MATH 201 – LAB 5
Marc Thomas

The chain rule tells us how to compute the derivative of a composition of two functions f and g in term of the individual derivatives f' and g'; specifically

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

Identify f and g in the following compositions and apply the chain rule to find the derivative of the composition with respect to x:

1. $3(x^2 + 3x + 5)^8$.
2. $\sqrt{x^2 + 8x + 3}$.
3. e^{5x}.
4. $e^{\sin x}$.
5. $\sin(x \cos x)$.
6. $\sin(x \cos x)/(x^2 + 1)$.

7. In many cases the rate of change of some quantity is proportional to the amount of that quantity, i.e.

$$f'(x) = kf(x)$$

where k is some constant. Show that a composition of the exponential function e^x and a carefully chosen linear function will solve this differential equation.

8. In other cases the second derivative of some quantity is proportional to minus the amount of that quantity, i.e.

$$f''(x) = -kf(x)$$
where $k > 0$. Show that a composition of a trigonometric function and a carefully chosen linear function will solve this differential equation.

9. The surface area A and volume V of a sphere of radius r satisfy

$$A = 4\pi r^2 \quad \text{and} \quad V = \frac{4}{3} \pi r^3$$

Show that the instantaneous rate of change of volume with respect to the radius dV/dr is equal to the current surface area A. Is this reasonable?

10. By comparison, the surface area A and volume V of a cube of side s satisfy

$$A = 6s^2 \quad \text{and} \quad V = s^3$$

How is the instantaneous rate of change of volume with respect to the length of the side s related to the current surface area A? Explain the difference.