1. Let \(f(x) = x^2 - 3x \). Find \(f'(x) \) by evaluating the limit of the difference quotient
\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

2. Let \(f(x) = \sqrt{x} + 1 \). Find \(f'(x) \) by evaluating the limit of the difference quotient
\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

For the remaining problems you may compute derivatives using any of the techniques that we have learned.

3. Find all the points where the graph \(y = 2x^3 + 3x^2 - 12x + 2 \) has a horizontal tangent line.

4. Find the derivative \(f'(x) \) for each of the following functions and tell for which values of \(x \) the derivative is defined.

5. \(f(x) = x^8 - 5x^3 + 5 \).

6. \(f(x) = x^2 + \sin x + (2/x) \).

7. \(f(x) = 5\sqrt{x^3} \).

8. You are given the following information about an unknown function \(f \): the function is defined for all real numbers \(x \), its derivative exists everywhere and satisfies \(f'(x) = |x| \), and \(f(0) = 0 \). Sketch a graph of \(y = f(x) \).

9. The function \(h \) is defined as follows: \(h(x) = \frac{\sin x}{x} \) if \(x \neq 0 \) and \(h(0) = 1 \). Is \(h \) a continuous function? Why or why not?

10. An object is falling downwards with constant acceleration \(a(t) = -9.8 \) meters/sec.. Show that the velocity function must be a linear function of \(t \).