The field of genetics is one in which we have been able to learn so much more about why people and other organisms look and express characteristics that they do. I have personal interest for this field, and am lucky enough to have been apart of some molecular biology research here at CSUB examining the proteins on a specific species of plant. It is amazing to watch how various genes and combination of genes therein that can produce various phenotypes. I love the molecular organization at which we function in everyday life. It truly is amazing! We are so complex, and the smallest molecules determine so much about our lives. I first discovered my love for genetic topics in my junior year at CSUB. The teachings brought to me were phenomenal and affirmed my interest of molecular organization of organisms. From performing research techniques over several quarters I also affirmed this interest I have.

Even more fascinating, although can be quite scary, is the resistant properties involved with the plasmid DNA of bacteria. Bacteria have amazing ways to sustain themselves and acquire resistance in order to survive, and many problems for humans and other animals are now arising because of that. Attention should be paid to this issue, although it is quite advanced, and how much can be done at this point is questionable. The small things are what influence our life so much, I think that is why I am so interested in the molecular level.


Taken from Wikipedia

Transcription, or RNA synthesis, is the process of creating an equivalent RNA copy of a sequence of DNA[1]. Both RNA and DNA are nucleic acids, which use base pairs of nucleotides as a complementary language that can be converted back and forth from DNA to RNA in the presence of the correct enzymes. During transcription, a DNA sequence is read by RNA polymerase, which produces a complementary, antiparallel RNA strand. As opposed to DNA replication, transcription results in an RNA complement that includes uracil (U) in all instances where thymine (T) would have occurred in a DNA complement. Transcription is the first step leading to gene expression. The stretch of DNA transcribed into an RNA molecule is called a transcription unit and encodes at least one gene. If the gene transcribed encodes for a protein, the result of transcription is messenger RNA (mRNA), which will then be used to create that protein via the process of translation. Alternatively, the transcribed gene may encode for either ribosomal RNA (rRNA) or transfer RNA (tRNA), other components of the protein-assembly process, or other ribozymes. A DNA transcription unit encoding for a protein contains not only the sequence that will eventually be directly translated into the protein (the coding sequence) but also regulatory sequences that direct and regulate the synthesis of that protein. The regulatory sequence before (upstream from) the coding sequence is called the five prime untranslated region (5'UTR), and the sequence following (downstream from) the coding sequence is called the three prime untranslated region (3'UTR). Transcription has some proofreading mechanisms, but they are fewer and less effective than the controls for copying DNA; therefore, transcription has a lower copying fidelity than DNA replication.[2] As in DNA replication, DNA is read from 3' ? 5' during transcription. Meanwhile, the complementary RNA is created from the 5' ? 3' direction. Although DNA is arranged as two antiparallel strands in a double helix, only one of the two DNA strands, called the template strand, is used for transcription. This is because RNA is only single-stranded, as opposed to double-stranded DNA. The other DNA strand is called the coding strand, because its sequence is the same as the newly created RNA transcript (except for the substitution of uracil for thymine). The use of only the 3' ? 5' strand eliminates the need for the Okazaki fragments seen in DNA replication.


Translation is the first stage of protein biosynthesis (part of the overall process of gene expression). In translation, messenger RNA (mRNA) produced in transcription is decoded to produce a specific amino acid chain, or polypeptide, that will later fold into an active protein. Translation occurs in the cell's cytoplasm, where the large and small subunits of the ribosome are located, and bind to the mRNA. The ribosome facilitates decoding by inducing the binding of tRNAs with complementary anticodon sequences to that of the mRNA. The tRNAs carry specific amino acids that are chained together into a polypeptide as the mRNA passes through and is "read" by the ribosome in a fashion reminiscent to that of a stock ticker and ticker tape. In many instances, the entire ribosome/mRNA complex will bind to the outer membrane of the rough endoplasmic reticulum and release the nascent protein polypeptide inside for later vesicle transport and secretion outside of the cell. Many types of transcribed RNA, such as transfer RNA, ribosomal RNA, and small nuclear RNA, do not undergo translation into proteins.Translation proceeds in four phases: activation, initiation, elongation and termination (all describing the growth of the amino acid chain, or polypeptide that is the product of translation). Amino acids are brought to ribosomes and assembled into proteins. In activation, the correct amino acid is covalently bonded to the correct transfer RNA (tRNA). The amino acid is joined by its carboxyl group to the 3' OH of the tRNA by a peptide bond. When the tRNA has an amino acid linked to it, it is termed "charged". Initiation involves the small subunit of the ribosome binding to 5' end of mRNA with the help of initiation factors (IF). Termination of the polypeptide happens when the A site of the ribosome faces a stop codon (UAA, UAG, or UGA). No tRNA can recognize or bind to this codon. Instead, the stop codon induces the binding of a release factor protein that prompts the disassembly of the entire ribosome/mRNA complex.


DNA replication, the basis for biological inheritance, is a fundamental process occurring in all living organisms to copy their DNA. This process is "replication" in that each strand of the original double-stranded DNA molecule serves as template for the reproduction of the complementary strand. Hence, following DNA replication, two identical DNA molecules have been produced from a single double-stranded DNA molecule. Cellular proofreading and error toe-checking mechanisms ensure near perfect fidelity for DNA replication.[1][2] In a cell, DNA replication begins at specific locations in the genome, called "origins".[3] Unwinding of DNA at the origin, and synthesis of new strands, forms a replication fork. In addition to DNA polymerase, the enzyme that synthesizes the new DNA by adding nucleotides matched to the template strand, a number of other proteins are associated with the fork and assist in the initiation and continuation of DNA synthesis. DNA replication can also be performed in vitro (outside a cell). DNA polymerases, isolated from cells, and artificial DNA primers are used to initiate DNA synthesis at known sequences in a template molecule. The polymerase chain reaction (PCR), a common laboratory technique, employs such artificial synthesis in a cyclic manner to amplify a specific target DNA fragment from a pool of DNA. A number of antibiotics act by inhibiting translation; these include anisomycin, cycloheximide, chloramphenicol, tetracycline, streptomycin, erythromycin, and puromycin, among others. Prokaryotic ribosomes have a different structure from that of eukaryotic ribosomes, and thus antibiotics can specifically target bacterial infections without any detriment to a eukaryotic host's cells.