

Soda Vending Machine Refill
Database
CMPS 3420 - Spring 2019

Group: 01

Gracelove Simons

Jianntyng Lu

Edwin Gonzalez - Computer Science
20th May, 2019

Table of Contents

Table of Contents 1

1. Data collection and Conceptual Database Design 3

1.1 General Methods 3

1.1.1 Introduction to Organization 3

1.1.2 Description of Fact-Finding Techniques 3

1.1.3 Scope of the Conceptual Database 4

1.1.4 Entity and Relationship Sets Description 4

1.1.5 User Groups, Data Views and Operations 6

1.2 Conceptual Database Design 7

1.2.1 Entity Set Description 7

1.2.2 Relationship Set Description 25

1.2.3 Related Entity Type 30

1.2.4 ER Diagram 30

2. Conceptual Database and Logical Database 32

2.1 E-R model and Relational Model 32

2.1.1 Description of the E-R model and Relational Model 32

2.1.2 Comparison of the Two Different Models 34

2.2 From Conceptual Database to Logical Database 35

2.2.1 Converting Entity Types to Relations 35

2.2.2 Converting Relationship Types to Relations 36

2.2.3 Database Constraints 37

2.3. Convert Your E-R/Conceptual Database into a Relational/Logical Database 40

2.3.1 Relation Schema for the Database 40

2.3.2. Sample Data of Relation 57

2.4. Sample Queries to our Database 58

2.4.1 Design Of Queries 58

2.4.2 Relational Algebra Expressions for Queries of 4.1 58

2.4.3 Tuple Relational Calculus Expressions for Queries 60

2.4.4 Domain Relational Calculus Expressions for Queries 61

3 Implementation of Relational Database 63

3.1 Relation Normalization 63

3.1.1 Normalizations 63

1

3.1.2 First, Second, Third, and Boyce-Codd Normal Forms 63

3.3.3 Anomalies 65

3.2 PostgreSQL 65

3.2.1 Purpose 65

3.2.2 Schema Objects for PostgreSQL Database 65

3.3 Relational Schema Data 67

3.3.1 Employee 68

3.3.2 VendingMachine 68

3.3.3 Client 69

3.3.4 Location 69

3.3.5 Route 70

3.3.6 Delivery 71

3.3.7 Orders 72

3.3.8 OrderContains 73

3.3.9 ItemType 74

3.3.10 Warehouse 75

3.3.11 WarehouseHas 76

3.3.12 WarehouseReceives 77

3.3.13 OrdersFrom 78

3.3.14 PlacesOrder 79

3.3.15 Supplier 80

3.3.16 GasReceipt 81

3.3.17 Invoice 82

3.3.18 ItemsSold 83

3.3.19 Vehicle 84

3.4 SQL Queries 85

4 Stored Subprograms, Packages and Triggers 90

4.1 Postgres PL/pgSQL 90

4.1.1 What is PL/pgSQL 90

4.1.2 PL/pgSQL Program Structure, Control Statements, and Cursors 90

4.1.3 Stored Procedure and Syntax 93

4.1.4 Stored Function and Syntax 94

4.1.5 Trigger and Syntax 94

4.2 Postgres PL/pgSQL Subprograms 96

4.2.1 Stored Procedures 96

4.2.2 Triggers 98

4.3 PL/pgSQL-Like Languages in Microsoft SQL Server, MySQL and Oracle DBMS 102

4.3.1 Selective Statements 104

2

4.3.2 Repetitive Statements 105

4.3.3 Statements for Creating Stored Procedures/Functions/Triggers. 107

5 Graphical User Interface 113

 5.1 General Description 113

 5.2 Functionalities of the Application 114

 5.2.1.3 Tables, Views, Stored Subprograms 114

 5.2.2 Middle-Tier Programming 114

 5.2.3 Client-side programming 125

 5.3 Survey Questions 130

1. Data collection and Conceptual Database

Design

1.1 General Methods

The following chapter and its sections give an overview of the process used to design an

Entity Relationship (ER) database model for a vending machine refill company. First, an overview of

the company is given followed by a brief description on the ideas that helped shaped the design.

After that, the ER model entities, relationships, constraints, and other important descriptions are

explained. Although this ER model is used for one specific company it is general enough to serve as

an all purpose model of any vending supply company.

1.1.1 Introduction to Organization

The imaginary vending machine inventory supply company we are designing this database

for is called “Reloading Service Inc.” This company provides a full beverage delivery and inventory

management service package to their clients. The office staff are in charge of creating orders that

supply the company warehouse and client vending machines. Dispatchers organize orders into

delivery routes and assign truck drivers to a route. Drivers deliver orders to designated vending

machines, restock them, and record all necessary information, such as number of inventory upon

arrival.

A vending machine is a great multi-purpose container. It provides temperature control like a

refrigerator, storage space just like a small store, secure payment handling, and vandalism

prevention systems.

3

1.1.2 Description of Fact-Finding Techniques

California State University Bakersfield (CSUB) is an ideal site for first-hand data collections.

With over 8000 enrolled students on campus, vending machines are popular. There are 14 vending

machines at CSUB alone. Delivery drivers constantly come to campus. We will ask drivers their

company contact information and contact the company as potential vending machine owners to ask

contract details.

A rough business model may also be studied online. Numerous business franchises already

provide existing models strongly similar to our business model, with minor modifications.

The purpose of this information gathering techniques is to draw the schema of the business

structure. This phase focuses on the design of an ER database schema to effectively represent a real

world business model. Thus, for all tuples, we will use software generated data inputs in phase 3

when we type raw data (tuples) into each table (Relation in Relation Model).

1.1.3 Scope of the Conceptual Database

For simplicity reasons and to finish within our academic time constraint, the details of the

corporate department are ignored. This design focuses on the barebone needs of a “Reloading

Service.” A “mini-world” is represented by Drivers, Dispatchers, and all the entities they impact. This

database will let the Reload Service Inc track inventory sales and orders, which locations are in need

of supplies, and how effective delivery routes are. The ultimate goal is to provide clients with

accurate reports of how their machines are managed while creating an efficient and manageable

system for the delivery company at the same time .

Three key mini-world ideas:

1. A dispatcher places orders and dispatches drivers on routes.

2. A truck driver picks up an order (or orders) put in by a dispatcher, and carries out the delivery from

a company warehouse to multiple locations with multiple vending machines on site.

3. A client report is able to be generated showing sales and other key financial attributes.

1.1.4 Entity and Relationship Sets Description

Entity Set is as follows:

Employee: SSN, Name, Address, Phone, Position, Salary, Start Date

An Employee works for Reloading Service Inc as has basic identifying information.

4

Dispatcher: Badge Number

A Dispatcher is in charge of placing orders, creating routes, and data keeping on behalf of the

company.

Driver: License Number, License Exp

Drivers are responsible for delivering orders to vending machines.

Gas Receipt: Receipt ID, Address, Price, Date

A receipt used to keep track of gas expenditures.

Transportation: Plate Number, Make, Model, VIN, Registration Date

A truck driven a driver. One truck is to be assigned to one driver.

Supplier: Supplier_ID, FNAME, LNAME, Address, Phone

The 3rd party which supplies soda items in bulk quantity.

Order: Order ID, Order Type

An order is put into the system by a dispatcher. Vending orders are orders delivered by the truck

driver to distribute inventory from a warehouse to its nearby locations, which has multiple vending

machines.

Warehouse orders are orders delivered by a supplier to the company warehouse.

Warehouse: Warehouse ID, Address, Manager Name, Capacity

Represents the information of a physical warehouse on site.

Item Type: Item Type ID, Item Type Name, MSRP

Represents an Item Type that might be refilled from a 3rd party to our warehouse with its contracted

reloading price in bulk.

Vending Machine: Machine_ID, Build, Items_per_slot, Capacity

Represents a single machine in a remote location owned by one of our clients.

Location: Location_ID, Address, Num_machines

Represents a single site which may be occupied by a VM.

Client: Customer_ID, FName, LName, Email, Phone, Company, Machines

A client is a private party who owns more than one VM on more than one location.

A client will pay for each soda we put into their machine plus 10% to 30%.

Relationship set is as follows:

5

A Dispatcher Places Order to Order; Cardinality: M..N; Participation: Partial, Total (Respectively)

A Dispatcher Orders From a Supplier; Cardinality: N..M; Participation: Partial, Total

A Supplier Supplies an Order with items in bulk quantity; Cardinality: 1..N; Participation: Partial, Total

A Driver gets an Order and Delivers Order to a Location; Cardinality: N..N; Participation: Total, Partial

A Location Has Vending Machines; Cardinality: 1..N; Participation: Total, Total

A Vending Machine contains Vending Items of Item Type; Cardinality: 1..N; Participation: Partial, Total

A Warehouse Stocks Item Types; Cardinality: 1..N; Participation: Partial, Total

An Order contains an Order Item of Item Type; Cardinality: 1..N; Participation: Partial, Total

A Warehouse receives a Warehouse Order of warehouse Order type;

Cardinality: 1..N; Participation: Partial, Total

A Warehouse creates a Vending Order of vending Order type;

Cardinality: 1..N; Participation: Partial, Total

A Driver Receives a vending Order type; Cardinality: 1..N; Participation: Partial, Partial

A Driver Drives Transportation; Cardinality: 1..1; Participation: Total, Partial

A Driver Fuels a truck and creates Gas Receipts; Cardinality: 1..N; Participation: Partial, Total

1.1.5 User Groups, Data Views and Operations

A user may interact with only a subset of ER diagram. That is to say, users need only be concerned

with Entities and Relationship immediately associate to their pertinent interest.

Within the 1st boundary, comes the limit of tuple.

Certain Entities may only be able to see other Relationship/Entities to better model the mini-world.

Dispatcher

A dispatcher will have access to all supplier and placed order information. They will also have

knowledge of the drivers who work for the company, the location of the company warehouse and the

placement of client vending machines. A dispatcher will have the ability to pull data that shows

inventory levels in both warehouses and vending machines as well as client contact information.

6

Driver

A driver will only view a subset of order (vending order) which are assigned to him/her by a

dispatcher. They will have routes that contain the location of vending machines. A Driver is unaware

of the business a dispatcher conducts behind the scenes and is only concerned with fulfilling a route

created by a dispatcher. Drivers are also responsible for gathering gas receipts and submitting them

to a dispatcher for logging. A dispatcher has access to all receipts while a driver is only aware of his.

Client:

A client does not need to be concerned with the details of the business. Sales and inventory reports

will be generated for him by the delivery company.

1.2 Conceptual Database Design

In order to form a system to hold data for a company, one must gather all information and

understand how they coexist and interlink with each other. In the previous section, we entail how we

gathered that information.

Thus, this section will be about the information gathered and show how they are important

and necessary to the system we are creating. The method of diagramming that we choose to display

the data structure is the Entity-Relationship (ER) model. This method helps us represent the

relationships between different aspects (or entities) of a company and how they affect each other.

Entity types, such as Employee, are created to unify entity sets where we define and name

attributes, such as Name. We form relationship types that connect to show the relations between

entity types and how they are related. Attributes are attached to relationship types as well for further

understanding and relation displaying.

7

1.2.1 Entity Set Description

An entity is a real world object that exists independently. It could have a physical or

conceptual existence. Our main entities are Employee, Client, Vending Machine, and Warehouse.

They are the core parts of owning and running a vending machine refilling company. The following

information will entail the entity types, their attributes, domain constraints, and keys that distinguish

each entity from the next.

Entity Name: Employee

Description: An Employee is either a dispatcher or driver that is hired by our company owner to fulfill

those posItions. Due to the scope of our database being the sole objective of refilling machines

owned by others, the positions listed are driver and dispatcher, which are disjoint. Due to our

company being small and local, the rate at which employees will not be high and the different types

will not change drastically enough to offset the database.

Candidate Keys: Employee_ID, SSN
Primary Key: Employee_ID
Strong / Weak Entity: Strong
Fields to be indexed: Employee_ID, SSN, Name, Address, Phone, Position, Salary, Start Date

Attributes:

Attribute Name: Employee_ID SSN Name

Description Number assigned to
each employee by the
manager for clock
in/out tracking

Distributed by the
Social Security
Department to
uniquely identify
persons.

Name of employee
(First, Middle Initial,
Last)

8

Domain/Type Integer Integer String, Char, String

Value-Range 0 - MaxID 000000000 -
999999999

Any, A-Z, Any

Default Value MaxID + 1 None None

Null Allowed or not Not Not Not

Unique Yes Yes No

Single/Multivalued Single Single Single

Simple/Composite Simple Simple Composite

Attribute Name: Address Phone Position

Description The location of where
the employee lives.
(Street, City, State, Zip)

A contact number for
the employee. (Mobile,
House, or both)

The job the employee
is assigned.

Domain/Type String, String, String,
Integer

Integer String

Value-Range Any, Any, Any,
00000-99999

0000000000-999999
9999

Any

Default Value None None None

Null Allowed or not Not Allowed Not

Unique No Yes No

Single/Multivalued Multivalued Multivalued Single

Simple/Composite Composite Composite Simple

Attribute Name: Salary Start Date

Description How much the employee has
been contracted to make.

The day the employee starts.
(MM, DD, YYYY)

9

Domain/Type Integer Integer, Integer, Integer

Value-Range 0 - 9999999 01-12, 01-31, 0000-9999

Default Value None None

Null Allowed or not Allowed Not

Unique No No

Single/Multivalued Single Single

Simple/Composite Simple Simple

Entity Name: Driver

Description: Drivers are in charge of delivering orders and refilling vending machines on behalf of

the company. Drivers are required to have an A-class driver’s license and can operate any assigned

vehicle in the company. A driver must also fuel their vehicle and record these transactions. An order

is picked up at a designated pickup location (a warehouse).

A driver is a disjoint subclass with the entity Employee as a superclass. This entity frequency will be

low as driver information should not change often and new entities will only be created when new

drivers are hired.

Candidate Keys: License Number

Primary Key: License Number

Strong / Weak Entity: Strong
Fields to be indexed: License Number, License Exp

Attributes:

Name License Number License Exp

10

Description A California issued Class A driver’s
license is needed to operate vehicle.
A unique 8-digit number makes a
license number and uniquely
identifies a driver.

Expiration date of the driver’s
license.

Domain / Type Integer Date

Value / Range Any 8-digit number combination:
00000000 - 99999999

Any

Default Value None None

Null Value Allowed No No

Unique Yes No

Single or Multi-value Single Single

Simple or Composite Simple Simple

Entity Name: Transportation

Description: Transportation is the vehicle that a driver uses to carry out deliveries. A driver is
assigned one truck to drive for insurance purposes. A truck has a unique plate number, a vehicle
identification number (VIN), registration information, and descriptors to help identify a vehicle. A
model will have a year and can have a subclass specifier.
Example of make / model: 2016 Honda Accord or 2015 Honda Accord SE
Truck information should hardly change so there will be a low frequency of table operations.

Candidate Keys: Plate Number, VIN
Primary Key: License Number
Strong / Weak Entity: Strong
Fields to be indexed: Plate Number, Make, Model, VIN, Registration Date

Attributes:

Name Plate Number Make Model

Description Every vehicle must have a
unique plate number. In
California, a plate number is 7
digits.

The vehicle type. Will
have a year and make.

Identifies a subclass of Make.
Gives more detail on the type
of vehicle.

Domain / Integer Integer, String String

11

Type

Value /
Range

Any 7-digit number combination:
0000000 - 9999999

Integer: Any valid year.
String: Any

Any

Default Value None None None

Null Value
Allowed

No No No

Unique Yes No No

Single or
Multi-value

Single Single Single

Simple or
Composite

Simple Composite Simple

Name VIN Registration Date

Description A unique number that identifies a
vehicle. Created at time of
manufacture.

Last renewal date as well as next
expiration date.

Domain /
Type

Integer Date, Date

Value /
Range

Any 17-digit number combination:
(9)^17 choices where each choice is
greater than or equal to zero.

Any, Any

Default
Value

None None

Null Value
Allowed

No No

Unique Yes No

Single or
Multi-value

Single Single

12

Simple or
Composite

Simple Composite

Entity Name: Gas Receipt

Description: A driver must fuel their vehicle. A fuel transaction produces a receipt that provides a
location, charge, and date. Receipts can be used to check how much gasoline is being spent on
specific routes or to check that vehicles are being fueled frequently. A moderate amount of these
entities should be created per month as gasoline is a key component to keeping vehicles running.

Candidate Keys: Receipt ID, Address
Primary Key: Receipt ID
Strong / Weak Entity: Strong
Fields to be indexed: Receipt ID, Address, Price, Date

Attributes:

Name Receipt ID Address Price Date

Description Identifies a
Receipt

Street Address, City, State,
Zip of gas station location.

Price paid for
refueling

Date of gas
purchase

Domain /
Type

Integer String, String, String, Integer Float Date

Value / 0 - MaxID Any, Any, Any, 0 - Any positive Any

13

Range 00000-99999

Default
Value

MaxID + 1 None None None

Null Value
Allowed

No No No No

Unique Yes No No No

Single or
Multi-value

Single Single Single Single

Simple or
Composite

Simple Composite Simple Simple

Entity Name: Order

Description: An order is a crucial entity that will be created extremely frequently. Two order types
exist (each containing one or more item types). One type is a Warehouse order: this order contains
supplies shipped from a supplier to a warehouse. These orders are large bulk orders that are meant
to keep the company warehouse stocked. The second order type is a Vending order: this order
contains the supplies that are to be delivered to a vending machine for restocking. These orders are
created at the company warehouse. An order is placed by a dispatcher. The delivery to a warehouse
is done by an outside supplier while the delivery to a vending machine is done by a company driver.

Candidate Keys: Order ID, Order Type
Primary Key: Order ID
Strong / Weak Entity: Strong
Fields to be indexed: Order ID, Order Type

Attributes:

Name Order ID Order Type

Description Identifies an order IDs if order ships to a warehouse or to a vending
machine

Domain / Type Integer String

14

Value / Range 0 - MaxID Any

Default Value MaxID + 1 None

Null Value Allowed No No

Unique Yes No

Single or Multi-value Single Single

Simple or
Composite

Simple Simple

Entity Name: Warehouse

Description: A warehouse is a building that stores orders as inventory. Vending machine orders are
created using warehouse inventory. A storage capacity is decided by the company and the number
of total item types stored should not exceed the capacity. There can be an expected high number of
table operations as this entity is directly linked to the creation of each order entity.

Candidate Keys: Warehouse ID
Primary Key: Warehouse ID
Strong / Weak Entity: Strong
Fields to be indexed: Warehouse ID, Address, Manager Name, Capacity

Attributes:

Name Warehouse ID Address Manager Name Capacity

Description Identifies a
unique
warehouse
building

Street Address, City,
State, Zip

An Employee who
manages the
warehouse

The maximum amount of
items that can be stored
in a warehouse.

Domain /
Type

Integer String, String, Sring,
Integer

String Integer

Value / 0 - MaxID Any, Any, Any, Any 0 - Any positive

15

Range 00000-99999

Default
Value

MaxID + 1 None None 0

Null Value
Allowed

No No No No

Unique Yes No No No

Single or
Multi-value

Single Single Single Single

Simple or
Composite

Simple Composite Simple Simple

Entity Name: Item Type

Description: Item Type represents what can be contained in an order, what a vending machine can
hold, or what a warehouse will store. An item type represents a type of item, such as a Pepsi bottle.
This company deals specifically with beverages: all items will be a type of beverage. However, an
item type can represent any food or beverage if a vending machine owner wishes to expand their
inventory. An item type has a name and a recommended retail price. This entity will be created
extremely frequently as every order must contain an item type.

Candidate Keys: Item Type ID, Item Type Name
Primary Key: Item ID
Strong / Weak Entity: Strong
Fields to be indexed: Item Type ID, Item Type Name, MSRP

Attributes:

Name Item Type ID Item Type Name MSRP

Description Identifies a unique item Name of an item. Manufacturer Suggested Retail Price

Domain / Type Integer String Float

Value / Range 0 - MaxID Any 0 - Any positive

Default Value MaxID + 1 None None

16

Null Value
Allowed

No No No

Unique Yes No No

Single or
Multi-value

Single Single Single

Simple or
Composite

Simple Simple Simple

Entity Name: Location

Description: The Location entity refers to a site where vending machines are located. One location
entity represents a general area, such as a school, and the number of machines currently at the
location. Table operations should not be very frequent: usually locations and machine placements
don’t move very often for consistency.

Candidate Key: Location_ID, Address
Primary Key: Location_ID
Strong / Weak Entity: Strong
Fields to be indexed: Location_ID, Address, Num_machines

Attributes:

Attribute Name: Location_ID Address

Description Each location that a machine is
located at will have a number
assigned for easier identification.

The street, city, state and zip of
a delivery location.

Domain/Type Integer String, String, String, Integer

Value-Range 0 - MaxID Any, Any, Any, 00000-99999

Default Value MaxID + 1 None

17

Null Allowed or not Not Not

Unique Yes No

Single/Multivalued Single Multivalued

Simple/Composite Simple Composite

Entity Name: Vending machine

Description: This entity is in place because the dispatcher and company owner need to know what is
inside of the machine at all times so that they know what is to be refilled, switched for another and to
allocate space for more of an item. It is linked to “Location” and “Item” due to it being at that spot and
having specific items based on what’s popular at that location.

Candidate Key: Machine_ID, Build
Primary Key: Machine_ID
Strong / Weak Entity: Strong
Fields to be indexed: Machine_ID, Build, Items_per_slot, Capacity

Attributes:

Attribute Name: Machine_ID Build Items_per_slot

Description Assigned to the
machine by the
manufacturer and
used to keep track of
the machine.

The make, model and
year made.

How many items can
be in each slot.

Domain/Type Integer String, String, Integer Integer

Value-Range 0 - MaxID Any, Any, 0000-9999 0-99

18

Default Value MaxID + 1 None 0

Null Allowed or not Not Allowed Not

Unique Yes No No

Single/Multivalued Single Multivalued Single

Simple/Composite Simple Composite Simple

Attribute Name: Capacity

Description This represents the amount of items the
machine can hold.

Domain/Type Integer

Value-Range 0-999

Default Value 0

Null Allowed or not Not

Unique No

Single/Multivalued Single

Simple/Composite Simple

19

Entity Name: Client

Description: The Customer is the owner of the vending machine. Our main goal is to keep their
machine in perfect condition so that we both can make as much profit as possible. Each customer
and the amount of machines they own that are refilled by us is to be recorded.

Candidate Key:
Primary Key: Customer_ID
Strong / Weak Entity: Strong
Fields to be indexed: Customer_ID, FName, LName, Email, Phone, Company, Machines

Attributes:

Attribute Name: Customer_ID Name Email

Description Number assigned to
the company that we
refill machines for

Name of the point of
contact, or owner, of
the machine(s). (First,
Middle Initial, Last)

Email for the point of
contact.

Domain/Type Integer String, Char, String String

Value-Range 0 - MaxID Any, A-Z, Any Any

Default Value MaxID + 1 None None

20

Null Allowed or not Not Not Not

Unique Yes No Yes

Single/Multivalued Single Multivalued Single

Simple/Composite Simple Composite Composite

Attribute Name: Phone Company Name Machines

Description The number used to
contact the company
and or send/receive a
fax to/from.

Name of the company
that we refill machines
for .

Domain/Type Integer String

Value-Range 0000000000-999999
9999

Any

Default Value None None

Null Allowed or not Not Not

Unique Yes Yes

Single/Multivalued Multivalued Single

Simple/Composite Composite Simple

21

Entity Name: Dispatcher

Description: Due to the size of our company, the Dispatcher has the job of sending orders to the
Driver, maintaining the inventory in warehouse, and keeping records for the machine owner. They’ll
have a separate identification number and keep in touch with machine owners and maintain
contracts, order and keep track of the warehouse inventory, and send orders to drivers.

Candidate Key: Badge Number
Primary Key: Badge Number
Strong / Weak Entity: Strong
Fields to be indexed: Badge Number

Attributes:

Attribute Name: Badge Number

Description Number assigned to a dispatcher to identify
length of employment with company and what
orders they place and send out.

Domain/Type Integer

Value-Range 0 - MaxID

22

Default Value MaxID + 1

Null Allowed or not Not

Unique Yes

Single/Multivalued Single

Simple/Composite Simple

Entity Name: Supplier

Description: The Supplier is the company or site we order our products from. That can range from
sodas and water for the machine refills to toilet paper to paper. The entity is an important aspect of
the database in the sense that we are to keep track of all the things purchased related to the
business for tax, legal and budgeting purposes.

Candidate Key: Supplier_ID, LNAME
Primary Key: Supplier_ID
Strong / Weak Entity: Strong
Fields to be indexed: Supplier_ID, FNAME, LNAME, Address, Phone

Attributes:

Attribute Name: Supplier_ID Name Address

Description A special number
assigned to each
company/person we
order from.

Name of the person
we place orders
through. (First, Middle
Initial, Last)

Where the company
we are ordering from
is located.

Domain/Type Integer String, Char, String String, String, String,
Integer

23

Value-Range 0 - MaxID Any, A-Z, Any Any, Any, Any,
00000-99999

Default Value MaxID + 1 None None

Null Allowed or not Not Not Not

Unique Yes No Yes

Single/Multivalued Single Multivalued Multivalued

Simple/Composite Simple Composite Composite

Attribute Name: Phone

Description Number used to contact the company we order
from.

Domain/Type Integer

Value-Range 0000000000-9999999999

Default Value None

Null Allowed or not Not

Unique Yes

Single/Multivalued Multivalued

Simple/Composite Composite

24

1.2.2 Relationship Set Description

Relationships connect two or more entities by defining how two entities interact in the

mini-world. Just like entities relationships can have attributes. They contain constraints that specify

whether the existence of an entity depends on it being related to another entity and the minimum

number of instances each entity can participate in.

The following section defines each relationship type in this ER model. Descriptions of a

relationship include its name, cardinality and participation constraints, and any attributes it may have.

These descriptors help tie together relationships with their involved entity sets.

Relationship: Drives
Description: Drivers use vehicles to transport and fulfill deliveries. The mapping is 1..1: a driver must
be assigned one vehicles and one vehicle can be commandeered by one driver.
Entity Sets Involved: Driver, Transportation
Cardinality Mapping: 1..1
Descriptive Field: None
Participation Constraint: Total participation for Driver and and partial Vehicle. A driver must be
assigned a vehicle to delivery orders. A vehicle can exist without being assigned a driver. For
example, an extra vehicle may remain unused until a new driver is hired and assigned to it.

25

Relationship: Fuels
Description: Vehicles need fuel to operate. A driver is responsible for supplying their assigned trucks
with gasoline. A state of the transaction must be cataloged in the entity Gas Receipt. This relationship
allows the company to better monitor fuel cost and develop routes based on fuel costs. Mapping is
1..N: many receipts must link to one driver but one driver must take responsibility for all gas
transactions.
Entity Sets Involved: Driver, Gas Receipt
Cardinality Mapping: 1..N
Descriptive Field: None
Participation Constraint: Total participation for Gas Receipt and partial for Driver. A driver may not
have to pump gas (it can be assumed all vehicles are always fueld) or may not be tasked with
collecting receipts. A receipt can only exist once a driver has decided to pump gas and record the
transaction.

Relationship: Receives
Description: A driver will receive one or more vending orders that need to be delivered to
designated locations. An order or group of orders can only be delivered by one driver per route. A
Date and Receiving Time will be recorded through this relationship. A driver can only receive a
vending order.
Entity Sets Involved: Driver, Order
Cardinality Mapping: 1..N
Descriptive Field: Date, Receiving Time
Participation Constraint: Partial participation for both. An order can exist without a driver, such as a
warehouse order. A driver can exist without having to deliver an order.

Relationship: Warehouse Order
Description: This relationship links a warehouse Order with the entity Warehouse. A warehouse
order is intended to be shipped and stored at the company warehouse. Each order delivered to a
warehouse should be used to increment the warehouse inventory (which is done through the stocks
relationship). This relationship records the time and date an order is placed.
Entity Sets Involved: Order, Warehouse
Cardinality Mapping: N..1
Descriptive Field: Time Ordered, Order Date

26

Participation Constraint: Total participation for Order. An order is required to be shipped to a
warehouse. An order would cease to exist if it had no location to be stored in. A warehouse is partial
participation as it can exist without receiving orders.

Relationship: Vending Order
Description: This relationship links a vending machine Order with the entity Warehouse. A vending
machine order is created using warehouse inventory and is used by drivers to refill vending
machines. When a vending order is created, the warehouse inventory must be decremented through
the same relationship that it is incremented.
Entity Sets Involved: Order, Warehouse
Cardinality Mapping: N..1
Descriptive Field: Time Created, Order Date
Participation Constraint: Partial participation by warehouse. A warehouse can exist solely to receive
warehouse orders and is not dependent on truck orders to exist. Total participation for order as it can
only exist if a warehouse creates it.

Relationship: Order Item
Description: Every order must contain at minimum one item type. This relationship links the entity
Item Type to Order. When an order is placed, a number of item types, price per item type, and
expiration date are identified through this relationship.
Entity Sets Involved: Order, Item Type
Cardinality Mapping: N..N
Descriptive Field: Num Item Type, Item Type Price, Exp Date
Participation Constraint: Total participation by both. In this diagram, an item type cannot exist unless
some outside entity is containing it. At the same time, an order cannot exist without at least one item
being created.

Relationship: Vending Item
Description: A vending machine contains item types. The relationship describes the number of item
types, what slots of a machine are filled with an item type, the price an item is to be sold for at a
machine, and the expiration date. With this relationship, inventory and sales of individual machines
can be tracked so more accurate orders may be placed.
Entity Sets Involved: Item Type, Vending Machine
Cardinality Mapping: N..1
Descriptive Field: Num Item Type, Slots Filled, Price, Exp Date

27

Participation Constraint: Total participation by Item Type. An item cannot exist unless some outside
entity is containing it. A vending machine can exist without any inventory so it has partial
participation.

Relationship: Stocks
Description: A warehouse must be able to hold item types as inventory. This relationship links the
Item Type entity to a warehouse for inventory keeping. When a warehouse order is delivered, the
number of items are incremented. When a vending order is created, the number of items are
decremented.
Entity Sets Involved: Warehouse, Item Type
Cardinality Mapping: 1..N
Descriptive Field: Num Item Type, Exp Date
Participation Constraint: Total participation by Item. An item cannot exist unless some outside entity
is containing it. Partial participation by warehouse as it can exist without having any items.

Relationship: Orders From
Description: This relationship links Dispatcher to Supplier. A Dispatcher will place orders from a
Supplier. Those supplies can range from sodas and waters to paper and other office supplies
needed. The mapping is N:M because the we can have N dispatchers and they all can place orders
to M amount of suppliers.
Entity Sets Involved: Dispatcher, Supplier
Mapping Cardinality: N:M
Descriptive Field: None
Participation Constraint: Total participation for Supplier. The supplier wouldn’t have anywhere to
send an order without the dispatcher placing one. Partial participation for Dispatcher because it can
exist without ordering from a Supplier.

Relationship: Places Order
Description: This relationship links Dispatcher to Order. The dispatcher places orders for refilling
machines and restocking the warehouse. The mapping is N:N because N dispatchers can place N
orders. The Time Placed and Num Orders descriptive fields are necessary for keeping track of how
much was ordered and when so that it is easily re-traceable if need be.
Entity Sets Involved: Dispatcher, Order
Mapping Cardinality: N:M

28

Descriptive Field: Time Placed, Num Orders
Participation Constraint: Total participation for Order. An order wouldn’t be placed if there was no
Dispatcher to put it in. Partial participation for Dispatcher because they can exist without having to
place orders.

Relationship: Supplies
Description: This relationship links Supplier to Order where the supplier supplies us with the items
we ordered from them and they get sent to the warehouse to eventually be sent out to the machines.
The mapping of this is 1:N because 1 supplier can supply N orders.
Entity Sets Involved: Supplier, Order
Mapping Cardinality: 1:N
Descriptive Field: None
Participation Constraint: Total participation for Order. An order couldn’t be supplied without a
supplier that we order from. Partial participation for Supplier because they can be a supplier used but
not for every or the majority of orders.

Relationship: Delivers Order
Description: This relationship links an Order to a Location where a machine (or more than one) will
be filled. The mapping for this is N:N because our company can be refilling the location as many
times as need throughout the contract designated time. The date and time delivered are used to
keep track of when and if shipping was successful.
Entity Sets Involved: Order, Location
Mapping Cardinality: N:N
Descriptive Field: Date, Time
Participation Constraint: Partial participation for Location because location can stand on its own and
there would be no use in making a delivery if there isn’t a location to deliver to. Total participation for
Order because there wouldn’t be anything to deliver without it.

Relationship: Has
Description: This relationship links Location to Vending Machine. A location can hold more than one
vending machine, creating a 1:N mapping. That location can be a school, larger or small business, or
apartment complex. Each location will be identifiable by their given IDs and addresses.
Entity Sets Involved: Location, Vending Machine
Mapping Cardinality: 1:N
Descriptive Field: None

29

Participation Constraint: Total participation for both Vending Machine and Location. The reason
being is that a Location can stand alone, but there would be no point in us knowing of that location if
it has no vending machine. And a Vending Machine has to have a location or else we wouldn’t be
able to find and refill it.

Relationship: Owner
Description: This relationship links Client to Vending Machine. The client is basically the owner of
the machine(s). They are the contract holder and addressee. The mapping to this is 1:N because 1
client can own many machines.
Entity Sets Involved: Client, Vending Machine
Mapping Cardinality: 1:N
Descriptive Field: None
Participation Constraint: Total participation for both Client and Vending Machine. Without a client
there would be no vending machine and if a client had no machine, there would be no need for them
to be our client.

1.2.3 Related Entity Type
Specialization is defining a set of subclasses from a parent entity type. The parent entity type

is defined to be a superclass and the set of subclasses inherit all attributes of the parent class. When
subclasses are created, there must be some attribute that distinguishes one subclass from another in
a set. Subclasses are also able to act as a superclass and spawn subclasses of their own. A specific
attribute is an attribute that is unique to a subclass and should not exist in other subclasses of the
specialized set.

In this ER schema, Driver and Dispatcher are a set of specialized subclasses of the entity type
Employee.

Generalization is the opposite thought process of specialization but achieves the same goal.
With generalization, you create entities first that are neither a set of subclasses or a superclass.
However, after designing a schema, a set of entities might share many of the same attributes minus a
few attributes that distinguish them from each other. A decision can then be made to create a
superclass entity that holds these attributes that each subclass will inherit from.

A constraint that exist in our schema is what is called a predicate-defined (condition-defined)
constraint. These constraints are used to determine which entities will become what subclass.

30

The entity Driver is created when an employee has their position attribute set to ‘Driver.’ The same
logic happens with the entity Dispatcher. Both entities also have a total participation constraint. A
Driver and Dispatcher must exist and are dependent on the Employee entity existing. These two
entities are disjoint subclasses, meaning each subclass entity is unique from each other and have
specific attributes that separate them.

1.2.4 ER Diagram
An Entity Relationship(ER) Diagram helps model the structural design of a database. An ER

diagram is a structure made up of symbols that are interconnected by lines. Entities and relationships
are represented as some container symbol and a list of associated attributes are listen with each
entity or relationship. Lines show which entities link to which relationships as well as what degree of
participation are involved between said entities. Double lines signify total participation and single
lines represent partial participation. Markers such as “1, N, M” show the cardinality mapping of
entities and relationships. A U represents a union of subclasses and a D a disjoint set of subclasses.
These basic concepts help form a diagram that paints a good picture of the overall concepts a
database should accomplish.

Bellow is the ER diagram for a Soda Vending Machine Refill company:

31

32

2. Conceptual Database and Logical Database
The following chapter describes the relational model schema for our database. A brief history

and explanation of the relational model will be given followed by a comparison between the ER
model and the relational model. After that, the process of converting from an ER model to a relational
model will be laid out. Following this, all relations will be detailed and a series of sample queries on
the database will be given and answered.

2.1 E-R model and Relational Model

2.1.1 Description of the E-R model and Relational Model

History of ER Model

ER diagrams were modeled after Charles Bachman self-named Bachman Diagrams.

Bachman’s diagrams modeled data structures and recognized a need for a diagram that modeled

higher abstraction. Bachman inspired fellow computer scientist Peter Chen. Chen published his

interpretation for a database schema using Entities and Relationships. Chen’s concepts of Entities

and Relationships took off and over time the ER model was refined to become what it is today.

What is the ER Model

The Entity Relationship Model is a way to diagram a database schema at a high level of

abstraction. There are two major components to an ER model, an Entity and a Relationship. An Entity

represents some real word object or idea, such as a store, an employee, or an order of various items.

A Relationship links two or more Entities together. Entities contain attributes which are descriptors of

the Entity. An example: an Entity named Employee would have attributes Name, SSN, Gender. A

Relationship can also have attributes. Lines connect symbols to form a diagram. It is also important to

note cardinality between relationship, such as one to many or many to many.

Major Features of ER Model / Purpose

Entities represent real world objects or Ideas. Relationships link Entities together. Primary

keys (detailed below) are used to distinguish entities from each other. This model is abstract and

presents a clear, logical connection between data that is easy to read and understand.

History of the Relational Model

E.F. Codd, a computer scientist and employee at IBM conceived the relational database

model. Codd recognized that other existing models had too much coupling between data and the

physical storage of data. His relational model helped address this issue by decoupling the two

mediums. Codd’s model also eliminated duplicated data which lead to a very optimized schema.

33

Paired with SQL, a powerful query language, the relational model has become the most popular

model for database design.

What is the Relational Model

The relational model takes real world objects or ideas and creates relations to represent

them. A relation has a name and attributes (columns). A combination attributes, A1, A2...An form a tuple

(row). A relation is made up of records, or tuples. An example of an employee relation tuple would

look like → Employee(Name:String, Age:Integer, DOB: Date). Because relations consist of a set of

records, they can be represented as tables where each row is a unique record. Similar to the ER

Model, the Relational Model connects relations to form a database schema.

Major Features of the Relational Model / Purposes

Relation: A set of records that represent a real world object or idea.
Table: Contains a set of records that are linked to other sets of records.
Record: A tuple of data, contains all the information on one specific real world object or idea.
Field: Data that describes a record, such as a String or Integer.
Attribute: A description of a field, such as Gender or Age.
Primary Key: An attribute in a relation that can be used to uniquely identify a tuple in that

relation. A Social Security Number is an example of a primary key. If more than two attributes make a
PK, it is known as a composite key.

Foreign Key: A primary key that is placed in a different record and used to refer to the
original record that contains the FK as a PK. The relation that holds the FK will also have its own PK.

Candidate Key: A key that helps narrow down a set of records. For example, an employee CK
can be SSN and Department. However, a candidate key must be able to have all attributes that are
not a PK removed and still be identifiable from other records.

A relational database stores data in tables rather than listing them as giant files of loosely
related data. Having relations allows a computer to cross references tables and jump between data
much faster than doing a sequential search and comparing all data. The features mentioned above
are used to reference other tables and narrow down searches to specified conditions. Most
importantly, a relational model produces a type of functional mapping. That is to say, a query is an
expression that produces a relation. A set of inputs can be treated as sample point X, where X = {x1,
x2 . . . xn} and each xn represents a condition or combination of conditions. An output can then be
treated as sample point Y. The function can be used to visualize relational mapping at a(X) Yf =

very abstract level. Because this mapping is simple, powerful languages have been created to carry
out queries extremely quickly. The combination of these languages and the versatile features of the
relational model make this a great model to build a database schema.

34

2.1.2 Comparison of the Two Different Models

Advantages and Disadvantages of Relational versus ER Model
The relational model is the most widely used model for database implementation. There are

several advantages that the relational model has that makes it a great tool for database design.

The following points present some of these advantages:
1. A relational model can be supported by powerful query languages, such as the widely used

SQL language. These languages allow for complex databases to be created but still be
manageable. The ER model has no language to support database implementation.

2. The relational model can represent multi-valued and complex attributes that the ER Model is
NOT able to properly represent.

3. A relational model is known as a representational model, which shows how data is to be
structured and organized. This has a lower level of abstraction than the ER Model which is
conceptual. This reason is key because it allows languages like SQL to integrate with the
relational model.

4. The relational model has only one ‘data container’ to keep track of, a relation(table) as
opposed to the ER Models entities and relationships.

Listed below are a few of the disadvantages:

1. The ER Model is easier to understand as it presents a highly abstract view of the database
schema. A user needs less knowledge about database design to understand the ER Model;
the relational model packs data into many tables that can be complicated to diagram in one
‘big picture.’

2. Relationships are explicitly shown in the ER Model. With the relational model it can be very
difficult for users to jump from table to table to see how all the data is stored.

Differences and Similarities
Both databases are used to model a database schema. The two models have some

‘container’ for data organization (relations, entities). Each model has a way to show how data is
related and through what other data. Despite having different ways of organizing data and displaying
data, the goal of the two models is the same:

Model a database so that a DMBS can easily implement a collection of records.
The key differences between the two are the level of abstraction. A relational model is less abstract
that the ER Model and is closer to the actual implementation and organization of record. An ER model
is more abstract and can be read more like a diagram with flow of data rather than a storage model.

35

2.2 From Conceptual Database to Logical Database

The following section will describe in detail the methods and techniques used to convert a
conceptual database to a logical database. For this database, the ER model from Chapter 1 will be
converted to a relational database. First, a description will be given on how entity types are
converted to relations. After that, the methods used to convert relationships to relations will be given,
such as mapping. Lastly, the relational database constraints will be explained as well as their impact
on the design process.

2.2.1 Converting Entity Types to Relations

Strong Entity

A strong entity is an entity that can exist without dependence on other entities. Converting
this entity type is simple, create a relation that contains the same attributes as the entity including
any keys.

Weak Entity

A weak entity can only exist if its parent entity also exist. A weak entity to relation conversion
is very similar to a strong entity. The primary key of the strong relation should be the foreign key of
the weak relation. For example, a Employee can have Dependents. Dependent would contain an
Employee SSN and a Dependent SSN. The first key serves as a primary key and the second as a
secondary (weak) key.

Simple vs Composite Attributes

A simple attribute is one that is made up of exactly one attribute. For example, the attribute
Gender can be either M or F. A composite attribute is an attribute that is made up of several
attributes. As an example, attribute Name is made up of Fname, MName, LName. To create a relation
with a composite attribute, simply take the composite attributes and turn them into simple attributes.

Entity with composite value to relation
ER Model → NAME(SSN, NAME(FName,MName,LName), Gender)
Relational → nAME(SSN, FName, MName, LName, Gender)

Single vs Multi-valued attributes

A single valued attribute is an attribute that represents a real world idea or concept. Color is a
good example of a single-valued attribute. A color can be any combination of colors (Composite) but
the term color only means one thing, a color. A multi-valued attribute is an attribute that can be
representative of many different real world objects or ideas. A phone number can be multi-valued if it
can represent a Home Phone, Mobile Phone, or Work Phone. Each of these attributes would come
from the same relation PHONE, which would eliminate the need to create a relation for each specific

36

phone type.
Multi-valued attributes must be turned into their own relations.

ER Model → Staff(ssn, name, phone)
Relational model → Staff(ssn, name) 1 to M

 PHONE(ssn, phoneNum, phoneType)

2.2.2 Converting Relationship Types to Relations

One to One (1:1) conversion methods
● Foreign key approach is used to map a relation T’s primary key to S as a foreign key, or vice

versa. All simple attributes are included if the entity type has total participation.
● Merge the two entity types and relation into one single relation. It’s possible to do this when

there is total participation from both sides, and the two tables will have the same amount of
attributes.

● Cross-reference is to set up a third relation, R, so that we can cross-reference the first two
relations, S and T, where R is a “lookup table” and represents a relationship instance that
relates one tuple from S with one tuple from T. R will contain the primary keys of S and T as
foreign keys to S and T.

One to Many (1:M)

● Foreign key method can be used similar to the one-to-one method. The primary key of the
1-side side should be placed as a foreign key in the N-side because each entity instance on
the N-side is related to at most one entity instance on the 1-side of the relationship type.

● The cross-reference method would be used if few tuples in S participate in the relationship to
avoid excessive NULL values in the foreign key.

Many to Many (M:N)

● Foreign key method will be used to because many to many cannot be represented by a
single foreign attribute in one relation, thus creating a new relationship relation.

● Cross-reference method is used because unlike the one to many relationships, many to many
relationship have to have a separate relation that holds the primary keys of the first two
relations and makes them foreign keys so that there is correspondence. A lookup table is
necessary to find all the many instances that relation T can have of S.

IS-A and HAS-A

● These are specialized entities where entities are linked to a superclass entity and dependent
entity into subclasses. For example, EMPLOYEE would be the superclass and DRIVER and
DISPATCHER would be subclasses. The subclasses will take the attributes of the superclass
and inherit them.

● Conversion Methods:

37

○ Create relations for each of the subclasses and superclasses, have foreign keys in the
subclasses that connect them to their superclasses, and keep their simple attributes.
This works for any specialization.

○ Create a relation for each subclass. This only works for specializations whose
subclasses are total participation or if it has a disjointedness constraint.

○ Create a single relation with a type attribute to indicate which subclass each tuple
belongs to. This only works for specializations whose subclasses are disjoint.

○ Create a single relation with a Boolean type attribute that indicates whether a tuple
belongs to a subclass. This is used only when the specialization have subclasses that
overlap.

Recursive

● Recursive relationships are when an entity has a relationship with itself. So to convert it to a
relation, we must create a foreign key to reference its own primary key. Take the EMPLOYEE
entity for example. When converted over to a relation, we place the key attributes of DRIVER
and DISPATCHER into it as foreign keys. When the information for those two needs to be
retrieved, it’ll be done so through itself. Thus, making it a recursive relation.

N-ary

● For the foreign key model where n > 2, create new relations S to represent R, include foreign
keys in S that are the primary keys of R and the simple attributes of the relationship type as
attributes of S where the primary key of S is a combination of the foreign keys. Repeat for N
amount of relations.

Union type

● A subclass of the union of two or more superclasses that can have different keys because
they can be of different entity types

● A surrogate key is used when a category’s superclass have different keys; a new key attribute
○ Keys cannot be used to identify all entities in the category because they are keys of

different defining classes

2.2.3 Database Constraints

Once an ER Model has been converted to a relational model it is important to consider the
constraints that need to be placed on the database to ensure valid states always exist. To fully
represent a complete relation schema, these rules are needed in order to set appropriate limitations
on top of the collection of data.

Constraints are used to ensure users input data which satisfy all type constraint. When
constraints are violated, DBM Systems should give the appropriate information.
Data must be able to be inserted, deleted, or updated and any data that violates the constraints
described below would destroy mini-world concepts.

38

Examples of data manipulation that would fire constraint violations:
● Wage input by a company accountant is lower than minimum wage requirements.
● Two students of the same last and first name are assigned the same student ID

Number.
● A teaching record of a new faculty being inserted when this faculty instance does not

exist in the database system.

Entity Constraint:
 Entity constraint, aka “Entity Integrity constraint” ensures that each tuple of the same
relation is uniquely identified, such that it can be retrieved separately if needed. This concept forms
the foundation of database design and implementation.
This is carried out by the implementation of primary keys. The value set for a primary key is unique
from one another; each record in a relation is therefore uniquely identified.

Primary Key Constraint:
 A primary key is used to identify individual records in a relation. In order to satisfy this
requirement each tuple in a relation must be both non-null and unique.

Unique Key Constraint:
 Columns other than the combination of primary keys that must be unique value while
“Null” is allowed unless future specified.
Sometimes we will allow duplicates a single column, but applying unique constraint on the
combination of columns. That is, any 2 record in the combination of such columns must at least have
one unique column to identify each other.

Referential Constraints:
 Referential constraints are checked when data in a record is modified or deleted. A referential
constraint checks that modifying a certain record or set of records in relation T won’t result in the
altering of a record in different relations. The DMBS must check T’s foreign keys and see which
relations they reference and ensure that the data in other relations maintain a valid state.

Before a primary key is to be deleted, all foreign keys in other relations that reference this
primary key must be deleted, and this applies to all the cascading levels. This is must be done to
ensure that a key refers to an existing record. If foreign keys are deleted, the referenced primary
keys must either be deleted or modified so they do not have null references.

The leaf node relation key must be deleted first and delete keys higher in the tree hierarchy.

Domain Constraints
 Domain constraints are limitations placed on the attributes of a record. In order to ensure data
integrity and ensuring valid states of the schema, domain constrains must be used to give attributes
name significance. For example, the attribute name can either be a String or an Int. The number of
allowed dependents might be an int that can never be greater than 10. These are left up to the
designer to implement but are crucial in guaranteeing queries produce accurate expressions.

39

Business Constraints
Business constraints are defined by the limitations a business needs to place on the database

schema that cannot be explicitly stated through other constraints. For instance, the minimum wage
could be set to a legally required amount to ensure the company pays all workers the legal minimum
amount.

Null Value Constraints
 The null value constraint determines whether an attribute can have a null value by default or
not. A primary key is an example of an attribute that must never have a null value.

40

2.3. Convert Your E-R/Conceptual Database into a

Relational/Logical Database

The following section details each relation. Constraints, Keys, Attributes, Domains, and a

description are provided for each as well.

A relational model cannot match an ER model exactly because they represent data

differently. The conversion techniques described in the previous sections have been used to turn

entities and relationships into relations.

2.3.1 Relation Schema for the Database
Employee
Constraints
Primary Key: SSN must be unique
Referential: Employee_ID must refer to an individual and real employee.
Business: None

Candidate Keys: Employee_ID, SSN, Name, Address, Phone, Position, Salary, Start Date

Description: This strong entity is turned into a relation with all original attributes minus address and
phone.

Attribute Domain Description

Employee_ID Int: Any x > 0 and unique Number assigned to each
employee by the manager for
clock in/out tracking

SSN Int: 000000000 - 999999999;
unique

Distributed by the Social
Security Department to
uniquely identify persons.

FName String: Any First Name

MName String: Any Middle Name

LName String: Any Last Name

Position String and not unique The job the employee is
assigned.

Phone Int: 0000000000 - The number to contact the

41

9999999999 employee at.

Salary Int: Any x > 0 and not unique How much the employee has
been contracted to make.

Start Date Int(01-12), Int(01-31),
Int(0000-9999)

The day the employee starts.
(MM, DD, YYYY)

Badge Number Int: Any x > 0 and unique Number assigned to a
dispatcher to identify length of
employment with company and
what orders they place and
send out.

License Number String: given by state dmv and
unique

A California issued Class A
driver’s license is needed to
operate vehicle. A unique
8-digit number makes a license
number and uniquely identifies
a driver.

License Exp Int (01-12), int (01-31), int
(0000-9999); not unique

Expiration date of the driver’s
license.

StreetName String and not unique The number and name of the
street the employee lives at.

City String and not unique The city the employee resides
in.

State String and not unique The state the employee lives in

ZIP Int: 00000-99999 The zip code the employee

42

Vending Machine
Constraints
Primary Key: Machine_ID
Referential: Build_ID, Client_ID, Location_ID
Business: none

Candidate Keys: none

Description: The strong entity Vending_Machine is turned into a relation will all its attributes. This
relation uses a Foreign Key approach to referencing Build, Client, Location.

Attribute Domain Description

Machine_ID Integer: Any unique 10 digit
combination

Identify a physical machine

Client_ID Integer: Any unique 10 digit
combination

Identify a single client, owner
of this machine
FK, referenced to Client

Location_ID Integer: Any unique 10 digit
combination

Identifies a location of this
machine
FK, referenced to Location

Build String: Any Identifies Machine Name
(Brand)

Capacity Int: X > 0 Max Capacity of Machine

43

Client
Constraints
Primary Key: Customer_ID must be unique
Referential: Customer_ID must refer to one real client.
Business: None

Candidate Keys: Customer_ID, Name, Company, Machines

Description: This strong entity is turned into a relation with the original attributes minus phone and
address. It will use the foreign key approach to link to a machine and order.

Attribute Domain Description

ClientID Int: Any x > 0 and unique Unique number formed to
identify each customer.

Email String and unique Email for the point of contact

FName String and not unique First name of the customer

LName String and not unique Last name of the customer

Phone Int: 0000000000 -
9999999999

The number to contact the
customer

Company Name String and not unique Name of the company that we
refill machines for .

StreetName String and not unique The number and name of the
street the client is located at.

City String and not unique The city name the client is
located in

State String and not unique The state the client is located
in

Zip Int: 00000-99999; not unique The zip code the client resides
in

44

Location
Constraints
Primary Key: Order_ID
Referential: Wharehouse_ID, Supplier_ID, Lisence_Number
Business: The location where each vending machine seats.

Candidate Keys: non
Description: The strong entity Location is turned into a relation will all its attributes. This relation uses
a Foreign Key approach to referencing Address

Attribute Domain Description

Location_ID Integer: Any unique 10 digit
combination

Identifies a location of this
machine

StreetName String and not unique The number and name of the
street the client is located at.

City String and not unique The city name the client is
located in

State String and not unique The state the client is located
in

Zip Int: 00000-99999; not unique The zip code the client resides
in

45

Route
Constraints
Primary Key: RouteID
Referential: LicenseNumber must refer to an existing employee
Business: None

Candidate Keys: RouteID, LicenseNumber

Description: A route is created which links to many locations. A driver is assigned a delivery route.

Attribute Domain Description

RouteID Integer: Any X > 0 Route identification

LicenseNumber Integer: Any X > 0 Which driver is assigned the route

DateCreated Date When created

TimeCreated Time Time created

46

Delivery
Constraints
Primary Key: RouteID, LocationID, OrderID (compound)
Referential: RouteID, LocationID, OrderID must all refer to existing records
Business: None

Candidate Keys: RouteID, LocationID, OrderID

Description: A lookup table. Is used to link the locations that a route consist of and the orders that go
to the locations.

Attribute Domain Description

RouteID Integer: Any X > 0 Route identification

LocationID Integer: Any X > 0 Which location belongs to this
route

OrderID Integer: Any X > 0 Which order goes to which location

Date Date Date of delivery

TimeArrived Time Time arrived at a location

TimeSpent Time Time spent at a location

47

Order
Constraints
Primary Key: Order_ID
Referential: Warehouse_ID, Supplier_ID, License_Number
Business: Orders are put in by Company Dispatcher in headquarter office

Candidate Keys: none

Description: The strong entity Order is turned into a relation will all its attributes. This relation uses a
Foreign Key approach to referencing warehouse, supplier, and Driver.

Attribute Domain Description

OrderID Integer: Any unique 10 digit
combination

Identify a single order which
was put in by dispatcher

OrderType [Wharehouse_Order,
Vending_Order] 2 values only

A boolean ,
0 : for orders that reloading
the warehouse from supplier
1: for order s that reloading the
remote vending machines
from warehouse

Warehuose_ID Integer: 0 < x < 1000 Identify a sngle warehouse,
FK, referenced to Warehouse

Supplier_ID Integer: 0<x < 1000 Identify a single supplier,
FK, referenced to Supplier

License_number Integer: X > 0 and unique Identifies which Driver drives
this vehicle.
FK, referenced to Driver

48

OrderConstaints
Constraints
Primary Key: Order_ID, ItemTypeID
Referential: Order_ID, ItemType_ID
Business: None

Candidate Keys: Order_ID

Description: A relationship relation, aka a lookup table is invented to bridge M to N relationship
between Entity Order and Entity ItemType

Attribute Domain Description

OrderID Integer: Any unique 10 digit
combination

Identify a single order which
was put in by dispatcher

ItemTypeID Integer: Any unique 10 digit
combination

Identify which single type of
item was ordered

NumItemType 1~999 Number of item types. How
many packs of soda ?
(35 cans, 12 oz)

ItemTypePrice Float 0.01 ~ 999.99 The contracted purchase
price we purchased from
Major Suppliers per
(35 cans, 12oz) pack

ExpDate Date: (1950/1/1 ~ 2049/12/31) The last legal date this drink
may be sold to customer

49

ItemType
Constraints
Primary Key: Item_Type_ID
Referential: non
Business: Non
Candidate Keys: Non

Description: The strong entity Item_Type is turned into a relation will all its attributes.

Attribute Domain Description

ItemTypeID Integer: Any unique 10 digit
combination

Identify a single type of item
which may be stocked and
later put to vending machines

SuppierID Int: X > 0 Which supplier the Item came
from

Name String :
2 ~ 16 charachter

The name of this Item

MSRP Integer: 0 < x < 1000 Market suggested retail price

50

Warehouse
Constraints
Primary Key: Warehouse_ID must be unique
Referential: Manager_SSN must refer to a real employee
Business: Capacity is set by warehouse manager

Candidate Keys: Warehouse_ID

Description: The strong entity Warehouse is turned into a relation minus it’s address attribute. A FK
mapping is between warehouse to employee, order. Employee PK is a FK in warehouse and
warehouse PK is used as a FK in order.

Attribute Domain Description

WarehouseID Integer: X > 0 and unique Uniquely identifies a
warehouse

SSN Integer: Any unique 9 digit
combination >= 0

Links to Employee who
manages warehouse

Capacity Integer: X >= 0 Max Item Types allowed in a
warehouse

StreetName String: Any Name of street

City String: Any City location

State String: Any State location

Zip Integer: Any unique 5 digit X >=
0

Zip code

51

WarehouseHas
Constraints
Primary Key: WarehouseID, ItemTypeID (Compound)
Referential: WarehouseID, ItemTypeID must refer to existing records
Business: None

Candidate Keys: WarehouseID, ItemTypeID

Description: A lookup table that is used to determine warehouse inventory. Links to a warehouse and
to the item type that is sold.

Attribute Domain Description

WarehouseID Integer: Any X > 0 Warehouse identification

ItemTypeID Integer: Any X > 0 Which Items are being referred to

NumItemType Integer: Any X > 0 Num of items sold

ItemTypePrice Integer: Any X > 0 Price of item

ExpDate Date When item expires

52

WarehouseReceives
Constraints
Primary Key: OrderID, WarehouseID (Compound)
Referential: Both primary keys must refer to existing records
Business: None

Candidate Keys: OrderID, WarehouseID

Description: Track which orders are received by a warehouse. This information is useful when
assessing warehouse performance and accounting for shipments.

Attribute Domain Description

OrderID Integer: Any X > 0 Which order is received

WarehouseID Integer: Any X > 0 Which warehouse receives

TimeRec Time Time order received

DateRec Date When order received

53

Supplier
Constraints
Primary Key: Supplier_ID must be unique
Referential: Supplier_ID must refer to one real supplier.
Business: None

Candidate Keys: Supplier_ID, Name

Description: This strong entity is turned into a relation with one original attribute.

Attribute Domain Description

SupplierID Int: Any x > 0 and unique Unique supplier identifier

Name String and not unique The name of the supplier.

Phone Int: 0000000000 -
9999999999

The number to contact the
supplier at

StreetName String and not unique The street number and name
the supplier is located at.

City String and not unique The city the supplier is located
in.

State String and not unique The state the supplier is
located in.

ZIP Int: 00000-99999 The zip code the supplier is
located in.

54

Gas Receipt
Constraints
Primary Key: Driver
Weak Key: Receipt_ID
Referential: PK Driver must point to an existing employee tuple.
Business: Receipts are to be collected by a driver and turned into corporate.

Candidate Keys: Driver

Description: The weak entity Gas Receipt is converted into a relation will all original attributes minus
an address. A FK key mapping is used to link this relation to Driver.

Attribute Domain Description

LicenseNumber Integer: Any unique 9 digit
number

Which Employee has
interacted with this receipt

Recept_ID Integer: Any positive Uniquely ID receipt

StreetName String: Any Name of street

City String: Any City of warehouse locat

State String: Any State location

Zip Integer: Any unique 5 digit X >=
0

Zip code

Total_price Float: X > 0 Total gas purchase price

Date Date Date of purchase

55

Invoice
Constraints
Primary Key: InvoiceID
Referential: MachineID must point to a real Machine record
Business: Will be generated electronically by machine.

Candidate Keys: InvoiceID

Description: An invoice is a report generated by a machine upon the request of a driver or employee.
The generated report includes items sold and helps determine profit.

Attribute Domain Description

InvoiceID Integer: Any X > 0 ID of Invoice

MachineID Integer: Any X > 0 Machine that created invoice

Date Date Date of creation

Time Time Time of creation

ItemsSold
Constraints
Primary Key: ItemTypeID
Referential: ItemTypeID and MachineID must match existing records
Business: None

Candidate Keys: ItemTypeID, InvoiceID

Description: A look up table to track how many items are sold per invoice

Attribute Domain Description

ItemTypeID Integer: Any X > 0 Which Item is Sold

InvoiceID Integer: Any X > 0 From which invoice

Num Integer: Any X > 0 Num of items sold

PriceSold Integer: Any X > 0 Price sold at

56

PlacesOrder
Constraints
Primary Key: OrderID, BadgeNumber
Referential: OrderID and BadgeNumber must refer to existing records
Business: Only Employee who is a dispatcher can place an order

Candidate Keys: OrderID, BadgeNumber

Description: A look up table to track orders placed by a dispatcher.

Attribute Domain Description

OrderID Integer: Any X > 0 Identifies unique order

BadgeNumber Integer: Any X > 0 Dispatcher who placed order

TimePlaced Time Time order placed

DatePlaced Date Date order placed

Vehicle
Constraints
Primary Key: PlateNumber, LicenseNumber
Referential: PlateNumber and LicenseNumber must match existing records
Business: Vehicles can only be driven by driver Employees

Candidate Keys: PlateNumber, LicenseNumber

Description: This strong entity is converted to a relation and is assigned the foreign key that is the
license number of an Employee.

Attribute Domain Description

PlateNumber Integer: Any X > 0 License Plate Number of Vehicle

LicenseNumber Integer: Any X > 0 Employee who drives the vehicle

Make String: Any Which vehicle (brand)

Model String: Any Type of vehicle

VIN Int: Any unique 17 combo Unique manufacturer number

57

2.3.2. Sample Data of Relation

Employee(SSN, FName, LName, Phone, Position, Salary, StartDate, StreetName, City, State, Zip,

License Number, License Exp, Badge Number)

HasRoute(LicenseNumber, RouteID)

Vending Machine(MachineID, ClientID, LocationId, Build, Capacity)

Client(ClientID, FName, LName, Email, Phone, StreetName, City, State, Zip, Company Name)

Location(LocationID, StreetName, City, State, Zip, Description)

Route(RouteID, LicenseNumber, DateCreated, TimeCreated)

Delivery(RouteID, LocationID, OrderID, Date, TimeArrived, TimeSpent)

Order(OrderID, SupplierID, OrderType)

OrderContains(ItemTypeID, OrderID, NumItemType, ItemTypePrice, ExpDate)

ItemType(ItemTypeID, SupplierID, ItemTypeName, MSRP)

Warehouse(WarehouseID, ManagerSSN, Capacity, StreetName, City, State, Zip)

WarehouseHas(WarehouseID, ItemTypeID, NumItemType, ItemTypePrice, ExpDate) //wait

WarehouseReceives(OrderID, WarehouseID, TimeRec, DateRec)

OrdersFrom(SSN, SupplierID, DateOrdered, TimeOrdered)

PlacesOrder(OrderID, BadgeNumber, TimePlaced, DatePlaced) //here

Supplier(SupplierID, Name, Phone, StreetName, City, State, Zip)

GasReceipt(LicenseNumber, ReceiptID, StreetName, City, State, Zip, Total Price, Date)

Invoice(InvoiceID, MachineID, Date, Time)

ItemsSold(ItemTypeID, InvoiceID, NumSold, PriceSold)

Vehicle(PlateNumber, LicenseNumber, Make, Model, VIN)

58

2.4. Sample Queries to our Database

Detailed below are 10 sample queries based on the newly designed relational database.

Each query is answered in three academic query languages:

Relational Algebra, Tuple Relational Calculus, Domain Relational Calculus

2.4.1 Design Of Queries

1. List the SSN and Name of all Employees who are drivers.

2. List SSN, Name, and Start Date of all Driver’s who have started in the past year.
3. List all Clients who own at least two machines.

4. List Clients who own only one machine.

5. List all Machines that stock at least two ItemTypes.

6. List all Drivers who have delivered to every location
7. List all Dispatchers who have ordered from all suppliers.

8. List all Driver who delivered to CSUB between Jan 2018 and Jan 2019.

9. Invoice that contains the least amount of items sold.
10. Invoice that contains the second least amount of items sold.

2.4.2 Relational Algebra Expressions for Queries of 4.1

Relational algebra is a procedural query language that outputs a relational expression. A

procedural query language is one that relies on the state of a expression and the steps that are taken

to attain the desired state. A select statement, denoted by the symbol σ, is used to select records

with specified attributes. A project statement, denoted by π, is used to select attributes of a relation

(columns). If there is a cross-product of two or more relations it is important to select attributes that

can be used to combine the many relations. Because select and project statements act on relational

expressions, it is possible to combine many select and project statements to single out a specific

relational expression.

1. List the SSN and Name of all Employees who are drivers.

πSSN,Name(σposition = Driver(Employee))

2. List SSN, Name, and Start Date of all Driver’s who have started in the past year.
Drivers ← (σposition = Driver ^ StartDate >= (Today - 1 year)(Employee))
πSSN, Name, StartDate (Drivers)

59

3. List all Clients who own at least two machines.

ClientTwoM ← σc.ClientID = m1.ClientID ^ c.ClientID = m2.ClientID ^ m1.MachineID != m2.MachineID(Client X
Vending Machine X Vending Machine)
π*(Client * ClientTwoM)

4. List Clients who own only one machine.

ClientTwoM ← σc.ClientID = m1.ClientID ^ c.ClientID = m2.ClientID ^ m1.MachineID != m2.MachineID(Client X
Vending Machine X Vending Machine)
π*(Client * (Client - ClientTwoM))

5. List all Machines that stock at least two ItemTypes.

VMTwo ← σvm.MachineID =inv.MachineID ^ itm1.InvoiceID = inv.InvoiceID ^ itm2.InvoiceID = inv.InvoiceID ^

itm1.ItemTypeID != itm2.ItemTypeID ^ Date >= Present) (Vending Machine X Invoice X
ItemsSold/Needed X ItemsSold/Needed)
π(*)(VMTwo)

6. List all Drivers who have delivered to every location
Driver ← σPosition = Driver(Employee * Route * Delivery)
π(SSN, Name, LicenseNumber)(Driver) % π(LicenseNumber)(Location)

7. List all Dispatchers who have ordered from all suppliers.

Dispatchers ← σPosition = Dispatcher(Employee * OrdersFrom)
π(Name, BadgeNumber, SupplierID)(Dispatchers) % π(SupplierID)(Supplier)

8. List all Driver who delivered to CSUB between Jan 2018 and Jan 2019. (TODO)

TEMP ← (Employee*Route*Delivery)
πSSN,Name,LicenseNumber(σt.LocationID = l.LocationID ^ l.Address = CSUB(TEMP X Location)

9. Invoice that contains the least amount of items sold.
Invoice * (ItemsSold - π(i1.*)(σi1.NumSold > i2.NumSold (ItemsSold X ItemsSold)))

10. Invoice that contains the second least amount of items sold.
Invoice * (ItemsSold - π(r1.*)(σi1.NumSold > i2.NumSold ^ i2.NumSold > i3.NumSold(ItemsSold X
ItemsSold X ItemsSold)))

60

2.4.3 Tuple Relational Calculus Expressions for Queries

Tuple relational calculus is a non-procedural query language that focuses on what to do

rather than how to do it. We define a tuple variable, specify the relation that the tuple is in and the

condition. By doing this, we give a description of the query on how to get to the result. Tuple

calculus has both bounded and free variables that specify whether the condition will remain the

same or change throughout time.

1. List the SSN and Name of all Employees who are drivers.

{e.SSN, e.Name | Employee(e) ^ e.position = Driver}
2. List SSN, Name, and Start Date of all Driver’s who have started in the past year.

{e.SSN, e.Name, e.StartDate | Employee(e) ^ e.position = Driver ^ e.StartDate >=
(Today - 1 year)}

3. List all Clients who own at least two machines.

{c | Client(c) ^ (∃m1)(∃m2) (VendingMachine(m1) ^ VendingMachine(m2) ^
c.ClientID = m1.MachineID ^ c.ClientID = m2.MachineID ^ m1.MachineID !=
m2.MachineID)}

4. List Clients who own only one machine.

{c | Client(c) ^ (∃m1)(∃m2) (VendingMachine(m1) ^ VendingMachine(m2) ^
c.ClientID = m1.MachineID ^ c.ClientID = m2.MachineID ^ m1.MachineID !=
m2.MachineID)}

5. List all Machines that stock at least two ItemTypes.

{m | VendingMachine(m) ^ (∃i)(∃itm1)(∃itm2) (Invoice(i) ^ ItemsSold(itm1) ^
ItemsSold(itm2) ^ m.MachineID =i.MachineID ^ itm1.InvoiceID = i.InvoiceID ^
itm2.InvoiceID = i.InvoiceID ^ itm1.ItemTypeID != itm2.ItemTypeID ^ Date >=
Present)}

6. List all Drivers who have delivered to every location
{m | VendingMachine(m) ^ (∃i)(∃itm1)(∃itm2) (Invoice(i) ^ ItemsSold(itm1) ^
ItemsSold(itm2) ^ m.MachineID =i.MachineID ^ itm1.InvoiceID = i.InvoiceID ^
itm2.InvoiceID = i.InvoiceID ^ itm1.ItemTypeID != itm2.ItemTypeID ^ Date >=
Present)}

7. List all Dispatchers who have ordered from all suppliers.

{e | Employee(e) ^ e.Position = Dispatcher ^ (∀s)(Supplier(s) →
(∃o)(OrdersFrom(o) ^ o.BadgeNumber = e.BadgeNumber ^ o.SupplierID =
s.supplierID))}

61

8. List all Driver who delivered to CSUB between Jan 2018 and Jan 2019.

{e | Employee(e) ^ e.Position = Driver ^ (∃r)(∃d)(∃l)(Route(r) ^ Delivery(d) ^
Location(l) ^ cCSUB)}

9. Invoice that contains the least amount of items sold.
{i | Invoice(i) ^ (∃s)(ItemsSold(s) ^ s.InvoiceID = i.InvoiceID ^
ㄱ(∃s2)(ItemsSold(s2)
^ s2.NumSold < s.NumSold))}

10. Invoice that contains the second least amount of items sold.
{i | Invoice(i) ^ (∃s)(ItemsSold(s) ^ s.InvoiceID = i.InvoiceID ^
(∃s2)(ItemsSold(s2)
^ s2.NumSold < s.NumSold ^ ㄱ(∃s3)(ItemsSold(s3) ^ s3.NumSold <
s.NumSold ^ s3.NumSold != s2.NumSold)))

2.4.4 Domain Relational Calculus Expressions for Queries

Domain relational calculus is a procedural query language and is very similar to tuple

relational calculus. Filtering is done based on the domain of the attribute and not on the tuples value.

A relational expression is returned if the relation has an attribute that matches the domain of the free

variables. What this means is rather than specifying that a specific relation with specific attributes

exist, domain calculus specifies that there exists one or many relations that match one or more of the

free variables. Similar to tuple calculus, existential or universal quantifiers can be used.

1. List the SSN and Name of all Employees who are drivers.

{<s,f,l,p> | Employee(s,f,l,p) ^ p = Driver}
2. List SSN, Name, and Start Date of all Driver’s who have started in the past year.

{<ssn,fName,lName,Position,StartDate> |
Employee(ssn,fName,lName,Position,DateStart) ^ StartDate >= (Today - 1
year)}

3. List all Clients who own at least two machines.

{<ClientID,FName,LName> | Client(ClientID,FName,LName) ^
(∃m1)(VendingMachine(m1,ClientID) ^ VendingMachine(!=m1,ClientID))}

4. List Clients who own only one machine.

{<ClientID,FName,LName> | Client(ClientID,FName,LName)
(∃m1)(∃m2)(VendingMachine(m1,ClientID) ^ㄱ(Machine(m1!=m2,ClientID))}

5. List all Machines that stock at least two ItemTypes.

{<ClientID,FName,LName> | Client(ClientID,FName,LName)
(∃m1)(∃m2)(VendingMachine(m1,ClientID) ^ㄱ(Machine(m1!=m2,ClientID))}

6. List all Drivers who have delivered to every location
{<s,f,l,d> | Employee(s,f,l,d) ^ Route(r,d) ^ (∀l)(Delivery(r,l)}

62

7. List all Dispatchers who have ordered from all suppliers. |

{<s,f,l,p> | Employee(s,f,l,p) ^ Suppler(sd) ^ (∀sd2)(OrdersFrom(s,sd=sd2))}
8. List all Driver who delivered to CSUB between Jan 2018 and Jan 2019.

{<s,f,l,p> | Employee(s,f,l,p) ^ (∃r)(Route(r,p) ^ (∃l)(Delivery(r,l) ^
(∃a)(Location(l,a) ^ a = csub)))}

9. Invoice that contains the least amount of items sold.
{<i,m,> | Invoice(i,m) ^ (∃n)(ItemsSold(i,n) ^ ㄱ(∃n2)(ItemsSold(n2) ^ n2 <
n))}

10. Invoice that contains the second least amount of items sold.
{<i,m,> | Invoice(i,m) ^ (∃n)(ItemsSold(i,n) ^ (∃n3)(ItemsSold(n3) ^ n3 < n
^ㄱ(∃n2)(ItemsSold(n2) ^ n2 < n ^ n3!=n2))}

63

3 Implementation of Relational Database

3.1 Relation Normalization

3.1.1 Normalizations

 Normalization is a methodical mathematical approach, which has been proven to minimize

data redundancy in a relational database system. Mathematically, the normalization process is

divided into 1st degree, 2nd degree, 3rd degree, Boyce-Codd, and 4th degree. Boyce-Codd is a higher

normalized form than 3rd degree , but need not satisfy 4th degree normalization. In most industry

relations, Boyce-Codd normalized form is considered sufficiently met the data normalized

requirements. Fourth Degree form is optional in most line of business.

 From the Entity-Relationship Model down to Relational Model, the originally goal was to use

only one entity to represent one object in mini world. This object may be concrete item or abstract

ideas. Then, use relationships to represent additional information flow in between 2 or 3 Entities.

Nonetheless, this process does very little to avoid data redundancy. Redundancy occupies

unnecessary storage as well as causes maintenance issue in a database system.

3.1.2 First, Second, Third, and Boyce-Codd Normal Forms

First Normal Forms:

Relation is in at least 1st normal form if it only has singled valued attributes. For a cell, which

represent an attribute of single tuple in this relation, must always be atomic.

 The 2nd, 3rd, BCNF, and 4th Normalization all deals among the columns within the same relation.

At all these levels, a collection of columns of a relation is redundant if all the records in these

columns can be derived from another collection of columns in this relation. In other words, they are

“functionally dependent” on other columns.

Second Normal Forms:

Second Normal Forms exist if and only if “No partial dependency”. Partial Dependency, happens only

when we have composite primary key. For relations with single column primary key, it automatically

satisfy 2nd normal forms.

For relations with composite primary key, If a set of “non-prime ” attributes are dependent on only a

portion of the composite primary key, this is called “Partial Dependency.”

64

There are some observation of rules here:

● If the relation is a lookup table, it has no “non-prime” attribute, there is no partial dependency

=> 2nd Normalization satisfied

 Ex :

 OrdersFrom (SSN , SupplierID)

Third Normal Forms:

 Third Normal Forms exist if and only if “No transitive dependency”.

A->B , B->C , if both are true, then A->C .

 Attribute C can be determined by both attribute B and attribute A. By nature, a transitive

dependency requires 3 or more columns (this means 2 column relation satisfy 3rd normalization by

default).

Ex :

 Client (ClientID, FName, LName, Email, Phone , StreetName, City, State, Zip, Company

Name)

 ClientId -> Phone, Phone -> Zip, Zip-> State

After 3rd Normalization:

 Client (ClientID, FName, LName, Email, Phone , Company Name, AddressID)

 Address(AddressID, StreetName, City, State, Zip)

 Client has new foreign key , AddressID , referencing Address (AddressID)

Boyce-Codd Normal Forms:

Boyce-Codd Normal Forms exist if and only if

“for all Functional dependency in Relation R,

A -> B , A is a valid candidate key , ”.

 The left hand side of all functional dependency of a Relation must be a candidate key. Boyce-Codd

Normal Form is guaranteed to have no redundancy caused by. Functional dependency.

65

3.3.3 Anomalies

For relations yet to normalized, data comes data anomaly. Insertion anomaly occurs when certain

attributes cannot be inserted into the database without the presence of other attribute in the same

relation. Deletion anomaly occurs when attributes cannot be deleted from the database without the

deletion of other attribute in the same relation. An update anomaly = insertion anomaly + deletion

anomaly; redundancy caused data anomaly. BCNF is the minimum requirement to thoroughly

eliminate all data modification anomalies.

3.2 PostgreSQL

3.2.1 Purpose

PostgreSQL is a object-relational database management system that has user-defined types,
table inheritance, foreign key referential integrity, and allows the user to add custom functions
developed using different languages. It’s main purpose is serve as the database backend where
queries are ran to insert, cross, or select data.

3.2.2 Schema Objects for PostgreSQL Database

Table

Postgres uses tables as a unit of data storage. Relations are turned into tables and their
attributes are used as columns. The data inserted into those columns have their own data types,
which are determined by what is to be stored in that column, and they create rows. The data can be
inserted, updated, deleted or queried on demand.

Syntax:
CREATE TABLE tablename(

column1 datatype,
column2 datatype,
column3 datatype,

…..
);

Views

View is a virtual table used to simplify complex queries and to apply security for a set of
records. When forming, we create a query and assign it a name. This makes it useful for wrapping a

66

commonly used complex query. Views are read only because the system doesn’t allow it to do
anything else.

Syntax:
CREATE VIEW name AS

SELECT *
FROM _____
WHERE _______ ;

Trigger
A trigger is a specification that the database must automatically execute a specific function

whenever a specific type of operation is performed. They can be attached to both views and tables.
They can execute before or after an INSERT, UPDATE, or DELETE operation on tables. And they can
be set to execute in place of an INSERT, UPDATE, or DELETE operation. The function it’s triggering
must be defined before the trigger can be created, and it must be declared as a function taking no
arguments and returning type.

Syntax:
CREATE [OR REPLACE] TRIGGER trigger_name
{ BEFORE | AFTER | INSTEAD OF }
{ INSERT [OR] | UPDATE [OR] | DELETE }
[OF col_name]
ON table_name
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condition)
BEGIN

--- statements
END;

Indexes

The index approach is similar to those in books where the back of the book has a collection
of terms and where they appear in the book. Once an its created, the programmer doesn’t have to
intervene as much because the system will update the index when the table is modified and use the
index in queries when it sees it best fit over a sequential search.

Syntax:
CREATE INDEX test_b_index ON test (b);

67

Stored Procedures
Stored procedures are user-defined functions. These procedures take in parameters and

perform some logic on them. They allow for database functionality to be extended as it allows data to
be manipulated beyond the standard SQL statements. Stored procedures are used to create triggers
or aggregate functions. These functions are also pre-compiled in PostgresSQL and as a result
reduces the amount of round trips an application has to make to a database server. However, it is
important to note that stored procedures are highly specialized and should be handled by
experience database engineers to avoid unmaintainable procedures.

Syntax
CREATE FUNCTION function_name(parameters)

RETURNS type AS
BEGIN

 --logic
END;

68

3.3 Relational Schema Data
3.3.1 Employee

3.3.2 VendingMachine

69

3.3.3 Client

3.3.4 Location

70

3.3.5 Route

71

3.3.6 Delivery

72

3.3.7 Orders

73

3.3.8 OrderContains

74

3.3.9 ItemType

75

3.3.10 Warehouse

76

3.3.11 WarehouseHas

77

3.3.12 WarehouseReceives

78

3.3.13 OrdersFrom

79

3.3.14 PlacesOrder

80

3.3.15 Supplier

81

3.3.16 GasReceipt

82

3.3.17 Invoice

83

3.3.18 ItemsSold

84

3.3.19 Vehicle

85

3.4 SQL Queries

The following queries are the translations from relational algebra and relational calculus of

those in phase 2.

1. List the SSN and Name of all Employees who are drivers.
SELECT ssn, fname, lname FROM employee
WHERE position = 'Driver';

Output:

2. List SSN, Name, and Start Date of all Driver’s who have started in the past year.
SELECT ssn, fname, lname, sdate FROM employee
WHERE position = 'Driver'
AND sdate >= now() - '1 year'::interval;

Output:

3. List all Clients who own at least two machines.

SELECT c1.clientid,c1.fname,c1.lname FROM client c1, vendingmachine m1,vendingmachine m2
WHERE c1.clientid = m1.clientid AND c1.clientid = m2.clientid AND m1.machineid <>
m2.machineid
GROUP BY c1.clientid;

Output:

4. List Clients who own only one machine.

86

SELECT c2.* from client c2 EXCEPT SELECT c1.* FROM client c1, vendingmachine m1,
vendingmachine m2
WHERE c1.clientid = m1.clientid AND c1.clientid = m2.clientid AND m1.machineid <> m2.machineid
GROUP BY c1.clientid;

Output:

5. List all Machines that stock at least two ItemTypes.

SELECT m1.* from vendingmachine m1, Invoice i, ItemsSold s1, ItemsSold s2
WHERE m1.machineid = i.machineid AND i.invoiceid = s1.invoiceid AND
s2.invoiceid = i.invoiceid AND s1.itemtypeid <> s2.itemtypeid
GROUP BY m1.machineid;

Output:

87

6. List all Drivers who have delivered to every location.
SELECT e.EmployeeID, e.fname, e.lname, e.LNum FROM employee e
NATURAL JOIN (SELECT r.LicenseNumber FROM route r
NATURAL JOIN (SELECT d.RouteID FROM Delivery d

WHERE NOT EXISTS (SELECT * FROM Location l
WHERE NOT EXISTS (SELECT * FROM Delivery d1
WHERE d1.RouteID = d.RouteID AND d1.LocationID = l.locationid))) AS p)
AS ep WHERE e.lnum = ep.LicenseNumber
GROUP BY e.employeeid;

Output:

7. List all Dispatchers who have ordered from all suppliers.

SELECT e.employeeid, e.fname, e.lname, e.bnum FROM employee e
NATURAL JOIN (SELECT o.BadgeNumber FROM OrdersFrom o

WHERE NOT EXISTS (SELECT * FROM Supplier s
 WHERE NOT EXISTS (SELECT * FROM OrdersFrom o1
 WHERE o1.BadgeNumber = o.BadgeNumber AND o1.SupplierID = s.SupplierID)))

AS p WHERE e.bnum = p.badgenumber GROUP BY e.employeeid;
Output:

88

8. List all Driver who delivered to CSUB between Jan 2018 and Jan 2019.
SELECT e.employeeid, e.fname, e.lname, e.ssn, d1.odate, d1.locationid, l.description FROM
employee e
NATURAL JOIN route
NATURAL JOIN delivery d1,

(SELECT * FROM location
WHERE description = 'csub') AS l WHERE d1.locationid = l.locationid
AND l.description = 'csub' AND odate >= '2018-01-01'::date AND odate <=
2019-01-01'::date
GROUP BY e.employeeid, d1.odate, d1.locationid, l.description ORDER BY
e.employeeid;

Output:

89

9. Invoice that contains the least amount of items sold.

SELECT * FROM invoice
NATURAL JOIN (SELECT s.* FROM itemssold s EXCEPT

SELECT s2.* FROM itemssold s2, itemssold s1
WHERE s2.numsold > s1.numsold)
AS sla ORDER BY sla.numsold;

Output:

10. Invoice that contains the second least amount of items sold.

SELECT * FROM invoice
NATURAL JOIN (SELECTION s.* FROM itemssold s EXCEPT

SELECT s3.* FROM itemssold s3, itemssold s2, itemssold s1
WHERE s3.numsold > s2.numsold
AND s2.numsold > s1.numsold) AS sla
ORDER BY sla.numsold;

Output:

90

4 Stored Subprograms, Packages and Triggers

In this phase, we will discuss the implementation of PL/pgSQL and how it is used to

implement complex database operations. We will cover the purpose of PL/pgSQL, some features

provided by PostgreSQL and their syntax, and operations used for our PostgreSQL database.

4.1 Postgres PL/pgSQL

In this section we will take an in depth look into PL/pgSQL and the components implemented

to make the database easier to fill with data. We will cover benefits, program structure, control

statements, stored procedures and functions and their syntax, and more.

4.1.1 What is PL/pgSQL

PL/pgSQL is a Procedural Language for the PostgreSQL database management system.

PostgreSQL was designed to create functions and trigger procedures, add control structures to the

SQL language, and perform complex computations. It can inherit all user-defined types, functions,

and operators, be defined to be trusted by the server. Overall, it is a simple to learn but powerful

system that is great to master.

The Benefits of PL/pgSQL are the ability to implement stored procedures, functions and

triggers. Stored procedures and functions can be implemented in place of writing long queries that

can have errors, take long amounts of time to execute, and could potentially mess up the information

already in the database. Queries must be compiled every time they are executed while stored

procedures are compiled only the first time and stored in cache memory. These advantages make

stored procedures very powerful as they can greatly speed up data gathering when millions of

records are involved. Triggers can be used to activate another function, e.g. INSERT or DELETE,

when a certain event occurs. Triggers can be used modify data so that constraints may not be

violated, can be used to catch data changes and move them to new relations, help with cascading

deletes, and many other convenient procedures.

4.1.2 PL/pgSQL Program Structure, Control Statements, and Cursors

Program Structure

PL/pgSQL is a block structured language which results in functions or stored procedures

being organized in blocks. The blocks consist of a declaration and a body. The declaration section is

where all the variables that will be used within the body section are declared and the body section is

where the code manipulates data.

91

Syntax:

[<<label>>]

[DECLARE

 declarations]
BEGIN

 statements;
 …

END [label];

Control Statements

Control statements can be used to manipulate data in a PostgreSQL database system. The

different types of structures are: return, conditional, loop, and error trapping.

The return statements allow you to return data from a function and its syntax is:

 RETURN expression;

and

RETURN NEXT expression;

RETURN QUERY query;

RETURN QUERY EXECUTE command-string [USING expression [, ...]];

The conditional statements are IF and CASE statements that allow you to execute alternative

commands based on certain conditions.

IF types:

IF boolean-expression THEN statements END IF;

IF boolean-expression THEN statements ELSE statements END IF;

IF boolean-expression THEN statements

[ELSIF boolean-expression THEN statements

[ELSIF boolean-expression THEN statements

 ...]]

[ELSE statements]

92

END IF;

CASE types:

CASE search-expression

WHEN expression [, expression [...]] THEN statements

 [WHEN expression [, expression [...]] THEN statements

 ...]

 [ELSE statements]

END CASE;

CASE

WHEN boolean-expression THEN statements

 [WHEN boolean-expression THEN statements

 ...]

[ELSE statements]

END CASE;

The loop statements are LOOP, EXIT, CONTINUE, WHILE, and FOR; they give you the ability to

repeat a series of commands.

LOOP:

[<<label>>]

LOOP

 statements

END LOOP [label];

EXIT:

EXIT [label] [WHEN boolean-expression];

93

CONTINUE:

CONTINUE [label] [WHEN boolean-expression];

WHILE:

[<<label>>]

WHILE boolean-expression LOOP

 statements

END LOOP [label];

FOR:

[<<label>>]

FOR name IN [REVERSE] expression .. expression [BY expression] LOOP

 statements

END LOOP [label];

Cursors

A cursor can be setup to encapsulate a query and read the results a few rows at a time to

avoid memory overrun if the result contains a large number of rows. You can also return a reference

to a cursor that a function has created, which allows the caller to read the rows. It’s a special data

type named refcursor.

Syntax:

name [[NO] SCROLL] CURSOR [(arguments)] FOR query;

4.1.3 Stored Procedure and Syntax

A stored procedure is a set of SQL and procedural statements stored in a database server

and can be activated using the SQL interface. These procedures can take parameters and return

them as OUT parameters and return single and multiple result sets. Stored procedures are compiled

the first time they are executed and then stored in cache memory, avoiding recompiling until

removed from cache.

94

Syntax:

CREATE OR REPLACE PROCEDURE procedure_name(parameter_list)

 RETURNS void AS $$

 BEGIN

 stored_procedure_body;

 END;

 $$ LANGUAGE language_name;

4.1.4 Stored Function and Syntax

A stored function is a user defined function of SQL and procedural statements that are stored

in the database server and can be activated using the SQL interface much like a stored procedure. It

can be used in an expression and return a value or single result set. They behave just like stored

procedures.

Syntax:

CREATE OR REPLACE FUNCTION function_name(parameter_list)

 RETURNS void AS $$

 BEGIN

 stored_function_body;

 END;

 $$ LANGUAGE language_name;

4.1.5 Trigger and Syntax

A trigger is an object associated with a specific table that executes when a certain event

occurs. It can be specified to fire before or after the operation is attempted or completed. INSTEAD

OF triggers must be marked FOR EACH ROW and can only be defined on views.

95

FOR EACH ROW: For every row of a relation that a trigger is called upon, fire the trigger

FOR EACH STATEMENT: If a relation fired a trigger, only fire that trigger once per trigger call, instead

of once per row.

Syntax:

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }

 ON table

 [FROM referenced_table_name]

[NOT DEFERRABLE | [DEFERRABLE] { INITIALLY IMMEDIATE | INITIALLY DEFERRED }

]

[FOR [EACH] { ROW | STATEMENT }]

[WHEN (condition)]

 EXECUTE PROCEDURE function_name (arguments)

where event can be one of:

INSERT

UPDATE [OF column_name [, ...]]

DELETE

 TRUNCATE

96

4.2 Postgres PL/pgSQL Subprograms

In this section we will explore the syntax of creating stored procedures, functions and

triggers. Stored procedures, functions and triggers are significant to database systems because they

make certain functions easier to write and manage. For instance, if something needs to be added

into a table, a stored procedure or function can be used as a shorter version of the query needed to

insert the new data.

4.2.1 Stored Procedures

The following are stored procedures and functions that insert, delete and calculate the

average of the number items sold.

Insert:

This function inserts new data into the Orders table.

CREATE FUNCTION NewInsert(_OrderID integer, _SupplierID integer, _OrderType text)
 RETURNS void AS
 $BODY$
 BEGIN
 INSERT INTO Orders(OrderID, SupplierID, OrderType)
 VALUES(_OrderID, _SupplierID, _OrderType);
 END;
 $BODY$
LANGUAGE 'plpgsql' VOLATILE
This screenshot shows the insertion of a new order.

This screenshot shows that the new order was in fact placed in the Orders table.

97

Delete:
This procedure deletes an employee from the table.

CREATE PROCEDURE DeleteSelect(_DeleteID integer) AS
 $BODY$
 BEGIN
 DELETE FROM Employee
 WHERE EmployeeID = _DeleteID;
 END;
 $BODY$
LANGUAGE 'plpgsql'

To execute a procedure, we must use CALL. This screenshot shows the demonstration of the
procedure at use.

In this screenshot, you can see that the employee where employeeid = 2 has been deleted.

Calculate Average:

This procedure calculates the average number of items sold.

CREATE OR REPLACE FUNCTION CalcAvg()
RETURNS integer AS
$$
BEGIN

RETURN (SELECT AVG(NumSold) FROM ItemsSold);
END;
$$

LANGUAGE plpgsql;

98

In this screenshot you can see the avg of the number of items sold.

4.2.2 Triggers
This section will explore writing triggers as well as cascading deletions. For simplicity and for

the purposes of demonstration, three tables are created: employee, department, and job. The
employee and job tables have a DID attribute that reference the department table’s primary key, DID.

DID is Department ID

The following syntax creates three tables, two which refer to department. Department must
be created first in order to satisfy the foreign key referential constraints set on employee and job. On
delete cascade is used to delete a row in a parent table and all rows in other child tables that refer to
the parent row.

CREATE TABLE department (

DID serial PRIMARY KEY,
dname text

);

CREATE TABLE employee(

eid serial PRIMARY KEY,
did integer REFERENCES department(did) on DELETE CASCADE,
ename text

);

CREATE TABLE job(

jid serial PRIMARY KEY,
did integer REFERENCES department(did) on DELETE CASCADE,
jname text

);

1st Trigger: Before Update

99

The BEFORE UPDATE trigger is used to call a procedure before the update statement begins
execution. This is beneficial when attempting to work around constraints. For this example we update
a department id but before doing so, we set the employee DID to null to avoid any constraint issues.

Update department function:
CREATE OR REPLACE FUNCTION update_department() RETURNS TRIGGER AS

$$
BEGIN

UPDATE employee set did = null where did = old.did;
RETURN new;

END;
$$

LANGUAGE plpgsql;

Trigger:
CREATE TRIGGER update_dep

BEFORE UPDATE ON department
FOR EACH ROW
EXECUTE PROCEDURE update_department ();

Screenshot: Department and Employee. Department DID = 3 is updated to DID = 4 and employee
jason who worked that department has his value to set null.

100

Example 2: Department DID = 1 is set to 3. Employee Bob and Steve, who worked in that department,
have their DID set to null.

Cascade Delete:

CASCADE DELETE is used to delete a row and all other rows in different tables that reference the
parent row. This is used to bypass all constraints and wipe data quickly. This is more of a nuke on the
data rather than a surgical deletion.

Below a view is shown crossing employee,department, and job:

101

Two employees, Steve and Lucy work in department 1 as teachers. A delete is used on department
with did = 1 and the cascade deletes both lucy and steve. The following screenshot shows the
leftover rows in the view:

3rd Trigger: INSTEAD OF

Views are a way to combine many relations into one view point. For example, creating a view
consisting of relations employee, department, and job would avoid the need to consistently query
with joins across multiple tables.

Creating a view:
CREATE VIEW employee_department as SELECT * FROM employee natural join department;

As we can see, an initial join needs to be made, but from now on the statement
SELECT * FROM employee_department;
can be used to bring this table up.

Views that contain different tables cannot be used to insert data directly into the base tables. An
INSTEAD OF trigger can be used to insert data into the appropriate base tables in the appropriate
order.

102

For this example, the insert function must ensure department info is inserted first to avoid any
constraint conflicts.

Insert Function:

CREATE OR REPLACE FUNCTION update_emp_dep() RETURNS TRIGGER AS $$

BEGIN
INSERT INTO department (did,dname) VALUES (new.did,new.dname);
INSERT INTO employee(eid,did,ename) VALUES(new.eid,new.did,new.ename);
RETURN new;

END;
$$ LANGUAGE plpgsql;

Trigger
CREATE TRIGGER insert_emp_dep

INSTEAD OF INSERT ON employee_department
FOR EACH ROW EXECUTE PROCEDURE update_emp_dep ();

To demonstrate this, an employee by the name of jason is inserted into the view using
Insert into employee_department(did,eid,ename,dname)
values(3,4,’jason’,’math’);
The INSTEAD OF trigger fires and two inserts are performed.
The following shows a view containing the employee and department.

4.3 PL/pgSQL-Like Languages in Microsoft SQL Server, MySQL and Oracle

DBMS

 A language is an expression of information structured by syntax, which includes

keywords and identifiers as well as ways to manipulate data. Database management system (DBMS)

103

language is a domain specific language to describe desired set of behaviors in a database. The

discussion of such language is divided as follows:

 SQL core syntax set:

 select, insert, delete, update tables …

 Other syntax set, which describe the dynamic behavior of data:

 - 4.3.1 Selective statements

 - 4.3.2 Repetitive statements

 - 4.3.3 Statements for creating Stored procedures/functions/triggers.

 It is worth discussing the design philosophy of three powerful DBMS and their languages to

gain knowledge and become better database engineers. Oracle DBMS was the first Relational

implemented Database System in 1980s, it has been considered a high-end commercial DBMS

product with supreme quality and can be quite expensive. For over 25 years, it has been

implemented mostly in C and some assembly language for efficiency purpose. As such, its language

feature, Oracle PL-SQL was developed from ADA. While C/C++ was developed to simplify ADA

syntax in the 1980s, Oracle PL-SQL had decided to keep most ADA language features to allow

Database developers the maximum freedom to squeeze every last ounce of performance. Full

edition of ADA features in PL-SQL also allow a better software maintenance for Database

developers. With its full feature including package, exception handling, in/out parameter setting,

Oracle PL-SQL developer may tailor the semantics of language at a fine-grained level, while making

it reusable at the same time.

 Microsoft SQL-Server was originally designed by Sybase and later improved by Microsoft.

The goal was to make a “competitive market share against IBM”. The software developing cost per

feature is significantly lower than Oracle, making it possible for massive distributions while remaining

budget friendly for customers.

The language feature is designed to be as possible. The language, Transact-SQL is heavily

coupled with a user-friendly graphic interface, “Microsoft SQL Server Management Studio”. One can

create the complete database, with all its constraints, simply by mouse drag and click. The studio

may automatically generate the corresponding T-SQL statements base on mouse actions.

 MYSQL Database System was a complete open-source DBMS, but its license was purchased

by Sun Microsystems, and later Oracle Corporates for marketing purpose. Oracle Corporates has

been intentionally limiting the scope of open source packages, making it a “reduced DBMS system”

104

with the competitive price range of Microsoft SQL Server. The language currently lacks a few new

features in Oracle Enterprise DBMS and PostgreSQL.

The most current SQL standard, SQL:2016, may be considered as an intersection set among

all DBMS languages. There is proprietary software available to convert an DMBS language from one

to another.

4.3.1 Selective Statements

Oracle DBMS:

 IF condition1 THEN

 {...statements to execute when condition1 is TRUE...}

 ELSIF condition2 THEN

 {...statements to execute when condition1 is FALSE and condition2 is TRUE...}

 ELSE

 {...statements to execute when both condition1 and condition2 are FALSE...}

 END IF;

105

MySQL DBMS:

 Note: it is identical to PL-SQL syntax

 IF condition1 THEN

 {...statements to execute when condition1 is TRUE...}

 [ELSEIF condition2 THEN

 {...statements to execute when condition1 is FALSE and condition2 is TRUE...}]

 [ELSE

 {...statements to execute when both condition1 and condition2 are FALSE...}]

 END IF;

Microsoft SQL-Server DBMS: T-SQL

 Note: T-SQL does not support else if condition statement

 IF condition

 {...statements to execute when condition is TRUE...}

 ELSE

 {...statements to execute when condition is FALSE...}

4.3.2 Repetitive Statements

Oracle DBMS, has Loop, For loop, cursor for loop, while loop, repeat until loop, exit statement

In PL-SQL, loop is used instead of while

LOOP

{...statements...}

END LOOP;

Note: inside the statements, an exist is required to end this loop

106

Or, use a while loop

WHILE condition

LOOP

{...statements...}

END LOOP;

Or, The for loop may be used when the number of iteration is certain

FOR loop_counter IN [REVERSE] lowest_number..highest_number

 LOOP

{...statements...}

 END LOOP;

MySQL DBMS:

Mysql has loop, while, repeat until, iterate, leave, and return. Iterate Statement: The ITERATE

statement is used when you are want a loop body to execute again. It is used within the LOOP

statement, WHILE statement, and REPEAT statement. Leave statement; same as “exit” in PL-SQL.

Microsoft SQL-Server DBMS, has While loop, break, and continue.

 Note: There is no for loop in T-SQL.

 Alternative simulation by while syntax:

 DECLARE @cnt INT = 0;

WHILE @cnt < cnt_total

BEGIN

 {...statements...}

 SET @cnt = @cnt + 1;

END;

107

4.3.3 Statements for Creating Stored Procedures/Functions/Triggers.

Oracle DBMS

Procedures/Functions:

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter [,parameter])]

IS

 [declaration_section]

BEGIN

executable_section

[EXCEPTION

exception_section]

END [procedure_name];

Triggers:

PL-SQL has {before,after} {insert,update,delete} trigger, and all 6 are implemented in PL-SQL.

CREATE [OR REPLACE] TRIGGER trigger_name

BEFORE {insert, update, delete}

AFTER { insert, update, delete}

 ON table_name

 [FOR EACH ROW]

DECLARE

 -- variable declarations

108

 BEGIN

 -- trigger code

EXCEPTION

 WHEN …

-- exception handling

END;

Notable Restrictions on PL-SQL Triggers:

You can not create before, or after trigger on a view. Before triggers - You can update the :NEW

values, not the :OLD values. After triggers you cannot update the :NEW or the :OLD values.

MySQL DBMS

 Procedures/Functions:

 CREATE FUNCTION function_name

 [(parameter datatype [, parameter datatype])]

RETURNS return_datatype

BEGIN

 declaration_section

Executable_section

END;

Triggers:

CREATE TRIGGER trigger_name

 BEFORE …

AFTER …

 ON table_name FOR EACH ROW

BEGIN

109

 -- variable declarations

 -- trigger code

END;

 Notable Restrictions Triggers:

 Same as PL-SQL

 Microsoft SQL-Server DBMS

Procedures/Functions:

CREATE FUNCTION [schema_name.]function_name

([@parameter [AS] [type_schema_name.] datatype

 [= default] [READONLY]

 , @parameter [AS] [type_schema_name.] datatype

 [= default] [READONLY]]

)

RETURNS return_datatype

[WITH { ENCRYPTION

 | SCHEMABINDING

 | RETURNS NULL ON NULL INPUT

 | CALLED ON NULL INPUT

 | EXECUTE AS Clause]

[AS]

BEGIN

 [declaration_section]

 executable_section

110

 RETURN return_value

END;

 Triggers:

 CREATE [OR ALTER] TRIGGER [schema_name .]trigger_name

ON { table | view }

[WITH <dml_trigger_option> [,...n]]

{ FOR | AFTER | INSTEAD OF }

{ [INSERT] [,] [UPDATE] [,] [DELETE] }

[WITH APPEND]

[NOT FOR REPLICATION]

AS { sql_statement [;] [,...n] | EXTERNAL NAME <method specifier [;] > }

<dml_trigger_option> ::=

 [ENCRYPTION]

 [EXECUTE AS Clause]

<method_specifier> ::=

 assembly_name.class_name.method_name

Notable Restrictions Triggers:

 Same as PL-SQL

It is important to keep in mind, DBMS is a market heavily under the influence of marketing. Although,

there are SQL Standard being published, most DBMS vending chose not to comply 100% for the

following reasons:

111

1. SQL itself is a complex language set, means that most implementers do not necessary

support the entire standard.

2. The standard does not standardized database behavior, such as schema vs. user

management, data ownership and segregation, indexing, file storage at disk-level.

3. Most DBMS vendors have large pool of customers, using pre-existing edition of Database

related software, where the most current SQL standard may conflict with the prior behavior of

old database system.

4. For commercial reason, “vendor lock-in” is preferred from vendor’s perspective.

112

Phase 5 Graphical User Interface

5.1 General Description

The preceding chapters have described in depth the implementation of a database
designed for a vending machine company. The design process has gone through multiple
stages to form a final database schema. A graphical user interface (GUI) is a computer
application that is meant to be accessible and easy to use for users. The simpler the
design, the better off the user will be. We as designers have decided to implement a
web-based application that is meant to support three user groups:

A dispatcher, a client, and a driver.

I, Edwin Gonzalez, implemented the Dispatcher user group GUI.

5.1.1 Dispatcher User Group

The dispatcher is in charge of placing orders, reviewing orders, performing general
bookkeeping, and creating routes for the drivers. At the time of this publication, the current
application supports ordering, order reviewing, and report generation.

The following breaks down the generalized interface of the application.

● User logs in through a pop-up login menu.
● The user is greeted with a homepage and a utility side panel.

This side panel is used to perform most major tasks the user needs.
● Two main buttons provide a quick report generation and the side panel.

supports a customization report generation.

A later section in this chapter will break down the user experience more clearly.

To understand the application better, it is important to know what a dispatcher generally
does.
General Work of a Dispatcher

● A dispatcher is able to look up a history of every order placed by the company and
find a detailed report of each and every order.

● They must be able to place an order of any number of items from a select group of
suppliers and be given some receipt of the transaction for bookkeeping.

● The dispatcher must be able to generate reports as well as look up previous order
reports. This is useful when checking expenditures or the accuracy of past/current
orders.

● The above general descriptions all blend together to create a workflow that can be
generalized as such → Place an Order, review order, manage orders.

113

5.2 Functionalities of the Application

5.2.1 Itemized description of the application

This user-interface is implemented as a web application. Three key components are
used to develop a web-based application: server-side programming, middle-tier
programming, and client-side programming. The database management system Postgresql
is used to store the applications data and is hosted on the California State University of
Bakersfield’s server, delphi.cs.csub.edu.

To help speed up the development process, HTML templates are used to layout
generic pages that the are modified to fulfill the needs of the dispatcher user-group. The
section below will provide screenshots with brief descriptions of the application.

5.2.1.2 Screenshots

Figure 1. User Login Screen. A session variable holding the username is created

114

Figure 2. Main Screen displaying utility side panel and report generation buttons

115

Figure 3. Drop down Menu: Order Placement
A user can enter the number of items they need, choose an order type, and choose

from a supplier

116

Figure 4. Side Panel

Orders - Brings up a drop down menu to place or view an
order as well as generate an item report. Can also bring
up an order history table.

Routes - used to bring up a route history

Custom Report - User can create two custom reports. An
Items report or a overall expenditure report.

117

Figure 5. A receipt for a single placed order. Shows the supplier information at the top let,
the items and the purchase information on the bottom and a grand total at the top right.

118

Figure 6. A general overall Items Report. The report details each item and the amount
bought from each supplier. A total for each supplier is given as well as a grand total.

119

120

Figure 7. An overall monthly expenditures report. This report shows all suppliers that have
sold to the vending machine as well as the total amount spend on each supplier. The most
ordered item is displayed and the total expenditure are given.

121

Figure 8. Yearly Report. Same as monthly but over a year span from the date generated.

122

Figure 9. Drop down Menus for Orders and custom orders

On Left:
The Custom Report has two options. The first is
to generate a revenue report based on a
custom date range and a specified supplier list.

The second report is an Items Report. A user
can select a date range, choose a specific
amount of suppliers, and choose which items
they want to see have been purchased.

Above:
The drop down Orders box allows a user to
place a new order, view the order history, or
type in a specific order number to view that
order receipt.

123

Figure 10. Order History. The user can search for any order by a main column attribute or
can click the main column attribute to sort by ascending or descending order.

124

5.2.1.3 Tables, Views, Stored Subprograms

Tables

Supplier(supplierid, name, phone, streetname, city, state, zip)

Orders(orderid, supplierid, ordertype)

placesOrder(orderid, badgenumber, timeplaced, dateplaced)

orderContains(itemtypeid, orderid, numitemtype, itemtypeprice, expdate)

itemtype(itemtypeid, itemtypename, msrp)

employee(...)

Views

● realYear - a natural join of supplier, orders, placesOrder, orderContains, and
itemType for the current year.

● monthlyComplete -the same above for the current month
● allOrderData - the same as above but for all of the data’s history.

Subprograms

● customTotal
● customTotalItemsBought
● mostBought

5.2.2 Programming Sections

5.2.1 Server-side programming

Server-side programs run on the hosting server and are not accessible or seen by
the client-side. These programs deal with manipulating data on the server, ensuring data
integrity, and making sure the correct data is sent back to the client-side.

The Postgresql database management system is hosted on the server and contains
queries and views that are requested by the client-side. Bellow are code snippets of these
views/subprograms.

125

View: realyear
Purpose: Creates a view of an entire order and its relationships in the current year
Query:

View: monthylcomplete
Purpose: Creates a view of an entire order and its relationships for a month
Query:

View: allorderdata
Purpose: Creates a view of an entire order and its relationships for all time frames.
Query: Same as the realyear but without the date constraints.

The views are used in conjunction with functions to return specific queries.
A few examples are given below to demonstrate

Functions

Function: customTotal
Purpose: Returns the amount spent during a given timeframe on a supplier
Query:

126

Function: customTotalItemsBought
Purpose: Returns the total number of items bought for a specific item type from a supplier
Query:

Function: mostBought
Purpose: Returns the most bought itemtype from a supplier
Query:

127

5.2.2 Middle-Tier Programming

PHP is a server scripting language that allows server connection. HTML forms send
http request which are handled by the PHP code. The php code is used to query a server,
retrieve data, and send it back to the clients that need them. PHP is also used to create
session variables. These variables are stored by the browser’s cache and allow variable
values to exist across multiple webpages. Session variables can be online shopping carts,
user login credentials, or other values that need to be shared across pages.

The following code snippet establishes a database connection

128

This code snippet shows functions which contains views being used
to calculate data for a customs items report

5.2.3 Client-side programming

The client-side programming consist of HTML/CSS combined with the scripting
language JavaScript. HTML is a standard markup language that is used to create web
pages/applications. CSS style-sheets are used style a generic HTML page. Javascript is a
scripting language that is used with HTML to make web pages more dynamic. Javascript
can add clickListeners, can create dynamic boxes, and add animations.

Bellow is a snippet that uses bootstrap and javascript to create a searchable, paginated
table

129

5.3 Survey Questions

Promt
In this course, in what degree do you think you have the achieved each of following 4
outcomes? Your answer is between 1 (lowest) and 10 (highest). Each member of the team
should have his/her own answers.

Outcome Answer (1-10)

An ability to analyze a problem, and identify
and define the computing requirements and
specifications appropriate to its solutions.

8

An ability to design, implement and
evaluate a computer-based system,
process, component, or program to meet
desired needs. An ability to understand the
analysis, design, and implementation of a
computerized solution to a real life problem.

10

An ability to communicate effectively with a
range of audiences. An ability to write a
technical document such as a software
specification white paper or a user manual.

9

An ability to apply mathematical
foundations, algorithmic principles, and
computer science theory in the modeling
and design of computer-based systems in a
way that demonstrates comprehension of
the tradeoffs involved in design choices.

7

130

