This lab investigates doing a binary search to find an approximation to a root of a polynomial.

1. Make a copy of the sample program cubic.cpp and compile and execute it. This program will accept the four coefficients (as double's) of a cubic polynomial (e.g. \(p(x) = ax^3 + bx^2 + cx + d \) with \(a \neq 0 \)) and it will find an interval \([\text{left}, \text{right}]\) where the polynomial changes sign. You may want to put the four coefficients in a file cubic.txt and execute the program via

 \texttt{cubic < cubic.txt <cr>}

2. Examine the code and note that the coefficients are global variables and that the values of the polynomial are computed by the function

 \texttt{double cubic(double x);}

 Given an interval where a polynomial \(p(x) \) changes sign how do you know that there is at least one root in the interval?

3. We probably will not be able to find the \textit{exact} value of the root but we could find the \textit{approximate} value with the following binary search algorithm. Suppose that the polynomial changes sign in \([\text{left}, \text{right}]\). We could compute the value of the polynomial at the \textit{midpoint} and if the polynomial changes sign in \([\text{left}, \text{midpoint}]\) we could set

 \texttt{right = midpoint;}

 otherwise if the polynomial changes sign in \([\text{midpoint}, \text{right}]\) we could set

 \texttt{left = midpoint;}

 the only other possibility is that the polynomial is zero at the midpoint in which case we have found a root! You should see that you could write a procedure

 \texttt{void binary_search(double & left, double & right);} to do this.

3. Suppose you want to find the approximate value of the root to within 0.00001. How would you do this with a loop which checks the remaining distance between \texttt{right} and \texttt{left}?

 \textbf{Assignment} Write a program which will be an addition to the sample program cubic.cpp so that the new program implements a binary search for the root accurate to within 0.00001. Your program \textbf{must include} the following function:

 \texttt{void binary_search(double & left, double & right);} which will accept \texttt{left} and \texttt{right} passed by \textit{reference} so one of the endpoints can be updated by the \textit{midpoint}. You should include some diagnostics which print out the successive intervals \([\text{left}, \text{right}]\) as they narrow in on the root. Your program should also print out the final approximation to the root.

 Email me the pathname of your program \textit{in plain text, not as an attachment}. For example, you might say

 \texttt{My lab4 program is /usr/stu/demo/cs221/lab4.cpp}