related toSjOi are shown as ‘o’. All COR(FOk) should be computed together to

form COR(SjOi). It can be noted that some ofCOR(FOk) completely or partially overlap

with each other, and hence many irregular cells must be activated repeatedly by using the

cell decomposition approach for superimposingCOR(SjOi).
In our approach,COR(SjOi) is represented by their boundaries rather than their ir-

regular cells, and we propose an algorithm for obstacle mapping using the critical points
of an obstacle. The boundaries ofCOR(SjOi) for the joints 1θ and 2θ are formed when

the robot touches the boundary ofSjOi from the exterior in each of the two cases [9]:

1. The robot links contact a vertex ofSjOi;

2. The robot end-effector contacts an edge ofSjOi.

(a) (b) (c)

Fig. 7. Critical points of an obstacles

It has been reported thatCOR(SjOi) is most often formed whenever the robot arm
contactsSjOi [4]. Hence we select suchFOi from equation (13) that can be contacted by
the robot links to improve mapping performance. According to these principles, we
define the followingFOi as the critical points, shown as ‘• ’ in Fig. 7. First, the funda-
mental obstacleFOi with the minimumr, denoted byG1, is defined as a criticalFOi,
since it is the nearest fundamental obstacle to the original point, shown in Fig. 7a. Secon-
dly, the fundamental obstacleFOi with min1Θ and max1Θ , denoted byG2 and G3 are

defined as critical points shown in Fig. 7b. Finally, the fundamental obstacleFOi with the
minimum and maximumϕ , denoted byG4 andG5, are also considered as critical points

of SjOi, as shown in Fig. 7c. The critical points’ images governCOR(SjOi), because:

1. The critical pointG1 contributes the largest collision area in the C-space among

all FOi;

2. The critical pointsG2 and G3, which determine the forbidden region [min1Θ ,

max1Θ] for the joint 1θ , can be contacted by the robot links;

3. The critical pointsG4 andG5 also can be contacted by the robotic arm when the

arm stretches up, as shown in Fig. 7c.

On the assumption that the number ofFOi for modeling a 2D obstacleSjOi is J, we

propose the followingAlgorithm 1 to compute the critical points forSjOi:

REAL-TIME SENSOR-BASED OBSTACLE MODELING ... 127

Algorithm 1:
find_critical_points():
Step 1. ∞=minr , ∞=Θ min1 , −∞=Θ max1 , ∞=minϕ , and −∞=maxϕ ;

Step 2. for 1=j to J do

Step 2.1. 22 yxr += ;

if minrr < then rr =min ; jg =1 end if ;

Step 2.2. 





=

x

y
arctanϕ ;

if minϕϕ < then ϕϕ =min ; jg =2 end if ;

if maxϕϕ > then ϕϕ =max ; jg =3 end if ;

Step 2.3. 



=
δ
r

n ; ϕθθ +=][
min1

)(
min1

nj ; ϕθθ +=][
max1

)(
max1

nj ;

if min1
)(

min1 Θ<jθ then)(
min1min1
jθ=Θ ; jg =4 end if ;

if max1
)(

max1 Θ>jθ then)(
max1max1
jθ=Θ ; jg =5 endif ;

endfor j

where the symbol ⋅ takes the maximum integer that is smaller than the quotient, andg1,

g2, g3, g4 andg5 are the sequence numbers of the critical pointsG1, G2, G3, G4 andG5.
The computational complexity ofStep 1 in Algorithm 1 is)1(O . Since equations (1) and

(2) can be performed by the finite number of fundamental operationsK0, the com-
putational complexity ofStep 2.1-2.3 are)1(O . Hence the complexity ofAlgorithm 1 is

)()1(JOO + . Since, obviously,J is much smaller than the total number of fundamental

obstacles, the time complexity ofAlgorithm 1 can be expressed by)1(O .

For the critical points, their images can be obtained on the basis of the database [5]

instead of by computing the robot’s kinematics and geometry as well as the obstacles’

geometry. In fact, determining the upper boundary ofCOR(SjOi)upper serves to calculate

the upper boundary ofCOR(G1)upper, COR(G3)upper andCOR(G5)upper, while determining

COR(SjOi)lower serves to compute the lower boundary ofCOR(G1)lower, COR(G2)lower and

COR(G4)lower. Therefore,COR(SjOi)upperandCOR(SjOi)lower can be expressed as:

upper5upper3upper1upperij)()()()(GCOGCOGCOOSCO RRRR ∪∪= , (14)

lower4lower2lower1lowerij)()()()(GCOGCOGCOOSCO RRRR ∪∪= . (15)

We propose the following algorithm to computeCOR (SjOi)upperandCOR(SjOi)lower:

128 Wei Li, Zushun Chen, Friedrich M. Wahl, Krzysztof R. Kozłowski

Algorithm 2:
generate_C_space_obstacle():

Step 1. 







∆Θ

Θ
=Ρ

1

min1
min ; 








∆Θ

Θ=Ρ
1

max1
max ; 1minmax +−= PPM ;

Step 2. for 1=m to M do
∞=Θ)(2 ml ; −∞=Θ)(2 mu ;

end for m
Step 3. for 1gi = , 3g , 5g do

Step 3.1.












∆Θ
=

1

)(
min1

min

iθσ ;












∆Θ
=

1

)(
max1

max

iθσ ;

1
)(

min1 mod∆Θ= is θ ; 1minmax +−= σσω ; minmin P−= στ ;

Step 3.2. for 1=k to ω do
)1()()1(222 ++−= ksksv uu θθ ;

if)(22 kv u +Θ> τ then 22)(vku =+Θ τ end if ;

end for k;
end for i

Step 4. for 1gi = , 2g , 4g do

Step 4.1.












∆Θ
=

1

)(
min1

min

iθσ ;












∆Θ
=

1

)(
max1

max

iθσ ;

1
)(

min1 mod∆Θ= is θ ; 1minmax +−= σσω ; minmin P−= στ ;

Step 4.2. for 1=k to ω do
)1()()1(222 ++−= ksksv ll θθ ;

if)(21 kv l +Θ< τ then 12)(vkl =+Θ τ end if ;

end for k ;
end for i

where the symbol ⋅ takes the minimum integer that is larger than the quotient, and the

symbol ‘mod’ takes the remainder. In all algorithms, the small letterθ is used to
represent the image of a point obstacle; while the capital letterΘ is used to represent the
image of an obstacle except at the point obstacles. Therefore,COR(SjOi)upper and
COR(SjOi)lower are represented by)(2 muΘ and)(2 mlΘ (m = 1, ..., M), and)1(2uΘ and

)1(2lΘ as well as)(2 MuΘ and)(2 MlΘ are the functions of min1Θ as well as max1Θ .

The computational amount ofStep 1 andStep 2 in Algorithm 2 is)1(O , and that ofStep

3 andStep 4 is also)1(O since the number ofCOR(MFOk) in Table 1 is smaller than a

constant. Therefore, the total complexity ofAlgorithm 2 can be expressed by)1(O .

By using this algorithm, 2D obstaclesSO1 andSO2 in Fig. 6 can be mapped into the
C-space very fast. Fig. 8 shows the process of generating their imagesCOR(SO1) and
COR(SO2). In order to compare mapping performance, 2D obstacles in Fig. 9 are mapped
into the C-space of the PUMA 560 robot using the following approaches:

REAL-TIME SENSOR-BASED OBSTACLE MODELING ... 129

1) by solving the robot’s kinematics [11];
2) by computing “regular” and “singular” points [3];
3) by activating allFOi on borders of 2D obstacles [6, 12];
4) by determining critical points.

(a) (b)

(c) (d)

Fig. 8. MappingSO1 andSO2 by their critical fundamental obstacles

Table 4 lists number of obstacles’ edges and points as well as the computational time
required. For comparison, the obstacles’ points are identical with the fundamental
obstacles on the obstacles’ borders. All algorithms are coded in C language.

In types 1 and 2, we should first enlarge the 2D-obstacles according to the robot’s ge-
ometry. For type 1, the algebraic equations are used to compute C-space obstacles of the
enlarged polygon; while for type 2, since the “regular” points’ images govern the C-space
obstacles, computational time mainly needs to deal with them. Thus, this type is faster
than type 1. In types 3 and 4, we cut computational time for enlarging obstacles since the

130 Wei Li, Zushun Chen, Friedrich M. Wahl, Krzysztof R. Kozłowski

robot’s geometry and kinematics are preprocessed. Based onFOi andCO(FOi), obstacle
mapping is to superimpose the images ofFOi on the obstacles’ borders, hence
computational time is reduced. Using the proposed approach in this paper, only the criti-
cal points amongFOi are used to construct the C-space, hence this approach is fastest.

Fig. 9. The comparison of computational time for 2D obstacles

Table 4. Computation time by different strategies

Obstacles Type 1 Type 2 Type 3 Type 4

No. Edges Points CPU time
(Sec)

CPU time
(Sec)

CPU time
(Sec)

CPU time
(Sec)

a 4 60 3.312 0.247 0.0448 0.00509

b 5 52 2.221 0.256 0.0389 0.00493

c 6 92 3.774 0.297 0.0686 0.00545

d 7 52 2.692 0.322 0.0398 0.00491

4. SENSOR BASED OBSTACLE MODELING IN C-SPACE
FOR MOTION PLANNING

One of the most important steps for motion planning in an uncertain world is obstacle
modeling based on sonar data. Using the mapping method given in the last section, we
present an approach to C-space obstacle modeling based on information obtained from
“distance” sensors are assumed to be attached to the second link of the robot. The
approach will be described through an example as shown in Fig. 10a-h.

The aim of motion planning is to find a collision free path from a start position to a
goal position. Building a C-space using the critical points of the obstacles in the W-space
is fast enough for a planner to give the path in real time. In an unknown environment,
however, we cannot get the entire knowledge of the environment in advance. Hence it is
very important to acquire information on obstacles from sensors.

REAL-TIME SENSOR-BASED OBSTACLE MODELING ... 131

(a) (b)

(c) (d)

(e) (f)

Fig. 10. An example of motion planning for a planar robot

132 Wei Li, Zushun Chen, Friedrich M. Wahl, Krzysztof R. Kozłowski

(g) (h)

(i) (j)

(k) (l)

Fig. 10. An example of motion planning for a planar robot (continued)

REAL-TIME SENSOR-BASED OBSTACLE MODELING ... 133

In our study, “distance” sensors are distributed regularly on both sides of the second
link of the planar robot, as shown in Fig. 10a. Each sensor can return the vertical distance
(straight-up to the second link) between it and the obstacle. Thus the boundary points of
the obstacle in a local region can be found according to distance data. They are
approximated byFOi and can be mapped into the C-space according to the precomputed
result of FOi. TheseFOi are shown by ‘o’ in Fig. 10a and specify all the possible
collisions in the local region. In other word, if the robot does not contact theseFOi, it
will not collide with any obstacles when it moves in small steps. Here we consider only
thoseFOi situated on one side of the robot’s second link when we try to let the link move
toward them.

Once distance information on the local region is acquired, a C-space obstacle can be
formed according to the critical points of allFOi. Through computation using
algorithm 1, the critical points can be acquired and they are represented by ‘• ’ in Fig. 10a
(In some cases, the critical points may number be 4, 3, or even 2). The image of the
obstacle in the local region in the C-space is displayed in Fig. 10b. Based on the C-space
modeling, then, the planner generates a local path to the goal point for robot motion in
small steps. If the robot arrives at the goal point, the planning is finished; Alternatively, if
it does not reach the goal point, it should rebuild allFOi and critical points according to
updated information from the sensors, and once it is found that the critical points are
different from the last ones, the planner should re-plan a new route starting from this
point to the goal point. It should be remarked that only the currentFOi, computed from
the new information, are to be considered. We do not accumulate historicalFOi since
theseFOi would be far from robot and they do not affect the robot’s current planning.

In our example, the robot starts from the start point and finds that there is no
difference between the current critical points and the old ones when it moves to the
second and the third configurations. When it gets to the fourth position (as shown in Fig.
10c and 10d), it finds a different situation. Then, the C-space is rebuilt according to the
new critical points and the planner will generate a new path. Thus the work continues
until the goal is reached. Fig. 10a, 10c, 10e, 10g, 10i and 10k describe some consequent
configurations and the critical points’ positions, while Fig. 10b, 10d, 10f, 10h, 10j and
10l give the configuration spaces corresponding to Fig. 10a, 10c, 10e, 10g, 10i and 10k,
respectively. The thick solid line in each one of these C-space figures represents the
current C-space obstacle, while the other lines describe the old C-space obstacles. In Fig.
10i and 10k, no critical points can be found since the robot has passed the obstacle to the
goal point. In the other hand in Fig. 10j and 10l, no thick solid line is found, which means
that the current local C-space is an obstacle free space. The approach above can be
generalised by means of following algorithm.

Algorithm 3:
Step 1. ∞=1_ gold , ∞=2_ gold , ∞=3_ gold , ∞=4_ gold ,

and ∞=5_ gold ; startcurrent = ; startpath =]0[;

0=i ;
Step 2. while goalcurrent ≠ do

Step 2.1. find_fundamental_obstacles();
Step 2.2. 1g , 2g , 3g , 4g , 5g = find_critical_point();

Step 2.3. if 11_ ggold ≠ or 22_ ggold ≠ or 33_ ggold ≠ or

134 Wei Li, Zushun Chen, Friedrich M. Wahl, Krzysztof R. Kozłowski

44_ ggold ≠ or 55_ ggold ≠
then
generate_C_space_obstacle();

11 _ goldg = ; 22 _ goldg = ; 33 _ goldg = ;

44 _ goldg = ; 55 _ goldg = ;

end if
Step 2.4. next = motion-planning (current, goal);

nextcurrent = ;
Step 2.5. nextipath =][; i=i+1;

end while

wherestart andgoal are separately the start position and goal position of the robot,1g ,

2g , 3g , 4g and 5g have the same meaning as those inAlgorithms 1 and 2, while

1_ gold , 2_ gold , 3_ gold , 4_ gold and 5_ gold are used to keep old values of them,

respectively. The aim of the functionfind_ fundamental_obstacles is to acquire allFOi

approximately standing for real obstacles according to distance data, and that of the
functionmotion-planning is to generate the next position to which the robot should move
according to a certain method, respectively. The result of the motion planning is to be
recorded inpath.

5. EXTENSION TO 3D MOTION PLANNING

Let us consider motion planning of a 3D robot like a PUMA 560, whose first three
joint angles are defined as0θ , 1θ , and 2θ from the base, respectively. A global or local

3D C-space must be built. What we should consider is the first joint’s mapping. K. Sun
and V. Lumelsky address the problem of collision-free motion planning of a 3D robot
manipulator with sliding joints in an unknown environment in [10]. In their paper,
sensors are installed on the arm to detect a contact with an obstacle. However, this
approach is not suitable for a robot PUMA 560 with revolute joints. In our simulation,
we furnish “distance” sensors on all four sides of the third link of the revolute robot.
Thus, they can receive not only information considering motion of the second and third
link, just like the case of a planar robot discussed above, but also information about the
first link’s motion. Some boundary points in a 3D obstacle can be found and every point
must be selected on a proper0θ plane andFOi near them are to be mapped to generate a

2D C-space. We can also use the critical points in every 2D space to form a 2D C-space.
That is, a partial 3D C-space can be formed by generating several 2D C-spaces. One of
our simulations on robot PUMA 560 can be seen from Fig. 11.

Using the above method, the robot can sense the environment information once it
starts to move. When the robot moves to the next position according to the last planning,
it should decide whether the critical points in each0θ plane are changed. This is the

same as for a 2D space. If they are changed, the robot regenerates the C-space obstacle
and replans a path; otherwise it continues to the next position and again decides if the C-

REAL-TIME SENSOR-BASED OBSTACLE MODELING ... 135

space is changed. No more than the images of 40 fundamental obstacles are stored even
in 3D motion case.

(a) (b) (c)

Fig. 11. Motion planning for a PUMA 560 robot

6. CONCLUSIONS

In this paper, we present an approximate approach to fast mapping obstacle from the
W-space into the C-space based on selecting critical fundamental obstacles, and we
analyze its computational complexity as)1(O . Usually, the approximation adopted provi-

des sufficient information for the manipulator to plan a realistic collision-free path in the
unknown environment. We discuss sensor-based obstacle modeling in the C-space for a
planar manipulator and extend it to 3D operation. This C-space obstacle modeling makes
path searching quicker and simpler for practical use. In our further research, we will
implement this approach on a real robot system, and especially we will study an effect of
sensors on planning performance.

REFERENCES

[1] Faverjon B.:, Obstacle Avoidance Using an Octree in the Configuration Space of a Manipu-
lator.Proceedings of the IEEE International Conference on Robotics, 1984, pp. 504-512.

[2] Lozano-Perez T.: A Simple Motion – Planning Algorithm for General Robot Manipulators.
IEEE Journal of Robotics and Automation, RA-3, 1987, pp. 224-238.

[3] Warren C.W., Danos J.C., Mooring B.W.: An Approach to Manipulator Path Planning.
International Journal of Robotics Research, vol. 8, no. 5, 1989, pp. 87-95.

[4] Lumelsky V.: Effect of Kinematics on Motion Planning for Planar Robot Arms Moving amid-
st Unknown Obstacles.IEEE Journal of Robotics and Automation, RA-3, 1987, pp. 207-223.

[5] Li W.: Automatic Determination of Collision-Free Paths for General Robots.Robotersysteme,
vol. 6, 1990, pp. 218-244.

[6] Li W.: Fast Mapping Obstacles in the Configuration Space.Robotersysteme, vol. 7, 1991, pp.
148-154.

[7] Li W., Zhang B.: Solving the Robotic 'Pick-and-Place' Pathfind Problem.ASME Journal,
Manufacturing Review, vol. 6, 1993, pp. 114-129.

136 Wei Li, Zushun Chen, Friedrich M. Wahl, Krzysztof R. Kozłowski

[8] Lumelsky V., Stepanov A.A.: Path Planning Strategies for a Point Mobile Automaton Mo-
ving amidst Unknown Obstacles of Arbitrary Shape.Algorithmica, vol. 2, 1990, pp. 403-430.

[9] Robot Motion: Planning and Control. Brady M et al. eds., MIT Press, Cambridge 1982.
[10] Sun K., Lumelsky V.: Path Planning among Unknown Obstacles: The Case of a Three-Di-

mensional Cartesian Arm.IEEE Transactions on Robotics and Automation, vol. 8, no. 6,
1992, pp. 776-786.

[11] Ge Q., McCarthy J.M.: An Algebraic Formulation of Configuration-Space Obstacles for
Spatial Robots.Proceedings of the IEEE International Conference on Robotics and
Automation, 1990, pp. 1542-1547.

[12] Newman W.S., Branicky M.S.: Real-Time Configuration Space Transformations for Obstacle
Avoidance.International Journal of Robotics Research, vol. 10, no. 5, 1991, pp. 650-667.

MODELOWANIE PRZESZKÓD W PRZESTRZENI
KONFIGURACYJNEJ DLA PLANOWANIA RUCHU

MANIPULATORA W CZASIE RZECZYWISTYM
Z WYKORZYSTANIEM SENSORÓW

STRESZCZENIE

Praca przedstawia podejście z wykorzystaniem sensorów do modelowania przeszkód w przestrzeni
konfiguracyjnej dla planowania ruchu manipulatora w nieznanymśrodowisku. Aby osiągnąć ten
cel, skorzystano z efektywnego algorytmu szybkiego mapowania przeszkód wykorzystującego
zdefiniowane podstawowe przeszkody w przestrzeni roboczej i ich obrazy w przestrzeni
konfiguracyjnej. Przyjęto, że manipulator jest wyposażony w sensor „odległości” do wykrywania
przeszkód w jego otoczeniu. Obliczając punkty krytyczne przeszkody na podstawie informacji
z sensorów, można zbudować model przeszkody w przestrzeni konfiguracyjnej. Stosując takie
modelowanie przestrzeni konfiguracyjnej, można prowadzić planowanie ruchu w nieznanym
środowisku w czasie rzeczywistym.

