12.1 Linear & Binary Search
assumes data is in a list/array
linear search
start at beginning
check each element until match found or all elements checked
does not need to be sorted
best case - 1st element is match
worst case - no match found, linear
average case - match found midway through

binary search
needs a sorted list
needs random access to elements in list
w/o random access, like STL list, must iterate pointer to search location
cut search space in half each iteration
best case - 1st element is match
worst case - no match found, \(\log_2 n \)
only log because do not search each element
faster as \(n \) increases
Ex \(n = 8,000,000 \) \(\log_2 n = 23 \)

Iterative Pseudocode
takes array called a, search val called item
1. set found to false
2. set first to 0
3. set last to size of a - 1
4. while first \(\leq \) last and not found
 a. calculate \(\text{loc} = (\text{first} + \text{last})/2 \)
 b. if item < a[\text{loc}] then
 set last to \text{loc}-1
 else if item > a[\text{loc}]
 set first to \text{loc} + 1
 else // item == a[\text{loc}]
 set found to true

Recursive Pseudocode
takes array a, search val item, first, last
1. set found to false
2. calculate \(\text{loc} = (\text{first} + \text{last})/2 \)
3. if item < a[\text{loc}] then
 found = bin-search (a, item, first, \text{loc}-1)
else if item > a[\text{loc}]
 found = bin-search (a, item, \text{loc}+1, last)
else
 found = true
4. return found

Hidden time cost-sorted assumption
takes time to sort an unsorted list
would be nice to have a data structure that sorts on
insert/delete
binary search tree is such a data struct.
consider bin-search as following
 right search - location - left search
treat location as root
calculate right & left search into right & left subtrees

12.2 Intro to Binary Trees
Tree Terminology
 nodes/vertices contain the data
 directed arcs/edges connect nodes
 root node has no incoming arcs & can reach all other nodes from
 its outgoing arcs
 path is a sequence of arcs from root to a node (or between two
 nodes)
 leaves are nodes w/ no outgoing arcs
 children are the direct subnodes of a node (1 level down)
 parent is node 1 level up
 siblings are nodes on same level w/ same parent
 descendants are in levels below a node
 ancestors are in levels above a node
 subtree - select one descendant & all of its children &
 descendants
 binary tree has two or less children
Examples of binary trees
 binary search tree
 outcome of a binary trial
 eg flipping a coin
 use a dummy root node
 # levels below root is # trials
 paths show outcome sequences
 decision tree
 each node contains a Y/N question
 follow one child for Y response
 follow other child for N
 construct a code w/ two symbols
 eg Morse code
 arc is labeled w/ symbol
 node contains decoded value for path leading from root to
 that node
 Ex: . E, - T, .. I, .- A, -. N, -- M
Array representation
 slot 0 1 2 3 4 5 6
 node root 0L 0R 1L 1R 2L 2R
 level 0 1 1 2 2 2
 works best for complete trees
 empty slots w/ incomplete trees
 would need a way to indicate empty
 balanced tree
 height of right & left subtree for any node differs by only one
 height is # levels in a tree/subtree
 unbalanced trees not good for array storage
Linked node representation
Linked node representation
node contains storage for data, pointer to left child & pointer to right child
make pointer NULL if no child
very common way to represent trees

12.3 Binary Trees as Recursive Data Struct.
right & left subtrees are also binary trees
recursive definition:
a binary tree is either empty or has a root node, left subtree and right subtree
can use recursive algorithms for tree operations
common operation is traversals
Traversals
visit each node in the tree once
order of visiting nodes is not as vital
simple traversal
1. if tree is empty, do nothing
2. do traversal operation on root (V)
3. traverse left subtree (L)
4. traverse right subtree (R)
changing the order of steps 2-4 is valid
will change order by which nodes are processed
6 ways to order steps 2-4
LVR
VLR
LRV
VRL
RVL
RLV
special terms for certain orders
inorder LVR (infix)
preorder VLR (prefix)
postorder LRV (postfix)
-show math equation example

12.4 Binary Search Trees
is a binary tree w/ bin search tree (BSt) property:
left subtree values are less than root
right subtree values are greater than root
operations
construct empty BST
check empty
search for an item
insert a new item
delete an item
inorder, preorder & postorder traversals
(book only has inorder traversal)
Operation Pseudocode
construct empty
set root to NULL
check empty
if root is NULL
if root is NULL
 return true
else
 return false

search for an item
if tree is empty
 return false
else if item < root's data
 return search left subtree
else if item > root's data
 return search right subtree
else
 return true

insert item into tree
if tree is empty
 allocate node for item
 set root to node
else if item < root's data
 insert item in left subtree
else if item > root's data
 insert item in right subtree
else
 output (either cout or cerr) that item is already in the tree

delete an item from a tree
Issue: filling the deleted node while maintaining BST property
Three cases for deleted node:
 it is a leaf - delete it
 it has one child - move child up into its place
 it has two children - replace w/ either inorder successor or predecessor
 (largest value in left subtree or smallest value in right subtree)
then delete the replacement node
 replacement node should be leaf or have just one child
 since we only allow unique valves in the tree

Pseudocode
 // Find item's node & parent node
 set found to false
 set node to root
 set parent to NULL
 while not found and node is not NULL
 if item < node's data
 set parent to node
 set node to node's left child
 else if item > node's data
 set parent to node
 set node to node's right child
 else
 set found to true
 if not found
 issue "item not in tree" error
 return from function
 if node has two children
 set replacement to node's right child
set parent to node
while replacement has a left child
 set parent to replacement
 set replacement to its left child
 set node's data to replacement's data
 set node to replacement
 set subtree to node's left child
 if subtree is NULL
 set subtree to node's right child
 if parent is NULL
 set root to subtree
 else if parent's left child is node
 set parent's left child to subtree
 else
 set parent's right child to subtree
 delete node
traverse tree in order, prints ascending values
 if tree is empty
 do nothing
 traverse left subtree
 print root's data
 traverse right subtree

Problem of lopsidedness
BST property does not ensure that the tree is complete or balanced
insertion order can greatly affect balance
worst case - insert in sorted order, either ascending or descending
 results in a linked list
balanced trees take log2n for insert, delete, & search
unbalanced trees can be as bad as linked lists, so can be linear
rebalancing trees can solve this
 will discuss at end of quarter

12.7 Hash Tables
very fast searching, but sacrifices storage space
average time for insertions, deletions & searches is constant
hashing eliminates trial and error searching like w/ trees
has a table to store data (hash table)
hash function ideally stores each item in a unique slot
 not always possible in practice since hash table is finite &
data to store can be infinite
uniqueness of slot also affected by nature of hash function
Hash Functions
purpose is to take an element & generate a key
key is a slot in the hash table
Modulo function
 take the element and modulo it by the hash table size
issue is that elements will overlap
 Example: hash table size is 100
 then 0, 100, 200, etc will all map to key 0
 this is called a collision
 if element is not an int, have to compute an int off its value
Example: add up int value of chars in a string
no one perfect hash function for all datatypes
goal is to evenly distribute the elements across the whole hash table
Random hashing
\[
\text{randInt} = (\ (\text{MULT} \times \text{item}) + \text{ADD}) \mod \text{MOD};
\]
\[
\text{key} = \text{randInt} \mod \text{tableSize};
\]
Collision Strategies
how to handle when function does not generate unique keys
Increased Hash Table size
if capacity is 1.5 to 2 times greater than expected number of items, fewer collisions occur
prime number sizes best for modulo hash functions
can't arbitrarily increase size & expect better performance
if storing 0-500, then for table sizes > 500, the upper slots will never be result of hash function
Linear Probing
search linearly through table for an empty slot on insert
requires an "empty slot" value to tell used & unused slots apart
on search, if key shot does not match, probe ahead until a match or empty slot is found
on delete, use a "deleted" value so search knows to keep probing
issue: primary clustering
 elements that map to same/close key start forming clusters
 causes increased time for insert, delete & search
 linear in worst case if whole table is probed
Quadratic Probing
try to avoid primary clustering
search slots in following order:
\[
\text{key} + 1, \text{key} - 1, \text{key} + 2^2, \text{key} - 2^2, \text{key} + 3^2, \text{key} - 3^2, ...
\]
issue: secondary clustering
 same key probes same sequence
Double Hashing
use a second, different hash function for probe sequence
probe sequence is:
\[
\text{key}, \text{key} + 2\text{nd key}, \text{key} + (2\text{nd key})^2, \text{key} + (2\text{nd key})^2, ...
\]
second key should never be zero since 0*2 is still 0
good choice for second function is:
\[
\text{R} - (\text{item} \mod \text{R})
\]
where R is a prime number smaller then the hash table size
table size should also be prime for double hashing
if not prime, sequence could wrap around & probe the same slot(s)
Example: table size = 10, key = 0, 2nd key = 5
probes sequence: 0, 5, 0, 5, 0, 5, ...
Separate Chaining
don't probe ahead for a free slot
instead, store linked list of collisions for each slot
have to traverse list on delete & search
 (head insert removes need to traverse on insert)
increases time for those operations from constant to the
chain length
Rehashing
 hash tables are less efficient as they fill up
 rehashing increases the hash table size
 usually to a prime approximately twice the size of she
current table
 all elements are removed from original table & have their
keys recomputed