
CMPS 2020 S’18 Sample Midterm I Hw6

1. Define encapsulation, abstraction and interfaces. Explain how these three concepts

relate to classes and object-oriented programming.

2. You have a program with four variables: p1,p2,v1,v2. p1 and p2 are pointers while v1

and v2 are normal variables. Currently, the variables are stored in memory as shown

in the following:

Variable
Name

p1 p2 v1 v2

Value
Stored

0x0 0x0 50 40

Memory
Address

0x20 0x24 0x28 0x32

Show how each of the following lines of code would affect the above picture. Each

of the lines of code is evaluated in the order presented (i.e. before (b) is

executed, (a) has occurred).

a) p1 = &v1;

Variable
Name

p1 p2 v1 v2

Value
Stored

Memory
Address

0x20 0x24 0x28 0x32

b) p2= p1;

Variable
Name

p1 p2 v1 v2

Value
Stored

Memory
Address

0x20 0x24 0x28 0x32

c) *p2 = 99;

Variable
Name

p1 p2 v1 v2

Value
Stored

Memory
Address

0x20 0x24 0x28 0x32

d) p2 = &v2;

Variable
Name

p1 p2 v1 v2

Value
Stored

Memory
Address

0x20 0x24 0x28 0x32

e) What is outputted: cout << *p2 << “ “ << p1 << “ “ << v1 << endl;

3. You have the class EmployeeRecord with the member variables name, ID, hours and

rate. You wish to add the input operator >> to the class.

a) Show the line you would need to add to the class definition for the operator.

b) Show the body of the operator function

4. Define the following terms and state the purpose of using the item in your class

code when a class contains a dynamic member variable:

a) default constructor

b) copy constructor

c) destructor

d) overloaded assignment operator

5. Define the following terms by stating their purpose when used in your code:

a) Parent / Base Class

b) Polymorphic Function

c) Redefined Function

6. Polymorphic functions differ from normal functions due to runtime binding of the

function call to the function body. Describe how dynamic/runtime/late binding

differs from the static binding which is used for normal or redefined functions.

7. When using inheritance, there are two forms of protection for member variables and

functions. The first form of protection is the protection tag used for the section

within the parent class. The second form is the inheritance protection tag used by

the child class when inheriting from the parent. For the following inheritance

scenarios, answer ”Yes” if the section is accessible or ”No” if it is not

accessible:

 Accessible to
child?

Accessible to
grandchild?

Accessible to
world?

Protected section
in parent,
inherited publicly

Public section in
parent, inherited
publicly

8. Add the copy constructor and destructor to the following MyString class. Make sure

that your code properly handles the pointer for the dynamically sized character

array.

class MyString {

 private:

 char* str;

 int size;

 void allocateArray(int);

 public:

 MyString();

 /****Add prototypes for copy constructor and destructor****/

};

MyString::MyString() {

 str = NULL;

 size = 0;

 allocateArray(21);

}

void MyString::allocateArray(int num) {

 if(num < 0 || num <= size) return;

 if(str!=NULL) {

 delete [] str;

 str = NULL;

 size = 0;

 }

 try{

 str = new char[num];

 }catch(bad_alloc) {

 cout << “Bad Allocation\nExiting…\n”;

 str = NULL;

 exit(1);

 }

 size = num;

 str[0] = ‘\0’;

}

/****Add the bodies for the copy constructor and destructor ****/

9. You have a parent class Employee which contains a protected member variable for the

name. There is also a derived class SalariedEmployee which contains a member

variable for the monthly salary. Add the following specified features to these two

classes.

a) Give the function prototype that would be added to both class definitions to add

a polymorphic void printEmployee() function.

b) Give the class SalariedEmployee line which would inherit from Employee publicly.

c) Assume that Employee contains a default constructor which sets the name to an

empty string. Give the body of the default constructor for SalariedEmployee

which invokes Employee’s default constructor, then sets salary to zero.

d) Assume that Employee contains an assignment operator which appropriately copies

the name from the source object. Give the body of the assignment operator for

SalariedEmployee. The assignment operator for SalariedEmployee must call

Employee’s assignment operator.

10. Write an empty exception class called DivideByZero. Next write a function called

divide that accepts two doubles and returns the quotient. If the second parameter

(the denominator) is equal to zero, throw an instance of a DivideByZero object,

otherwise, return the quotient. Next, write a snippet of code using a try catch

block that will attempt to call the divide function. Setup a catch block that will

catch a DivideByZero object and print to the screen “Cannot divide by zero\n”.

