16.1 Directed Graphs (digraphs)
like a tree but w/ no root node & no guarantee of paths between nodes
consists of:
- nodes/vertices - a set of elements
- directed edges/arcs - a set of connections between nodes
 - incoming edges & outgoing edges
 - in-degree - number of incoming edges for a node
 - out-degree - number of outgoing edges for a node
cyclic vs acyclic
many applications
- networks
- dependencies
- routes
Digraph ADT
- Data: set of nodes & set of edges
- Operations
 - construct an empty digraph
 - check if empty
 - destructor
 - insert a node
 - insert an edge
 - delete a node & all its incoming & outgoing edges
 - delete an edge
 - search for a value starting at a green node
Representing the data
Adjacency-Matrix representation
- number the nodes 1 to n
- have an n x n matrix of ints
 - \([\text{row } i, \text{ col } j] = 1\) for edge from i to j
 - \([\text{row } i, \text{ col } j] = 0\) for no edge
- can have a weighted digraph by using weight instead of 1
- can determine in-degree & out-degree easily
 - in-degree for node m is sum of set edges in m-th column
 - out-degree for node m is sum of set edges in m-th row
- need a second 1D array of size n to store the values in each node
- issue: wasted space when graph is sparse (few edges)
Adjacency-list representation
- less wasted space for sparse graphs
- use an array or list for each node that represents the outgoing edges
- pair the edge list w/ the value stored in the node
Example:
tree traversals are easier because all nodes reachable from root
no such guarantees w/ digraphs
may not be able to reach all nodes from any starting node
how to still visit each node once?
two methods for searching
depth-first search
go until a "leaf" is reached then backtrack
breadth-first search
visit all children of a node first then children's children

Depth-First Search
backtracking only possible if we can know which paths have
already been taken
mark nodes as processed
when backtracking, go back to previous node & see if it has any
unprocessed children
continue this check recursively until unprocessed child found
then process that child & any unprocessed nodes it reaches
a "leaf" is a node that has no unprocessed children
after processing all reachable node from given starting node,
some nodes may be unprocessed
unreachable nodes from that starting node

Pseudocode
visit the starting node v
mark v as processed
for each node w that is adjacent to v
 if w is unprocessed
 call depth-first search w/ w as starting node

Breadth-First Search
visit all children & then process each child's children in order
outputs a tree level by level
again, some nodes may be unreachable
Pseudocode
visit the start vertex
mark start vertex as processed
put start vertex in a queue
while the queue is not empty
 remove vertex v from queue
 for all vertices w that are adjacent to v
 if w is unprocessed
 visit w
 mark w as processed
 put w in the queue

Traversals
repeatedly call one search method until all nodes are processed

Pseudocode
initialize processed array w/ false for each node
while nodes are unprocessed
 select a starting node from unprocessed nodes
 call one of the searches w/ starting node

Shortest Path
find shortest path between any two nodes
Dijkstra's algorithm commonly used to find shortest path
book's method is for unweighted digraphs
visit start & label w/ 0 & mark
initialize distance to 0
add start to a queue
while destination is not processed and queue is not empty
 remove v from queue
 if label of v > distance
 increment distance
 for each node w that is adjacent to v
 if w has not been processed
 visit w & mark
 label w w/ distance+1
 add w to queue
 end for
end while
if destination is not processed
 issue "unreachable" error
else find path p[0]... by
 initialize p[distance] to destination
 for each k from distance-1 to 0
 find a node p[k] that is adjacent to p[k+1] & has
 label k
for weighted graphs:
 find closest child to start
 see if adding a child of the child is still less than using
 another child of start
 continue this sort of search until destination is reached
Example:
Find path from B to F

Initial

<table>
<thead>
<tr>
<th>V</th>
<th>known</th>
<th>d</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>F</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Now fill d for nodes reachable from B:

| C | F | 2 | B |
| D | F | 1 | B |

Select smallest d & mark as known:

| D | T | 1 | B |

Fill d in closer via D:

A	F	3	D
B	T	0	0
C	F	2	B
D	T	1	B
E	F	3	D
F	F	9	D
G	F	5	D

C is smallest d, mark as known & update d for path via C:

A	F	3	D
B	T	0	0
C	T	2	B
D	T	1	B

C
16.3 Graphs

Undirected graph - edges are bidirectional
No edges to self allowed like in digraph

Graph ADT
Data: set of nodes & set of edges between two distinct nodes
Operations
- Construct empty
- check if empty
- destructor
- insert a node
- insert an edge
- delete a node & associated edges
- delete an edge
- Search from a given node

Representation
- Adjacency matrix is symmetric
 edge i to j means also edge j to i
 inefficient representation
- Adjacency list also has each edge twice

Select A & E
A T 3 0
B T 0 0 start
C T 2 B
D T 1 B
E T 3 D
F F 8 A dest
G F 5 0

Select G
F F G G
G T 5 D

Select F, done
F reached in distance G
via F - G - D - B
Edge-List Representation
 have an edge node
 contains the two vertices
 an optional label or weight
 two pointers to other edges
 pointer 1 to another edge for node 1
 pointer 2 to another edge for node 2

Connectedness
 a connected graph has a path to all other nodes from a given node
 can be checked by doing a search from any node
 if all nodes processed, graph is connected
 works because all edges bidirectional