

PURPOSE 1. To introduce pointer variables and their relationship with arrays

 2. To introduce the dereferencing operator

 3. To introduce the concept of dynamic memory allocation

PROCEDURE 1. Students should read the Pre-lab Reading Assignment before coming to lab.

 2. Students should complete the Pre-lab Writing Assignment before coming to lab.

 3. In the lab, students should complete labs assigned to them by the instructor.

L E S S O N S E T

9

Pointers

Contents

Pre-requisites

Approximate

completion

time

Page

number

Check

when

done

Pre-lab Reading Assignment 20 min. 158

Pre-lab Writing Assignment Pre-lab reading 10 min. 167

LESSON 9A

Lab 9.1
Introduction to Pointer Basic understanding of 15 min. 167
Variables pointer variables
Lab 9.2
Dynamic Memory Basic understanding of 35 min. 168
 dynamic memory, new
 and delete operators

LESSON 9B

Lab 9.3
Dynamic Arrays Basic understanding of 25 min. 170
 the relationship of
 pointer variables and
 arrays
Lab 9.4
Student Generated Code Basic understanding of 30 min. 171
Assignments pointers, the (*) and (&)
 symbols, sort and search
 routines

157

158 LESSON SET 9 Pointers

P R E - L A B R E A D I N G A S S I G N M E N T

Pointer Variables

A distinction must always be made between a memory location’s address and the

data stored at that location. A street address like 119 Main St. is a location that is

different than a description of what is at that location: the little red house of the

Smith family. So far we have been concerned only with the data stored in a vari-

able, rather than with its address (where in main memory the variable is locat-

ed). In this lesson we will look at addresses of variables and at special variables,

called pointers, which hold these addresses. The address of a variable is given

by preceding the variable name with the C++ address operator (&):

cout << ∑ // This outputs the address of the variable sum

The & operator in front of the variable sum indicates that the address itself, and

not the data stored in that location, is the value used. On most systems the above

address will print as a hexadecimal value representing the physical location of the

variable. Before this lesson where have you used the address operator in C++ pro-

gramming? You may recall that it was used in the prototype and the function

heading of a function for parameters being passed by reference. This connection

will be explored in the next section.

To define a variable to be a pointer, we precede it with an asterisk (*) and
initialize it with the special value nullptr:

int *ptr = nullptr;

The asterisk in front of the variable indicates that ptr holds the address of a

memory location. Assigning nullptr to a pointer variable makes the variable

point to the address 0. When a pointer is set to the address 0, it is referred

to as a null pointer because it points to "nothing." The int indicates that the

memory location that ptr points to holds integer values. ptr is NOT an integer

data type, but rather a pointer that holds the address of a location where an

integer value is stored. This distinction is most important!

The following example illustrates this difference.

int sum; // sum holds an integer value.

int *sumPtr = nullptr; // sumPtr holds an address where an

 // integer can be found.

By now there may be confusion between the symbols * and &, so we next

discuss their use.

Using the & Symbol

The & symbol is basically used on two occasions.

1. The most frequent use we have seen is between the data type and the

variable name of a pass by reference parameter in a function heading/

prototype. This is called a reference variable. The memory address of the

parameter is sent to the function instead of the value at that address. When

the parameter is used in the function, the compiler automatically derefer-

ences the variable. Dereference means that the location of that reference

variable (parameter in this case) is accessed to retrieve or store a value.

Pre-lab Reading Assignment 159

We have looked at the swap function on several occasions. We revisit

this routine to show that the & symbol is used in the parameters that need

to be swapped. The reason is that these values need to be changed by the

function and, thus, we give the address (location in memory) of those

values so that the function can write their new values into them as they

are swapped.

Example:

void swap(int &first, int &second)

{ // The & indicates that the parameters

// first and second are being passed by

// reference.

int temp;

temp = first; // Since first is a reference variable,

// the compiler retrieves the value

// stored there and places it in temp.

first = second // New values are written directly into

second = temp; // the memory locations of first and second.

}

2. The & symbol is also used whenever we are interested in the address of a

variable rather than its contents.

Example:

cout << sum; // This outputs the value stored in the

// variable sum.

cout << ∑ // This outputs the address where

// sum is stored in memory.

Using the & symbol to get the address of a variable comes in handy when

we are assigning values to pointer variables.

Using the * Symbol

The * symbol is also basically used on two occasions.

1. It is used to define pointer variables:

int *ptr = nullptr;

2. It is also used whenever we are interested in the contents of the memory

location pointed to by a pointer variable, rather than the address itself.

When used this way * is called the indirection operator, or dereferenc-

ing operator.

160 LESSON SET 9 Pointers

Example:

Using * and & Together

cout << *ptr; // Since ptr is a pointer variable, *

// dereferences ptr. The value stored at the

// location ptr points to will be printed.

In many ways * and & are the opposites of each other. The * symbol is used just

before a pointer variable so that we may obtain the actual data rather than the

address of the variable. The & symbol is used on a variable so that the variable’s

address, rather than the data stored in it, will be used. The following program

demonstrates the use of pointers.

Sample Program 9.1:

#include <iostream>

using namespace std;

int main()

{

int one = 10;

int *ptr1 = nullptr; // ptr1 is a pointer variable that points to an int

ptr1 = &one; // &one indicates that the address, not the

// contents, of one is being assigned to ptr1.

// Remember that ptr1 can only hold an address.

// Since ptr1 holds the address where the variable

// one is stored, we say that ptr1 "points to" one.

cout << "The value of one is " << one << endl << endl;

cout << "The value of &one is " << &one << endl << endl;

cout << "The value of ptr1 is " << ptr1 << endl << endl;

cout << "The value of *ptr1 is " << *ptr1 << endl << endl;

return 0;

}

What do you expect will be printed if the address of variable one is the hexa-

decimal value 006AFOF4? The following will be printed by the program.

Output Comments

The value of one is 10 one

The value of &one is 006AF0F4 &one

The value of ptr1 is 006AF0F4 ptr1 one

The value of *ptr1 is 10 *

*ptr1

ptr1

Pre-lab Reading Assignment 161

Arrays and Pointers

When arrays are passed to functions they are passed by pointer. An array name

is a pointer to the beginning of the array. Variables can hold just one value and

so we can reference that value by just naming the variable. Arrays, however,

hold many values. All of these values cannot be referenced just by naming the

array. This is where pointers enter the picture. Pointers allow us to access all

the array elements. Recall that the array name is really a pointer that holds the

address of the first element in the array. By using an array index, we dereference

the pointer which gives us the contents of that array location. If grades is an array

of 5 integers, as shown below, grades is actually a pointer to the first location in

the array, and grades[0] allows us to access the contents of that first location.

From the last section we know it is also possible to dereference the pointer by

using the * operator. What is the output of the following two statements?

cout << grades[0]; // Output the value stored in the 1st array element

cout << *grades; // Output the value found at the address stored

// in grades (i.e., at the address of the 1st array

// element).

Both statements are actually equivalent. They both print out the contents of the

first grades array location, a 90.

Access of an individual element of an array through an index is done by pointer

arithmetic. We can access the second array location with grades[1], the third

location with grades[2], and so on, because the indices allow us to move through

memory to other addresses relative to the beginning address of the array. The

phrase “address + 1” in the previous diagram means to move one array element

forward from the staring address of the array. The third element is accessed by

moving 2 elements forward and so forth. The amount of movement in bytes

depends on how much memory is allocated for each element, and that depends

on how the array is defined. Since grades is defined as an array of integers, if an

integer is allocated 4 bytes, then +1 means to move forward 4 bytes from the start-

ing address of the array, +2 means to move forward 8 bytes, etc. The compiler

keeps track of how far forward to move to find a desired element based on the

array index. Thus the following two statements are equivalent.

cout << grades[2];

cout << *(grades + 2);

Both statements refer to the value located two elements forward from the start-

ing address of the array. Although the first may be the easiest, computer scien-

tists need to understand how to access memory through pointers. The following

program illustrates how to use pointer arithmetic rather than indexing to access

the elements of an array.

162 LESSON SET 9 Pointers

Sample Program 9.2:

// This program illustrates how to use pointer arithmetic to

// access elements of an array.

#include <iostream>

using namespace std;

int main()

{

int grades[] = {90, 88, 76, 54, 34};

// This defines and initializes an int array.

// Since grades is an array name, it is really a pointer

// that holds the starting address of the array.

cout << "The first grade is " // The * before grades

<< *grades << endl; // dereferences it so that the

// contents of array location 0

// is printed instead of its

// address.

cout << "The second grade is " // The same is done for the other

<< *(grades + 1) << endl; // elements of the array. In

cout << "The third grade is " // each case, pointer arithmetic

<< *(grades + 2) << endl; // gives us the address of the

cout << "The fourth grade is " // next array element. Then the

<< *(grades + 3) << endl; // indirection operator * gives

cout << "The fifth grade is " // us the value of what is stored

<< *(grades + 4) << endl; // at that address.

return 0;

}

What is printed by the program?

Dynamic Variables

In Lesson Set 7 on arrays, we saw how the size of an array is given at the time

of its definition. The programmer must estimate the maximum number of elements

that will be used by the array and this size is static, i.e., it cannot change during

the execution of the program. Consequently, if the array is defined to be larger

than is needed, memory is wasted. If it is defined to be smaller than is needed,

there is not enough memory to hold all of the elements. The use of pointers

(and the new and delete operators described below) allows us to dynamically allo-

cate enough memory for an array so that memory is not wasted.

Pre-lab Reading Assignment 163

This leads us to dynamic variables. Pointers allow us to use dynamic variables,

which can be created and destroyed as needed within a program. We have stud-

ied scope rules, which define where a variable is active. Related to this is the con-

cept of lifetime, the time during which a variable exists. The lifetime of dynamic

variables is controlled by the program through explicit commands to allocate

(i.e., create) and deallocate (i.e., destroy) them. The operator new is used to allo-

cate and the operator delete is used to deallocate dynamic variables. The com-

piler keeps track of where in memory non-dynamic variables (variables discussed

thus far in this book) are located. Their contents can be accessed by just naming

them. However, the compiler does not keep track of the address of a dynamic

variable. When the new command is used to allocate memory for a dynamic vari-

able, the system returns its address and the programmer stores it in a pointer vari-

able. Through the pointer variable we can access the memory location.

Example:

int *one = nullptr; // one and two are defined to be pointer

int *two = nullptr; // variables that point to ints

int result; // defines an int variable that will hold

// the sum of two values.

one = new int; // These statements each dynamically

two = new int; // allocate enough memory to hold an int

// and assign their addresses to pointer

// variables one and two, respectively.

*one = 10; // These statements assign the value 10

*two = 20; // to the memory location pointed to by one

// and 20 to the memory location pointed to

// by two.

result = *one + *two;

// This adds the contents of the memory

// locations pointed to by one and two.

cout << "result = " << result << endl;

delete one; // These statements deallocate the dynamic

delete two; // variables. Their memory is freed and

// they cease to exist.

Now let us use dynamic variables to allocate an appropriate amount of memory

to hold an array. By using the new operator to create the array, we can wait until

we know how big the array needs to be before creating it. The following program

demonstrates this idea. First the user is asked to input the number of grades to

be processed. Then that number is used to allocate exactly enough memory to

hold an array with the required number of elements for the grades.

164 LESSON SET 9 Pointers

Sample Program 9.3:

// This program finds the average of a set of grades.

// It dynamically allocates space for the array holding the grades.

#include <iostream>

#include <iomanip>

using namespace std;

// function prototypes

void sortIt (float* grades, int numOfGrades);

void displayGrades(float* grades, int numOfGrades);

int main()

{

float *grades = nullptr; // a pointer that will be used to point

// to the beginning of a float array

float total = 0; // total of all grades

float average; // average of all grades

int numOfGrades; // the number of grades to be processed

int count; // loop counter

cout << fixed << showpoint << setprecision(2);

cout << "How many grades will be processed " << endl;

cin >> numOfGrades;

while (numOfGrades <= 0) // checks for a legal value

{

cout << "There must be at least one grade. Please reenter.\n";

cout << "How many grades will be processed " << endl;

cin >> numOfGrades;

}

grades = new float(numOfGrades);

 // allocation memory for an array

// new is the operator that is allocating

// an array of floats with the number of

// elements specified by the user. grades

// is the pointer holding the starting

// address of the array.

if (grades == nullptr)

//

nullptr is a special identifier

predefined { // to equal 0. It indicates a non-valid

 // address. If grades is 0 it means the

 // the operating system was unable to

 // allocate enough memory for the array.

cout << "Error allocating memory!\n";

// The program should output an appropriate

return –1; // error message and return with a value

} // other than 0 to signal a problem.

cout << "Enter the grades below\n";

Pre-lab Reading Assignment 165

for (count = 0; count < numOfGrades; count++)

{

cout << "Grade " << (count + 1) << ": " << endl;

cin >> grades[count];

total = total + grades[count];

}

average = total / numOfGrades;

cout << "Average Grade is " << average << "%" << endl;

sortIt(grades, numOfGrades);

displayGrades(grades, numOfGrades);

delete [] grades; // deallocates all the array memory

return 0;

}

//***

// sortIt

//

// task: to sort numbers in an array

// data in: an array of floats and

// the number of elements in the array

// data out: sorted array

//

//**

void sortIt(float* grades, int numOfGrades)

{

// Sort routine placed here

}

//***

// displayGrades

//

// task: to display numbers in an array

// data in: an array of floats and

// the number of elements in the array

// data out: none

//

//**

void displayGrades(float* grades, int numOfGrades)

{

// Code to display grades of the array

}

Notice how the dynamic array is passed as a parameter to the sortIt and

displayGrades functions. In each case, the call to the function simply passes

the name of the array, along with its size as an argument. The name of the array

holds the array’s starting address.

sortIt(grades, numOfGrades);

166 LESSON SET 9 Pointers

In the function header, the formal parameter that receives the array is defined to

be a pointer data type.

void sortIt(float* grades, int numOfGrades)

Since the compiler treats an array name as a pointer, we could also have written

the following function header.

void sortIt(float grades[], int numOfGrades)

Review of * and &

In this program, dynamic allocation of memory was used to save memory. This

is a minor consideration for the type of programs done in this course, but a

major concern in professional programming environments where large fluctuating

amounts of data are used.

The * symbol is used to define pointer variables. In this case it appears in the vari-

able definition statement between the data type and the pointer variable name.

It indicates that the variable holds an address, rather than the data stored at that

address.

Example 1: int *ptr1;

* is also used as a dereferencing operator. When placed in front of an already

defined pointer variable, the data stored at the location the pointer points to will

be used and not the address.

Example 2: cout << *ptr1;

Since ptr1 is defined as a pointer variable in Example 1, if we assume ptr1 has

now been assigned an address, the output of Example 2 will be the data stored

at that address. * in this case dereferences the variable ptr1.

The & symbol is used in a procedure or function heading to indicate that

a parameter is being passed by reference. It is placed between the data type

and the parameter name of each parameter that is passed by reference.

The & symbol is also used before a variable to indicate that the address,

not the contents, of the variable is to be used.

Example 3:

int *ptr1 = nullptr;

int one = 10;

ptr1 = &one; // This assigns the address of variable

// one to ptr1

cout << "The value of &one is "

<< &one << endl; // This prints an address

cout << "The value of *ptr1 is "

<< *ptr1 << endl; // This prints 10, because ptr1 points to

// one and * is the dereferencing operator.

Pre-Lab Writing Assignment 167

P R E - L A B W R I T I N G A S S I G N M E N T

Fill-in-the-Blank Questions

1. The symbol is the dereferencing operator.

2. The symbol means “address of.”

3. The name of an array, without any brackets, acts as a(n)

to the starting address of the array.

4. An operator that allocates a dynamic variable is .

5. An operator that deallocates a dynamic variable is .

6. Parameters that are passed by are similar to a pointer

variable in that they can contain the address of another variable. They are

used as parameters of a procedure (void function) whenever we want a

procedure to change the value of the argument.

Given the following information, fill the blanks with either “an address” or “3.75”.

float * pointer;

float pay = 3.75;

pointer = &pay;

7. cout << pointer; will print .

8. cout << *pointer; will print .

9. cout << &pay; will print .

10. cout << pay; will print .

L E S S O N 9 A

LAB 9.1 Introduction to Pointer Variables

Retrieve program pointers.cpp from the Lab 9 folder.

The code is as follows:

// This program demonstrates the use of pointer variables

// It finds the area of a rectangle given length and width

// It prints the length and width in ascending order

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

int main()

{

int length; // holds length

int width; // holds width

int area; // holds area

int *lengthPtr = nullptr; // int pointer which will be set to point to length

int *widthPtr = nullptr; // int pointer which will be set to point to width

continues

168 LESSON SET 9 Pointers

cout << "Please input the length of the rectangle" << endl;

cin >> length;

cout << "Please input the width of the rectangle" << endl;

cin >> width;

// Fill in code to make lengthPtr point to length (hold its address)

// Fill in code to make widthPtr point to width (hold its address)

area = // Fill in code to find the area by using only the pointer variables

cout << "The area is " << area << endl;

if (// Fill in the condition length > width by using only the pointer variables)

cout << "The length is greater than the width" << endl;

else if (// Fill in the condition of width > length by using only the pointer

// variables)

cout << "The width is greater than the length" << endl;

else

cout << "The width and length are the same" << endl;

return 0;

}

}

Exercise 1: Complete this program by filling in the code (places in bold). Note:

use only pointer variables when instructed to by the comments in bold.

This program is to test your knowledge of pointer variables and the & and

* symbols.

Exercise 2: Run the program with the following data: 10 15. Record the output

here .

LAB 9.2 Dynamic Memor y

Retrieve program dynamic.cpp from the Lab 9 folder.

The code is as follows:

// This program demonstrates the use of dynamic variables

// PLACE YOUR NAME HERE

#include <iostream>

using namespace std;

const int MAXNAME = 10;

Lesson 9A 169

int main()

{

int pos;

char *name = nullptr;

int *one = nullptr;

int *two = nullptr;

int *three = nullptr;

int result;

// Fill in code to allocate the integer variable one here

// Fill in code to allocate the integer variable two here

// Fill in code to allocate the integer variable three here

// Fill in code to allocate the character array pointed to by name

cout << "Enter your last name with exactly 10 characters." << endl;

cout << "If your name has < 10 characters, repeat last letter. " << endl

<< "Blanks at the end do not count." << endl;

for (pos = 0; pos < MAXNAME; pos++)

cin >> // Fill in code to read a character into the name array

// WITHOUT USING a bracketed subscript

cout << "Hi ";

for (pos = 0; pos < MAXNAME; pos++)

cout << // Fill in code to a print a character from the name array

// WITHOUT USING a bracketed subscript

cout << endl << "Enter three integer numbers separated by blanks" << endl;

// Fill in code to input three numbers and store them in the

// dynamic variables pointed to by pointers one, two, and three.

// You are working only with pointer variables

//echo print

cout << "The three numbers are " << endl;

// Fill in code to output those numbers

result = // Fill in code to calculate the sum of the three numbers

cout << "The sum of the three values is " << result << endl;

// Fill in code to deallocate one, two, three and name

return 0;

}

Exercise 1: Complete the program by filling in the code. (Areas in bold)

This problem requires that you study very carefully the code already

written to prepare you to complete the program.

170 LESSON SET 9 Pointers

Sample Run:

L E S S O N 9 B

Exercise 2: In inputting and outputting the name, you were asked NOT to use

a bracketed subscript. Why is a bracketed subscript unnecessary?

Would using name[pos] work for inputting the name? Why or why not?

Would using name[pos] work for outputting the name? Why or why not?

Try them both and see.

LAB 9.3 Dynamic Arrays

Retrieve program darray.cpp from the Lab 9 folder.

The code is as follows:

// This program demonstrates the use of dynamic arrays

// PLACE YOUR NAME HERE

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

float *monthSales = nullptr; // a pointer used to point to an array

// holding monthly sales

float total = 0; // total of all sales

float average; // average of monthly sales

int numOfSales; // number of sales to be processed

int count; // loop counter

cout << fixed << showpoint << setprecision(2);

cout << "How many monthly sales will be processed? ";

cin >> numOfSales;

// Fill in the code to allocate memory for the array pointed to by

// monthSales.

Lesson 9B 171

if (// Fill in the condition to determine if memory has been

// allocated (or eliminate this if construct if your instructor

// tells you it is not needed for your compiler)

)

{

cout << "Error allocating memory!\n";

return 1;

}

cout << "Enter the sales below\n";

for (count = 0; count < numOfSales; count++)

{

cout << "Sales for Month number "

<< // Fill in code to show the number of the month

<< ":";

// Fill in code to bring sales into an element of the array

}

for (count = 0; count < numOfSales; count++)

{

total = total + monthSales[count];

}

average = // Fill in code to find the average

cout << "Average Monthly sale is $" << average << endl;

// Fill in the code to deallocate memory assigned to the array.

return 0;

}

Exercise 1: Fill in the code as indicated by the comments in bold.

Sample Run:

LAB 9.4 Student Generated Code Assignments

In these assignments you are asked to develop functions that have dynamic

arrays as parameters. Remember that dynamic arrays are accessed by a point-

er variable and thus the parameters that serve as dynamic arrays are, in fact,

pointer variables.

172 LESSON SET 9 Pointers

Example:

void sort(float* score, int num_scores); // a prototype whose function has a

// dynamic array as its first

// parameter. It is a pointer variable
.
.

int main()

{

float *score = nullptr; // a pointer variable
.
.

score = new float(num_scores); // allocation of the array

sort(score,scoreSize); // call to the function

Option 1: Write a program that will read scores into an array. The size of the

array should be input by the user (dynamic array). The program will find

and print out the average of the scores. It will also call a function that will

sort (using a bubble sort) the scores in ascending order. The values are

then printed in this sorted order.

Sample Run:

Option 2: This program will read in id numbers and place them in an array.

The array is dynamically allocated large enough to hold the number of id

numbers given by the user. The program will then input an id and call a

function to search for that id in the array. It will print whether the id is in

the array or not.

Lesson 9B 173

Sample Run:

Option 3: Write a program that will read monthly sales into a dynamically

allocated array. The program will input the size of the array from the user.

It will call a function that will find the yearly sum (the sum of all the

sales). It will also call another function that will find the average.

Sample Run:

