Let \(\mathbb{N} \) denote the natural numbers, \(\mathbb{Q} \) denote the field of rational numbers, \(\mathbb{R} \) denote the field of real numbers, and \(\mathbb{C} \) denote the field of complex numbers, so

\[
\mathbb{Q} \equiv \{ \pm p/q \mid p, q \in \mathbb{N} \text{ and } q \neq 0 \}
\]

\[
\mathbb{C} \equiv \{ a + bi \mid a, b \in \mathbb{R} \text{ and } i^2 = -1 \}
\]

\(\mathbb{R} \) is harder to define but we can identify each real number with an infinite decimal which does not eventually become all 9’s (why?). It is clear that \(\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \).

1. Show that the rational numbers correspond precisely to those real numbers which have repeating decimals (i.e. eventually there is a finite pattern which repeats indefinitely).

2. For each of the statements below do one of the following: prove that \(y \) is rational, prove that \(y \) is irrational, or conclude that there is not enough evidence to decide.

2a. \(x \) is rational and \(x + y \) is rational.

2b. \(x \) is rational and \(xy \) is rational.

2c. \(x \) is rational, \(x \neq 0 \) and \(xy \) is rational.

2d. \(x \) is irrational and \(x + y \) is irrational.

2e. \(x \) is irrational and \(x - y \) is rational.

3. A field \(\mathbb{F} \) is called algebraically closed if every polynomial equation with coefficients from the field has at least one root, i.e., if \(a_i \in \mathbb{F} \) for \(i = 0, 1, \ldots, n \) then

\[
\alpha_n x^n + \alpha_{n-1} x^{n-1} + \ldots + \alpha_1 x + \alpha_0 = 0
\]

has at least one solution in \(\mathbb{F} \). Which of \(\mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) are algebraically closed (you will only be able to prove your answer for two of the above)?

4. Not all fields are infinite sets. We could let \(p \) be any prime number in the following but for now take \(p = 5 \) and let \(\mathbb{Z}_5 \equiv \{ 0, 1, 2, 3, 4 \} \). Addition, subtraction, and multiplication are performed \(\text{mod } 5 \). For example, \(3 \cdot 4 = 12 \) but dividing 12 by 5 leaves a remainder of 2 so we write \(3 \cdot 4 \equiv 2 \). Make a multiplication table for \(\mathbb{Z}_5 \). From the multiplication table show that for every non-zero element \(x \in \mathbb{Z}_5 \) there exists \(y \in \mathbb{Z}_5 \) such that \(xy \equiv 1 \). Define \(y = 1/x \) and you have division (why?).

5. What fails in problem 4. if you don’t use a prime number? For example, why is \(\mathbb{Z}_4 \equiv \{ 0, 1, 2, 3 \} \) not a field?

6. Define \(\mathbb{F} \equiv \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \} \) Show that \(\mathbb{F} \) is a field between \(\mathbb{Q} \) and \(\mathbb{R} \). Note that the primary difficulty is showing that every non-zero element \(x \) has a reciprocal in \(\mathbb{F} \), i.e., there is some \(y \in \mathbb{F} \) such that \(xy = 1 \).