1. Using the equation
\[\cos(x + y) = \cos x \cos y - \sin x \sin y \]
derive the equation:
\[\cos(x - y) = \cos x \cos y + \sin x \sin y \]

2. Using the equations
\[\cos(x + y) = \cos x \cos y - \sin x \sin y \]
\[\sin(x + y) = \sin x \cos y + \cos x \sin y \]
derive the equation:
\[\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \]

3. Let \(f(x) = 3 \sin(2\pi x + \pi/6) \). Rewrite \(f(x) \) as a linear combination of \(\sin 2\pi x \) and \(\cos 2\pi x \) (i.e. find constants \(A \) and \(B \) such that \(f(x) = A \sin 2\pi x + B \cos 2\pi x \)).

4. Is it possible to find the exact value of the sine and cosine of 7.5° using trigonometric identities? Why or why not?

5. Let \(z = \tan(x/2) \). Show that
\[\cos x = \frac{1 - z^2}{1 + z^2} \quad \text{and} \quad \sin x = \frac{2z}{1 + z^2} \]

6. Why is \(e^{A+B} = e^A e^B \)? Let \(i \) be a (non-real) number such that \(i^2 = -1 \). If \(x \) is a real number then \(ix \) isn’t a real number, but the Swiss mathematician Euler said that one can still define \(e^{ix} \) as
\[e^{ix} = \cos x + i \sin x \]
Using Euler’s definition, compute \(e^{i(x+y)} \). Using Euler’s definition, compute \(e^{ix} \) and \(e^{iy} \) separately then multiply them together (using the fact that \(i^2 = -1 \)). Equate the two quantities and what do you conclude (think in terms of the addition formulas)?