1. Convert the Cartesian relation \(y = \sqrt{3}x \) to polar form.

2. Convert the Cartesian relation \(x^2 + y^2 = 25 \) to polar form.

3. Convert the Cartesian relation \(y = x^2 - 1/4 \) to polar form (hint: let \(x = r \cos \theta \), \(y = r \sin \theta \), and add \(r^2 \sin^2 \theta \) to both sides).

4. Sketch a graph of the spiral \(r = \theta \) for \(0 \leq \theta \leq 4\pi \).

5. Let \(a \) and \(b \) be positive constants. Convert the polar relation \(r = a \cos \theta + b \sin \theta \) to Cartesian (hint: multiply both sides by \(r \)). Show that you get a circle and find the center and radius of the circle.

6. In class we said that if a line doesn’t pass through the origin then it has an equation of the form

\[
r = \frac{d}{\cos(\theta - \alpha)}
\]

where \(d \) is the (perpendicular) distance of the line to the origin and \(\alpha \) is the angle made by a perpendicular dropped from the origin to the line. Show that this equation can be rewritten in the form

\[
x \cos \alpha + y \sin \alpha = d
\]

(hint: use a trigonometric identity).

7. Sketch a graph of the cardioid \(r = 1 + \cos \theta \).

8. Sketch a graph of the spiral \(r = e^\theta \) (we could also write \(\ln r = \theta \)).