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ABSTRACT  

The understanding of how humans process information, determine salience, and combine seemingly unrelated 
information is essential to automated processing of large amounts of information that is partially relevant, or of unknown 
relevance. Recent neurological science research in human perception, and in information science regarding context-
based modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of 
large amounts of information in ways directly useful for human operators. However, integration of human intelligence 
into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For 
the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire 
brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals 
to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the 
perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph 
(EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin 
surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles 
for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch 
motion. The CCD camera takes video clips of the human subject’s hand postures to identify mental activities that are 
correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex 
humanoid robot behaviors and human mental activities for developing the perception and cognition model. 
Keywords: BCI system, humanoid robot, neural signal processing, mind based control, perception and cognition 
model 
 

1. INTRODUCTION  
A Brain Computer Interface (BCI) affords a new communication channel that can be used to identify subjects’ mental 
activities by analyzing brainwaves [1][2]. BCI systems are classified into invasive and non-invasive: An invasive BCI 
system uses electrodes implanted over the brain cortex (requiring surgery) to record signals, and a non-invasive BCI 
system uses an EEG electrode cup to acquire brainwaves from skin surface on a scalp. These BCI systems extract 
specific features of mental activities and convert the signals into device-controlled commands.  
 
Recently, there has been an increasing interest in BCI applications to control robots through neural signals. The works in 
[3]-[5] propose and review directly employing cortical neurons to control a robotic manipulator. The research groups 
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cited in [6]-[8] report the navigation of mobile robots using BCI, including the control of a wheelchair in [9]-[11]. Bell et 
al., [12], present an example of humanoid robot control through a BCI system.      
 
Comparing manipulators and mobile robots, humanoid robots are more advanced as they are created to imitate some of 
the same physical and mental tasks that humans undergo daily [12], but control of humanoid robots is much more 
complex. Humanoid robots are being developed to perform some complicated tasks like personal assistance, where they 
should be able to assist the sick and elderly, and industrial assistance in dirty or dangerous jobs. However, for people 
with severe motor disabilities it is important to establish augmentative communication with humanoid robots for 
personal assistance [13].  
 
This paper presents a brain-computer-interface (BCI) based humanoid robot control system [15], integrating an 
electroencephalograph (EEG), a humanoid robot, and a CCD camera, as shown in Figure 1. This system can serve as a 
platform to investigate relationships between complex humanoid robot behaviors and human mental activities, and to 
validate a perception and cognition model’s performance for controlling humanoid walking behaviors through 
brainwaves.  
 

 
Figure 1. BCI-based humanoid robot control system 

 
In this paper, we report on implementation of three types of robot-walking behavior: turning right, turning left, and 
walking forward based on the robot kinematics. Control of the three types of behaviors is provided through three mental 
activities of turning right, turning left, and walking forward, which are correlated with their robot-walking behavior 
counterparts. We conduct experiments on recording brainwaves during mental activities. The experimental procedure is 
to record human subjects’ mental activities when the subjects imagine “turning right,” “turning left” and “walking 
forward.” The subjects simultaneously move their right hands, left hands, and both hands when imagining “turning 
right,” “turning left” and “walking forward.” We present the recorded brainwaves of three human subjects and use an 
example to discuss how to extract the neural signal features for the proposed perception and cognition model. 
 
This paper is organized in five sections. Section 2 introduces the BCI-based humanoid robot system. Section 3 describes 
the procedure of acquiring brainwaves. Section 4 analyzes brainwaves to investigate their features for the perception and 
cognition model and presents an example of controlling the humanoid robot walking behaviors through the brainwaves. 
Finally, Section 5 draws conclusions on the BCI-based humanoid robot system and proposes further research. 

2. BCI-BASED CONTROL SYSTEM 
1.1 Data Acquisition System  

Our BCI interface is a CerebusTM Data Acquisition System with a 32 microelectrodes cap. The CerebusTM includes an 
amplifier, an amplifier power supply, and neural signal processor, as shown in the bottom window of Figure 1. This 
system is capable of recording from both surface and extracellular microelectrodes, and the system provides several on-
line processing options for neural signals including noise cancellation, adjustable digital filters, simultaneous extraction 
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of spike and field potential recordings from microelectrodes, and automatic/manual online spike classification. In this 
system, the BCI interface is used to record brainwaves during human mental activities. 
 
1.2 Humanoid Robot 

Our system uses a KT-X PC humanoid robot manufactured by Kumotek, which has 20 degrees of freedom (DOFs), 12 
DOFs located on hips, knees, and ankles, for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, 
and 2 DOFs for head yaw and pitch motion. The KT-X PC incorporates a 1.6GHz Atom Z530 processor, memory 
expansion slots, video input for vision, speakers, a 60Mhz motor controller, 3 axis gyro/accelerometer chip, a 1.3 
megapixel CMOS camera, 6 high-torque/titanium gear motors in the legs and an external urethane foam casing to protect 
the robots internal PC and equipment from shock, as shown in the right-upper window of Figure 1. The onboard PC 
computer provides a 16-gigabyte hard disk and two USB ports, which connect a wireless adaptor and an additional flash 
drive. The onboard PC computer hidden in its torso allows us to run programs under Windows or Linux operating 
systems, to develop programs in C++ and Python, and to control the robot motion real-time or based on predefined 
behaviors. For this study, we implement three types of robot-walking behavior: “turning right,” “turning left,” and 
“walking forward.” 
  
1.3 CCD Camera 

The camera used in our system is a Cannon VC-C50i communication camera, as shown in the left window of Figure 1. 
This camera provides high-speed high-precision head movement and noise reduction circuitry for crystal clear images. It 
is capable of operating at low light levels down to 1 lux. The built-in infrared light allows extended viewing even at 0 
lux (night mode). The CCD camera takes video clips on the subject’s or the instructor’s hand postures to identify mental 
activities that are correlated to the robot-walking behaviors. 
 

3. ACQUISITION OF BRAINWAVES 
The idea of controlling robots or prosthetic devices by mere “thinking” (i.e., the brain activity of human subjects) has 
fascinated researchers over the last couple of years [3]-[12]. Biological studies provide useful research results to 
understand motor cortex of human brain. The foundation of robot control using brainwaves is the motor-related brain 
rhythms. Scalp recorded electroencephalogram (EEG) signals reflect the combined synaptic and axonal cortical activity 
of groups of neurons whose features can be used to control robot activities [16].  
 
The primary motor cortex (also known as M1), a strip located on the precentral gyrus of the frontal lobe shown in Figure 
2, is an important brain region for the control of movement in humans. M1 maps the body topographically, meaning that 
the ventral end of the strip controls the mouth and face and the other end the legs and feet, with the rest of the body 
represented in between. The amount of representation is not proportional to the size of the body part. For example, the 
trunk is represented by only a small region on the primary motor cortex, because humans do not generally use the trunk 
for fine, precise movements or a wide range of motion. On the other hand, the fingers are greatly represented on M1, 
because the fingers are sensitive appendages and are used for many different movements. The primary motor cortex is 
thought to control both muscles and movements [17].  
 
The nonprimary motor cortex, consisting of the premotor cortex (PMA) and supplementary motor area (SMA), is located 
just adjacent to the primary cortex and is important in the sequencing of movements. The PMA has been implicated in 
movements that require external cues. The PMA region also contains mirror neurons, which are activated both when one 
is performing a movement and when he or she is observing someone else do the same movement; in this case, the brain 
is utilizing visual cues [18]. In contrast, the SMA is utilized for movements that are under internal control, such as doing 
some sort of action from memory [19]. We envision that the M1, PMA, and SMA as essential areas for neuron activity 
for perceptual and cognitive control that are monitored by an EEG. 
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Figure 2. Motor cortex 

 
We use a 32 channel EEG to record human brain activities of imagining “turning right,” “turning left” and “walking 
forward” for control of the humanoid robot-walking behaviors. The procedure of experiments is described as follows. 
When a human subject starts imagining “turning right,” “turning left” or “walking forward” the subject simultaneously 
moves its right hand, left hand, or both hands, respectively. The CCD camera synchronously takes these hand postures. 
Figures 3a-3c show the brainwaves of three human subjects that are recorded during the three human mental activities. 
We use these brainwaves to investigate relationships between complex humanoid robot behaviors and human mental 
activities. However, recognizing a certain robot-walking behavior from the brainwaves (decoding brainwaves) is a very 
challenging task. We use these hand postures in the video clips to determine the time intervals for mental activities of 
imagining “turning right,” “turning left” or “walking forward” and further analyze brainwave features for the perception 
and cognition model. It should be noted that the brainwaves of the three human subjects look significantly different 
although all they are correlated to the same mental activities of imagining the three robot-walking behaviors. 
 

 
(a): Human subject 1. 

  

Proc. of SPIE Vol. 8385  83850I-4

Downloaded from SPIE Digital Library on 26 May 2012 to 116.237.25.10. Terms of Use:  http://spiedl.org/terms



 
 

 
 

 
(b): Human subject 2. 

 

 
(c): Human subject 3. 

Figure 3. The brainwaves of three human subjects recorded during the mental activities of imagining the robot-walking 
behaviors. 

 

4. CONTROL OF HUMANOID ROBOT 

Figure 4 shows a scheme for BCI-based control of the KT-X PC robot. The CerebusTM Data Acquisition System acquires 
neural signals from 32-channels through an electrode cap on scalp. The neural signal processing section filters out high 
frequency noise and decomposes the filtered signals into delta, theta, alpha, and beta bands with a group of band-pass 
filters or wavelet filters [7]. The behavior recognition and mapping section that represents the perception and cognition 
model recognizes the mental activities based on neural signal patterns to control the robot-walking behavior. The 
perception and cognition model includes a C-means classification algorithm and a neuro-fuzzy network. The 
implementation of this model proceeds from these following steps. First, extract the brainwave features of a human’s 
mental activities, including the signal phases, signal magnitudes, signal powers and energies, etc. Second, classify these 
features using the C-means classification algorithm. Finally, establish the relationship between the brainwave features 
and the robot-walking behaviors using the neuro-fuzzy network. This model operates in off-line and on-line phases. 
During the off-line phase, we use the brainwave features to train the neuro-fuzzy network because the features of the 
human subjects may be different from one to another. During the on-line phase, we use the trained model to select on-
line the corresponding robot-walking behavior according to a subject mental activity.  
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A great deal of work needs to be done for understanding the brainwaves features and generating patterns by extracting 
the features of the acquired neural signals according to human mental activities. A complete analysis that takes into 
account average energy in the time domain, or signal spectrum (magnitude and phase) in the frequency domain, would 
result in a very large number of features and consequently a high dimensional feature vector [13]. In order to reduce the 
computational complexity, some methods for extracting the features of brainwaves are proposed to lower the dimension 
of the feature vectors.  
 
In this preliminary study, we use the features of phase relationship between neural signals acquired on the left and right 
locations on scalp to control robot-walking forward, turning left or turning right. The robot motion behavior section 
sends the corresponding motion file to a micro-controller that controls 20 actuators on the robot. Trajectory planning 
section at low level on the micro-controller implements a cubic-spline interpolation algorithm to generate robot motion 
trajectories between the configurations defined for the robot-walking behaviors. To conduct the phase analysis, we 
process the neural signals.  

 
First, we use a low-pass filter to filter out high-frequency noise from neural signals recorded by the EEG system and 
then decompose the brainwaves into delta-band [0–4 Hz], theta-band [4–8 Hz], alpha-band [8–13 Hz], and beta-band 
[13–30 Hz]. The decomposition can be done with a group of filters or through a Discrete Wavelet Transform (DWT) 
[20]. The work in [21] summarizes the characteristics of brainwave rhythms. The amplitude of theta waves is greatest 
when a person is in an inattentive mental state, such as that just before falling asleep. The Theta wave amplitude is also 
increased momentarily by blinking or other eye movements. The Alpha wave amplitude is greatest when a person is in a 
state of “unfocused attention,” such as during meditation. The Beta wave amplitude is greatest when a person is 
concentrating or in an agitated state. As an example, the left-most block in the control scheme of Figure 5 shows the 
delta waves recorded at electrode T8 (channel 10 – right brain location) and T7 (channel 24 – left brain location) from 
the brainwaves of subject 1 in Figure 3a. 

	  

	  
(A)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (B)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (C)	  

Figure 5. Mental activities’ patterns of subject 1 (T7 – blue, T8 – red),  
Thinking activities: A. Turning Right, B. Turning Left, C. Moving forward. 

 
Please ensure that the surrounding text flows in this order: 1. Top left column, 2. Bottom left 

column, 3. Top right column, 4. Bottom right column. 
If you cannot make the text flow like this, consider moving your oversized figure/table to the 

top or bottom of the page. 
 

Figure 4. Control scheme for walking behaviors 
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Our study indicates that the features of mental activities for humanoid robot control affect the phase relationship of 
neural signals recorded from neurons from the left brain and right brain. Figure 5 shows three group of delta-band 
signals recorded at electrodes T7 (channel 24) and T8 (channel 10), which are plotted by blue-thin (left) and red-thick 
curves (right), respectively. These brainwaves are correlated to the three mental activities: turning right, turning left, and 
walking forward. The left pattern shows the brain activity Figure 5 when the human subject is thinking “turning right.” 
For this pattern, the phase of brain signals at T7 is leading to the one of brain signals at T8. The middle pattern shows the 
brain activity when the human subject is thinking “turning left.” For this pattern, the phase of brain signals at T8 is 
leading to the one of brain signals at T7. The right pattern shows the brain activity when the human subject is thinking 
“walking forward.” In this case, the difference between both phases of brain signals at T7 and T8 are close to zero. The 
video clips taken by the CCD camera during the subject tests verify these brain activities. Our further investigation 
discovers that the brainwaves recorded at electrodes FT7, T7, and TP7 on the left half scalp (channel 25, 24, and 18) are 
very similar; while the brainwaves recorded at electrodes FT8, T8, and TP8 on the right half scalp (channel 17, 10, and 
9) are very similar. In order to control robot-walking behaviors: turning right, turning left, and walking forward, we use 
the difference of the fundamental phases between T7 and T8, FT7 and FT8, and TP7 and TP8. In order to test the 
feasibility of the BCI-based humanoid robot system, we use the patterns extracted from the brainwaves of subject 1 to 
control the robot-walking behaviors as shown in Figure 6 [14]. We note that the mental activities’ patterns of brainwaves 
correlated to the robot-walking behaviors are distinguished from person to person. Therefore, it is necessary to train the 
neuro-fuzzy network in the behavior recognition and mapping section through the patterns of an individual subject 
before an individual controls the robot-walking behaviors through his brainwaves. 

5. CONCLUSION 
This paper presents a BCI based humanoid robot control system which can serve as a platform to investigate a 
relationship between complex humanoid robot behaviors and human mental activities. The BCI system can be used to 
control the robot walking behaviors both off-line and on-line. This paper also reports our preliminary test on control of 
the robot walking behaviors through human brainwaves. The detailed analysis on the experimental data will be presented 
in our further work. In order to validate the proposed BCI-based humanoid robot system, a number of experiments are 
planned. We have shown a simple perception and cognitive model that links the perceptual brain activities (e.g.. 
brainwaves) with the cognitive mental activities of virtual control of a humanoid robot. 
 

 
(a)       (b)      (c) 

 
(d)     (e)     (f) 

 

Figure 6. Control of robot turning left through brainwaves 
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In this paper, we use the subjects’ hand postures recorded in video clips to identify the subjects’ mental activities. In this 
case, however, the recorded brainwaves may include muscular signals caused by the subject’s hand movements. How to 
recognize the subjects’ mental activities from their brainwaves is a very challenging task, especially in the case of “pure 
imagination” of a robot-walking behavior. Our experiments show that the recorded data quality highly depends on 
subject concentration on mental activities. Currently, we are developing a virtual environment to improve subject 
concentration on mental activities.  

Control of the three humanoid walking behaviors may not be difficult. Our further research will control more robot 
activity behaviors through brainwaves, such as shifting left, shifting right, lifting left or right arms, and moving the head. 
For this application, we need to investigate comprehensive algorithms for recognizing human brain activities that afford 
humanoid control. 
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