

Landscape Service Database
Erick Toscano
Eddie Velasco

CMPS 3420 - Fall 2018
California State University, Bakersfield

1

Table of Contents

Contents ​……...……...……………………………………………………….………………………………………….. 2

PHASE 1: Fact-Finding, Information Gathering, and Conceptual Database Design

1.1 Fact-Finding Techniques and Information Gathering​ ……………………………………... 4

1.1.1 Introduction to Enterprise/Organization​ ……………………………………………….. 4

1.1.2 Description of Fact-Finding Techniques​ ………………………………………………... 4

1.1.3 Database Design Scope​ .……...……...………………………………………………………... 4

1.1.4 Entity and Relationship Set Description​ ………………………………………………… 5

1.2 Conceptual Database Design​ …...……...……...………………………………………………………. 7

1.2.1 Entity Type Description​ …...……...……...…………………………………………………….. 7

1.2.2 Relationship Type Description​ …...……...………………………………………………….. 18

1.2.3 Related Entity Type​ …...……...……...……...…………………………………………………... 21

1.2.4 E-R Diagram​ ……...……...……...……...……...…………………………………………………... 22

PHASE 2: Conceptual database design: Using E-R Modeling

2.1 E-R model and Relational model:​ ……...……...……...……...……………...…………………….. 24

2.1.1 Description of E-R model and Relational Model​ ​…………...……………………….. 24

2.1.2 Comparison of E-R model and Relational Model​ …………...……………………... 25

2.2 Conversion from Conceptual Database Model to Logical Database Model​ …. 26

2.2.1 Converting Entity Types to Relations​ ……...……...……………...……………………... 26

2.2.2 Converting Relationship Types to Relations​ …...……………...……………………... 28

2.2.3 Database Constraints​……...……...……...……...……...……………...……………………... 32

2.3. Convert Green Landscape Conceptual Database into a Relational Database 34

2.3.1 Relation Schema​ ……...……...……...……...……...……………………………………………. 34

2.3.2. Sample Data of Relation​ ……...……...……...……...……...……………………………….. 47

2.4. Sample Queries for Database​ ……...……...……...……...……...…………………………………. 56

2

2.4.1 Design Of Queries​ ……...……...……...……...……...………………………………………….. 56

2.4.2 Relational Algebra Expressions​ ……...……...……...……...……...………………………. 56

2.4.3 Tuple Relational Calculus Expressions​ …...……...……...……...……...……………… 59

2.4.4 Domain Relational Calculus Expressions​ ……...……...……...……...……...……….. 61

3

Phase 1: Fact-Finding, Information Gathering,
and Conceptual Database Design

1.1 Fact-Finding Techniques and Information Gathering

In order to build the database for an organization, a database designer must

have a thorough comprehension of the organization they are hired to design. The
following section will give the introduction to the organization, an explanation of
the research process, the scope of the database design, and itemized descriptions
of the entity and relationship sets.

1.1.1 Introduction to Enterprise/Organization

Green Landscaping is a fictitious landscaping service designed to represent
aspects of how Toscano Landscaping, a local landscaping business, handles their
work flow. Green Landscaping offers landscaping services to residential homes on a
weekly basis. Services are offered in the form of contracts with defined terms or
one-time service work. The owner or manager of the business is in charge of
keeping track of all contracts, expenses, income, and employee payroll.

1.1.2 Description of Fact-Finding Techniques

Fact-finding for the Green Landscaping database relied much on the general
understanding of landscaping businesses as well as information provided by
Toscano Landscaping which is owned and operated by an immediate family
member. We verified facts and gathered information through general talks and
inquiries of how Toscano Landscaping ran their business. This allowed us to design
a database that fully captured the intended business model. By interviewing the
appropriate and potential users of the database we formed a well-thought out
structure for our database. From contracts to tools and so on, we could observe
and conceptualize the regular logistics of how the business was managed.

1.1.3 Database Design Scope

An important aspect when developing the concept of a database is to know
what segments of the organization will be represented by the database. We call the
real world aspects the miniworld or universe of discourse. This is important so we
can keep in mind the potential users and applications our database will supply.
Landscaping businesses keep written documents to track all the contracts, services,

4

client information, and employee information. They also require employees to have
access to routes, addresses, work vehicles, and tools. The goal for the database we
will design for our business, Green Landscaping, will be to create an efficient and
easy to use system for both owner and employee interactions. An effective model
will enable us to implement features and applications that will help us in our goal.

1.1.4 Entity and Relationship Set Description

After all our information and facts are gathered, the data can be represented as
entity sets and relationship sets as is described in a typical E-R model. In the
remainder of this section, these entities and relationships will be described. A
further detailed explanation will be provided in section 1.2.

Entity Type Definitions

Income: ​Income_ID, Date, Type, Amount, Description
An ​income​ is a record of a payment received to the business.

Contract: ​Contract_ID, Price, Description
A ​contract​ is a document written between the business and a client for services.

House: ​House_ID, Address, Start_Date, End_Date
A ​house​ is the centralized location for services that will be rendered to client.

Additional Service: ​Service_ID, Price, Description
An ​additional service​ is a service not specified under contract but performed for a house.

Client: ​Client_ID, Name, Address, Phone Number
A ​client ​is an individual who owns the house where services will be rendered.

Route: ​Route_ID, Start_Date, End_Date
A ​route​ is a designated list of houses in which employees will follow to perform services.

Car: ​Car_ID, Start_Date, End_Date, Car_Desc
A ​car​ is a vehicle used by an employee or employees to transport tools and perform
services.

Tool: ​Tool_ID, Brand, Name, Description
A ​tool​ is a piece of equipment used by an employee kept in a car that will be used to
landscape.

Employee: ​Employee_ID, Name, Address, Phone, Salary
An ​employee​ is an individual who works for the business, performs work, and is paid.

Payment: ​Payment_ID, Amount, Date, Type, Hrs_Worked, Description
A ​payment​ is a record of a payment given to an employee.

5

Relationship Type Definitions

Employee ​paid​ by Payment; Cardinality: 1..N; Participation: Total, Total

Employee ​assigned to ​Car; Cardinality: N..1; Participation: Total, Total

Car ​contains​ Tools; Cardinality: 1..N; Participation: Total, Total

Route ​worked​ ​by ​Car; Cardinality: 1..1; Participation: Total, Total

House ​assigned​ to Route; Cardinality: 1..1; Participation: Total, Total

House ​owned by​ Client; Cardinality: N..1; Participation: Partial, Total

Additional Service ​provided to​ House; Cardinality: N..1; Participation: Partial, Total

Income ​produced by​ Contract; Cardinality: N..1; Participation: Total, Total

6

1.2 Conceptual Database Design

In this section we will discuss the conceptual design to Green landscaping database.
We will describe its entities and corresponding attributes and some operations that
will be supported by this model.

Before we design a fully operational database we must first implement a
conceptual design so we can understand how the data will be stored. In this
example we will be using the Entity Relationship (ER) model to understand the
behavior of our database.

In this model we will describe an entity as an object, such as employee or client;
with these entities will be attributes which will describe qualities of the entity. We
also create relationships between entities which will describe how these objects are
associated in relation to the database.

We must understand this blueprint of the database, or schema, which should not
change too often since it is a description of the database occurrences before they
have been initiated, so we can firmly present a diagram that visually represents the
conceptual design.

1.2.1 Entity Type Description

Entities describe real world-objects and are defined by their name and attributes
they contain. For example in this in this model the most important entities are
Employee, Client, Route. Now we will describe each entity name, attributes, domain,
keys, candidate key.

7

Entity: ​Employee

Description:​ An Employee get paid by the landscaping company, also an Employee will be
assign to a Car with two descriptive attributes start_date and end_date. Employee will work
either as a driver-employee or just an employee, the distinction between them is that the
one that drive earns more income.

Candidate key: ​employee_ID
Primary key: ​employee_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​employee_Id, salary

Attribute
name:

Employee_I
D

Name Address Phone Salary

Description Unique id
assigned to

employees to
track they

everyday start
- end work
hours and

their
payment.

Name of the
employee
(First, Last)

Address of
employee
(123 Street

St.)

Phone
number to

reach
employee

The amount
paid to each

employee

Type Integer String String int float

Value / Range 0-MaxID any any 000-000-0000
to

999-999-9999

0-9999

Null allowed no no no yes yes

Unique yes no no yes no

Simple /
Composite

simple composite composite simple simple

8

Entity: ​Client

Description:​ A Client is most of the time the owner of the house on which the Landscaping
company works on. Client may own many houses, Client may be a tenant. Client is also with
whom the company signs the contract to start working on, and from whom the company
gets its income.

Candidate key: ​client_ID
Primary key: ​client_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​client_ID

Attribute name: Client_ID Name Address Phone

Description Unique id
assigned to

clients to keep
track of their
houses and
payments

Name of the
client

(First, Last)

Address of client
(123 Street St.)

Phone number to
reach client

Type Integer String String int

Value / Range 0-MaxID any any 000-000-0000 to
999-999-9999

Null allowed no no no yes

Unique yes no no yes

Simple /
Composite
Attributes

simple composite composite simple

Single / Multi
value

single single single single

Entity: ​Income

Description:​ Income is a payment given to the company by the client in exchange for
landscape services which might include extra services. Payment sometimes may be lower
or higher than usual, for that we use description. Payments can be made via bank deposit,
check or cash.

Candidate key: ​income_ID
Primary key: ​income_ID
Strong/Weak Entity: ​Strong

9

Fields to be indexed: ​income_ID, date, type, amount

Attribute
name:

income_ID date type amount description

Description Unique id
assigned to

each payment
to keep track

of them

- If cash, date
the payment
was received.
- If check or

money order,
date on check.
- If bank, date
on payment

received

Cash, check,
money order,

bank
transaction

Amount each
client pays for

Landscape
service

To record if there
is something

unusual on the
amount or type of

payment

Type Integer date String float string

Value / Range 0-MaxID date any any any

Null allowed no no no no yes

Unique yes no no no no

Simple /
Composite
attribute

simple simple simple simple single

Single / Multi
value

single multi single single single

10

Entity: ​Payment

Description:​ A payment is given to employee for his days working with the company.
Payment can also be given as check, but mostly is cash.

Primary key: ​payment_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​payment_ID, amount, date, type, hrs_worked

Attribute
name:

payment_ID date type amount hrs_worke
d

description

Description Unique id
assigned to

each payment
to keep track of

them

- If cash, date
the payment

was given.
- If check or

money order,
date on check.

Cash,
check,

Amount
each

employee
gets paid

Total hours
worked for

the company
per month

To record if
there is

something
unusual on
the amount
or type of
payment

Type Integer date String float float string

Value /
Range

0-MaxID date any any 0.0-MAXID any

Null allowed no no no no no yes

Unique yes no no no no no

Simple /
Composite
attribute

simple simple simple simple simple single

Single /
Multi value

single multi single single single single

11

Entity: ​Contract

Description:​ A contract is made for each client’s house that the company will start their
services with.

Primary key: ​contract_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​contract_ID, date, price

Attribute
name:

contract_ID date price description

Description Unique id
assigned to each
contract to keep

track of them

Date the contract
was signed

Amount
client pays
for service

Specification on
obligations of

landscape company
on the client’s house.

Type Integer date float string

Value /
Range

0-MaxID date any any

Null allowed no no no no

Unique yes no no no

Simple /
Composite
attribute

simple simple simple single

Single /
Multi value

single multi single single

12

Entity: ​Tools

Description:​ this entity will store the tools the company uses to track which tools are taken
in the truck in a specific date/route.

Primary key: ​tools_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​tools_ID, brand

Attribute
name:

tools_ID brand name description

Description Unique id
assigned to each

tool to keep
track of them

Brand of the tool Name of the
tool

Specifications about
the tools

maintenance

Type Integer string string string

Value /
Range

0-MaxID any any any

Null allowed no no no yes

Unique yes no no no

Simple /
Composite
attribute

simple simple simple single

Single /
Multi value

single single single single

13

Entity: ​Car

Description:​ Car is used by the employees to work on the routes, also to store the tools
while working.

Primary key: ​car_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​car_ID, start_date, end_date

Attribute
name:

car_ID start_date end_date car_desc

Description Unique id
assigned to each
car to keep track

of them

Date and hour car
was started being in

use

Date and
hour car

ended being
in use

Specifications about
the car maintenance

Type Integer date date string

Value /
Range

0-MaxID any any any

Null allowed no no no yes

Unique yes no no no

Simple /
Composite
attribute

simple simple simple single

Single /
Multi value

single single single single

14

Entity: ​House

Description:​ A house is where the company does its landscape maintenance service every
week.

Primary key: ​house_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​house_ID, address, start_date, end_date

Attribute
name:

house_ID address start_date end_date

Description Unique id assigned
to each house to

keep track of them

Address of
house

Date and hour
house service

started

Date and hour house
service ended

Type Integer string date date

Value /
Range

0-MaxID any any any

Null
allowed

no no no no

Unique yes no no no

Simple /
Composite
attribute

simple composite simple simple

Single /
Multi value

single single single single

15

Entity: ​Route

Description:​ The houses employees have to do service in a specific day are called a Route.
There can be different routes in a week. A unique route for every week day.

Primary key: ​route_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​route_ID, start_date, end_date

Attribute
name:

route_ID start_date end_date

Description Unique id assigned to
each route to keep

track of them

Date and hour route
was started

Date and hour route
ended

Type Integer date date

Value /
Range

0-MaxID any any

Null allowed no no no

Unique yes no no

Simple /
Composite
attribute

simple simple simple

Single /
Multi value

single single single

16

Entity: ​Additional_Service

Description:​ Additional services given to the client which were not written on the contract
or added later, or just one time service.

Primary key: ​service_ID
Strong/Weak Entity: ​Strong
Fields to be indexed: ​service_ID, price

Attribute
name:

service_ID date price description

Description Unique id
assigned to each

additional
service to keep
track of them

Date the additional
service was done

Amount
client paid for

additional
service

Specification on
what done on the

service

Type Integer date float string

Value /
Range

0-MaxID date any any

Null allowed no no no no

Unique yes no no no

Simple /
Composite
attribute

simple simple simple single

Single /
Multi value

single multi single single

17

 1.2.2 Relationship Type Description

Relationships between two or more entities exists when we associate them with a
type. They can be defined by the entities they associate as well as attributes that
help describe the relationship. They also distinguish constraints that control the
amount of entities related to one another. Relationships can be described by the
entities types they associate, the purpose of the relationship, the entity set
involved, mapping cardinality, and any additional attributes or constraints that help
identify the relationship.

Relationship​: produced by

Description​: Income is generated from the houses, clients, and services provided

to consumers. We describe the relationship between income and contract as

income produced by a contract entity.

Entity Sets Involved​: Income, Contract

Mapping Cardinality​: N .. 1

Descriptive Field:​ None

Participation Constraint​: Income will have total participation while a contract will

have partial participation.

Relationship:​ written for

Description: ​Every contract will be tied to a house. We describe this relationship

between contract and house as contract written for a house.

Entity Sets Involved: ​Contract, House

Mapping Cardinality:​ 1 .. 1

Descriptive Field:​ None

Participation Constraint:​ A contract will have total participation and house will

have total participation since every contract will be tied to a house.

Relationship:​ provided to

Description: ​Additional services can be provided to a house that may or may not

be under contract. We describe this relationship between additional service and

house as an additional service provided to a house.

18

Entity Sets Involved:​ Additional Service, House

Mapping Cardinality:​ N .. 1

Descriptive Field:​ None

Participation Constraint:​ An additional service will have partial participation while

a house will have total participation if an additional service is being provided.

Relationship:​ owned by

Description​: Every house is owned by someone and in our database we describe

these owners as clients. Clients will be the ones being provided and charged for the

services. We describe this relationship as a house is owned by a client.

Entity Sets Involved:​ House, Client

Mapping Cardinality: ​N .. 1

Descriptive Field:​ None

Participation Constraint:​ In this relationship the house has total participation

since it depends on a client to own it. Client also is a total participation since every

client owns a house.

Relationship​: assigned

Description: ​Every house is assigned a route in order for the employees to keep

track of the houses to service during the week. A route will consist of a list or

schedule of houses. We describe this relationship as every house is assigned a

route.

Entity Sets Involved​: House, Route

Mapping Cardinality:​ 1 .. 1

Descriptive Field:​ None

Participation Constraint:​ A house in this relationship will have total participation

since every house needs a route to be worked on by a route. A route has partial

participation since not every route is tied to a house. A route can have different

houses but not assigned to every house in the house set.

19

Relationship:​ worked by

Description​: A route is worked by an individual car in the set. Every route will be

different so we need to distinguish which car is working on which route. We

describe this relationship as every route is worked by a car.

Entity Sets Involved:​ Route, Car

Mapping Cardinality:​ 1 .. 1

Descriptive Field:​ None

Participation Constraint:​ A route will have total participation since every route will

have a car it is worked by in the set. A car will have partial participation since if a car

changes routes or a car is out of maintenance not every car will have a route.

Relationship:​ contains

Description​: A car will carry all the appropriate tools in order to perform the

services required by the employees. A car will be loaded with tools that will be kept

track of in order to have an accurate inventory. We describe this relationship as a

car contains this set of tools.

Entity Sets Involved:​ Car, Tool

Mapping Cardinality​: 1 .. N

Descriptive Field​: None

Participation Constraint​: Car in this relationship will have total participation since

every car will need a set of tools. Tools will have total participation since every tool

will be dependent of the car it is contained in.

Relationship:​ assign to

Description​: A car will car a particular set of employees or an individual employee.

The employees will ride in a particular car to go out and perform services required

of them. We describe this relationship as a car will be assigned to an employee or

set of employees.

Entity Sets Involved​: Car, Employee

Mapping Cardinality:​ 1 .. N

Descriptive Field: ​Start_Date, End_Date

20

Participation Constraint:​ Car will have total participation since every car will be

assigned to an employee if in use. Employee will have partial participation because

not every employee in the database will necessarily ride in a car but can be

assigned a car.

Relationship:​ paid

Description​: Employees that will work for the business have to be paid for the work

being provided. In order to keep track of payments and information on those

payments to employees we have a payment database. We describe this relationship

as an employee is paid a payment.

Entity Sets Involved:​ Employee, Payment

Mapping Cardinality:​ 1 .. N

Descriptive Field:​ None

Participation Constraint:​ Employee will have partial participation in that an

employee is not dependent of a payment. A payment may not be given to an

employee if a worker is not being paid for some reason. Payment will have total

participation since it will be dependent of an employee and a payment will not be

made if no employee existed for it.

1.2.3 Related Entity Type

 Specialization is the process of defining subclasses of a specific entity type in which
attributes of the superclass are transferred down to the subclass. The subclass then
has its own distinguishing attributes that help define it and give reason for the
subclass.

Generalization is the reverse process of specialization in that generalization is a
bottom-up approach to combining classes into a superclass. and eliminates
unnecessary redundancy. Tools in our database is an example of this process, since
instead of breaking the tools down into subclasses of different types we
generalized it to a tool entity type.

Aggregation is the process of relating two entities as a single entity or group. The
purpose is to gather more information by specifying only a certain group or

21

attribute from multiple entities. It creates a whole object instead of individual
components.

Specializations and generalizations contain constraints of disjointedness and
completeness. The disjointedness constraints specifies that a specialization
subclasses are disjoint. This means the entity can only be a only one of the
specialization classes. The completeness constraint can either be total or partial.
Total completeness says that every entity in a superclass is at least member of one
of the subclass. Partial completeness constraint specifies that an entity does not
have to be a member of any subclass.

1.2.4 E-R Diagram

A helpful tool to visualize what is being produced using the ER model we make the
use of a ER diagram. The ER diagram associates the entities and relationships of our
model in a way that can be understood using visual objects and flow. The
relationships in the diagram will be represented using lines and connected in
between will be a relationship type represented by a diamond box with relationship
type name. Entities will be represented using a square box with entity name and
attributes written inside the box. Included with the relationships and entities will be
symbols “1” or “N” to represent the cardinality of the relationship.

The ER diagram for Green Landscaping is as follows:

22

23

PHASE 2: Conceptual Database and Logical
Database

A conceptual database is a visual representation of a database meant to
make it easier to comprehend as a concept. On the other hand, a logical database
is a software based representation on how data will be represented and stored.
The overall notion for this phase is to process how an ER Model is converted to a
relational model and give a thorough description of the relational model, its
structure, queries, and expressions.

In each section, the development process of a conceptual database and
logical database will be described. Beginning in section 2.1, we will discuss the
importance, meaning, and difference between E-R model and relational model.
Next in section 2.2, we will describe the conversion from conceptual database
model to a logical database model. After that in section 2.3, we will convert the
Green Landscape database into a relational database. In section 2.4, we will
demonstrate sample queries for the Green Landscape database as well as
relational, tuple, and domain calculus expressions.

2.1 E-R model and Relational Model

The ER Model is categorized as a conceptual database design while the
relational model is described as a design implementation of a logical database. In
this section we will discuss both models and compare how they are different.

2.1.1 Description of E-R model and Relational Model

The ER Model was developed by Peter Chen in 1976 for his paper “The

Entity-Relationship Model: Toward a Unified View of Data”. In this paper he
proposed the model, describes its semantics, and provides an example of how to
design a database. As the title of the paper states, Peter Chen called it a way to
unify data and visually represent it. The purpose was to make it easier for a
developer to present their ideas, data, and relationships into one unified model.
The model then can be interpreted by both industry experts and non-experts.

The relational model was developed by Edgar F. Codd in 1969 for his

research report “Derivability, Redundancy, and Consistency of Relations Stored in
Large Data Banks”. In this report he theorized the complexity and large amount of
data that would be stored in the future. He wanted to created a way to logically
view the data and detect any inconsistencies in the data bank. The model is

24

therefore organized into columns and rows with a table, or relation. Each table
represents an entity type while the rows represent the instances of that entity type.
Columns represent the values of the attributes of that instance within the relation.
This model is the foundation to most modern database systems such as
PostgreSQL and MySQL. The relational model also devolves into the formal query
languages of relational algebra, relational calculus, and domain calculus.

The ER model and relational model are distinguished by the way the data is

visualized in the model. The ER model focuses on representing physical or
conceptual objects as entities and the interaction or association between entities as
relationships. The model is usually visualized as a diagram with boxes representing
the entities, lines representing the flow, and either diamonds or boxes to represent
the relationships. Entities have added attributes that describe the entity in terms of
values that will be important to define the entity within the database. Relationships
can also have attributes but are not necessary to the model.

The relational model focuses on representing the data that will be inputted

within the database. The data, entities, and relationships are all represented with
the table of the model. The main features of the model are to represent the
relation as a table with columns representing the attributes, and rows representing
the tuple of information. The tuple is the instance of the entity and a set of tuples is
called a record.

The purpose of each model is to help visualize and organize data that will

either be implemented into a database or already represents a database. The ER
model’s purpose is to help visualize the structure of how entities relate with each
other. The intended concept being that by visualizing it in that way it will be easier
to understand each entity and its importance within the database. On the other
hand, the relational model’s intended purpose was to help visualize how a
programmer can implement the data into a database. The tables help visualize data
going directly into your database by the use of columns and rows like any other
table of data. This model also correlates more with formal query languages
therefore makes it easier to translate into SQL languages.

2.1.2 Comparison of E-R model and Relational Model

The ER model and Relational model both represent the same data but each

model structures it differently. The ER model makes it easier for a person that is not
tech savvy or not a programmer to visualize the data and understand the concept
of the database. This can be useful when a customer or manager is not
knowledgeable of database system but cooperation between the two parties is

25

needed to create a database. Another advantage of the ER model is alterations to
the model can be done with ease since design specifics are not a part of the model.
If the customer is not satisfied or makes changes to how they want the database
then it does not affect the implementation. Scalability before the database is coded
is done with no problem. The disadvantage of the ER model is that it is not based
on mathematical languages and instead is just a visual representation. The model is
abstract and does not represent a standard for implementing a database. The
developers who will actually code the database are left with an ambiguous model
that can be interpreted differently by different people.

The major advantage of the relational model is it is developer friendly and

gives an accurate representation of how the data will be instantiated within the
database. The relational model is based on formal mathematical query languages
therefore its translation into SQL and programming languages is very simple.
Tables are an advantage to developers since it gives a visual representation of how
the data is setup. The disadvantage of the relational model is it depends on a level
of comprehension of database software to be able to understand it. A person that
lacks knowledge of software or mathematical languages will have a difficult time
interacting with the model and understanding its features.

2.2 Conversion from Conceptual Database Model to Logical
Database Model

After defining the ER model and relational model, in this section we will focus
on how to convert from the ER model into the relational model. In order to
accomplish this we must give a detailed method from ER specific components to
relational model components. The first conversion will involve how entity types are
converted into relations in section 2.2.1. Secondly we must detail the process of
converting relationship types to relations in section 2.2.3. Finally, in section 2.2.3 we
give the constraint details of the database to be implemented.

2.2.1 Converting Entity Types to Relations

In order to begin the conversion from the ER model to the relational model, it
is necessary to directly convert entity types to relations. Entity types are
represented as a set of relation schemas in a relational model. Each relation
scheme is made up of a list of attributes with single-value domains. In the ER model
the entity types are more complex, they are composed of composite or multi-value
attributes as well as the possibility of it being a weak entity type with no key.

We will now discuss how to represent both strong and weak entity types as

relations in this section. We will then explain how simple and composite entity

26

attributes can be represented as relation attributes with atomic domains. Atomic
domains being those that cannot be broken down and represented into any
simpler values. We will then demonstrate how multi-value and single value entity
attributes are represented as relation attributes.

Strong Entities to Relations

For strong entity types to be converted we must show that each entity (E) is
converted into one relation schema (R). The schema will be a direct conversion
from strong entity to relation so it will have the same name. The single-value and
simple attributes related to the strong entity type are then transferred to the
relation that mapped to it. From the entity in the ER model, a unique key is chosen
to be primary key attribute of the relation schema. Any additional keys then
become candidate keys of the relation schema. While candidate keys are also
unique, they will not be used to represent any tuples or rows within the relation
since a primary key was established.

Weak Entities to Relations

For weak entity types, the process is similar to the strong entity types in that
it can be directly represented a relation schema of the same name. Weak entity
types then have to transfer over a foreign key to represent the primary key in a
relation. If the foreign key is a key to another weak entity then a strong entity must
be formed in order for the process to be correct. The primary key can be made by
using key attributes along with partial key attributes that form a strong entity. All
the rest of the partial keys and attributes of the weak entity will then also be
converted over to the relation schema. The importance here being that any weak
entities must be converted into strong entity types in order to be represented and
converted into a proper relation.

Simple and Composite Attributes

Simple and composite attributes differentiate in the way that the must be
converted into the relational schema. The simple attributes directly convert over to
the relation schema R that corresponds to the entity type. The way composite
attributes convert over is they first break down into simple attributes. After they are
broken down, they convert over as simple attributes into the relation schema R.

Single and Multi-value Attributes

Single and multivalued attributes also differentiate in the way they are
processed and converted over from entity type to relation schema. The
single-valued attributes are easy to transfer over, similar to the process of

27

converting the simple attributes. The attributes are added over to the relation
schema that is corresponds to the entity type. For multi-value attributes the
process is a little more complex. The attributes must be represented by a separate
relation R​A​. The primary key for this new relation is made up by the multi-value
attributes combined with the foreign key corresponding from the entity type
involved. If the multi-value attribute is composite then only the unique simple
components become part of the relation R​A​’s primary key.

2.2.2 Converting Relationship Types to Relations

The conversion of relationship types to relations can be more complex since
an ER model focuses on both entities and relationships while the relational model
only focuses on relations. Representing relations within a relation schema then
becomes a process of separating relationships into new relations or adding
attributes into existing relations. In this section, we will discuss how to represent
relationships types in the following situations:

● Relationship types with 1:1, 1:N, M:N
● “IsA” and “HasA” concepts within superclasses and subclasses
● Relationship type involving other relationship type
● Recursive relationship
● Relationships involving more than two entity types
● Relationship and Categories (or union) types

Relationship Types with 1:1 Cardinality Constraint

An entity relationship between entity A and entity B with 1:1 cardinality
should convert into a mapping of relation R​A​ and relation R​B​. Every instance in R​A
should relate to every instance in R​B​ with the relational model. The constraint is
then represented by one of three methods:

● Foreign Key Approach​: Here, the primary key within the first relation is
made into a foreign key attribute of the second relation. All the attributes
that correspond with the relationship type containing the primary become
additional attributes of the relation that now holds the foreign key.

● Merged Relation Approach: ​Here, the attributes of both relations are
combined and made into one relation within the relational model.

● Cross Reference Approach: ​In this approach, the relationship type in the ER
model becomes a new relation within the relational model. The primary keys
from both relation R​A​ and R​B​ will be used as foreign keys within the new
relation. The simple attributes along with the simple components from the

28

composite attributes will also be transferred into the new relation. The
primary key of the new relation will be one of the foreign keys acquired.

Each of these approaches can have benefits over the other as well as its

disadvantages. The foreign key approach has the benefits of creating a unified
approach to interacting with the relations making up the relationship. The
disadvantage being the approach only works if both entity types contain total
participation. Cross reference approach is good if neither entity has total
participation but creates more joins when performing any queries on the relations.

Relationship Types with 1:N Cardinality Constraint

Following the previous model, a relationship between entities A and B with
cardinality 1:N can be mapped with the conversion into relations R​A​ and R​B​. The
difference now being every instance within R​A​ will map to multiple instance of R​B​.
Every instance within R​B​ will map back to only one instance within R​A​. The constraint
is then represented with one of the two following methods:

● Foreign Key Approach:​ This approach involves a similar approach as the
foreign key approach with converting 1:1 cardinality type. The difference
being the foreign key and relationship type attributes converted into the
relation will be derived from the entity with “N” of the relationship. Entities
on the “N” side of the relationship can only be related to one instance of the
entity type “1” side.

● Cross Reference Approach: ​Same as the 1:1 relationship type but the
primary key of the new relation will be derived from the foreign key that
belongs to the relation converted from the “N” side of the relationship.

The comparison between the two approaches is similar to the approaches

used for the 1:1 cardinality constraint relationship conversions.

Relationship Types with M:N Cardinality Constraint

The method of conversion for this relationship type constraint is the cross
reference or relationship relation approach. Again, this involves creating a new
relation for every relationship type. The foreign key attributes in the new relation
are the primary keys from the entity types involved in the relationships. The
combination of the foreign keys will create the primary key for the relation. Any
simple attributes of the relationship type will become attributes of the new relation.

Superclasses and Subclasses for the “IsA” Relationship

29

The “IsA” relationship type happens when entity types can be classified as

disjoint subclasses of a superclass entity. This means that an entity is made up of
no more than one subclass. To represent this relationship type in the relational
model there are three methods:

- Multiple relations - superclass and subclass​: With this approach, a
superclass entity becomes a relation R​super​ and subclass entity becomes a
relation R​sub​. The superclass relation is composed of the attributes from the
superclass entity. The subclass relation is composed of the attributes of the
subclass entity as well as a foreign key made from the primary key of the
superclass relation. The foreign key also serves as the primary key of the
relation.

- Multiple relations - subclass only​: With this approach, the subclass entities
are converted into their own relations. The subclass relation then is
composed of the attributes from the subclass entity and superclass entity
types.

- Single relation with one type attribute​ - With this approach, one relation is
created that contains the union of the attributes from the superclass and
from all of the subclasses. The relation also contains a type which
distinguishes which of the subclasses this new relation belongs to.

Advantages for the first method include it being useful to work for most

superclass and subclass relationship types. The second method is good because it
means there will be fewer operations needed between relations. The third method
has the least amount of operations needed making it extremely efficient if the
entities align properly.

Disadvantages for the first method include it requires the most operations to
combine the relations. The second method has the disadvantage of only working
with relationships were the participation is total. The third method is not optimal
because it creates a very large relation and it is only useful if the subclasses being
unioned together contain attributes that are similar or equal to each other.

Superclasses and Subclasses for the “HasA” Relationship

The “HasA” relationship happens when a superclass entity type is composed
of subclass entity types that are overlapping. The superclass then belongs to
multiple subclasses. To represent this relationship type in a relational model there
are two methods:

30

- Multiple relations - superclass and subclass​: The approach here is the

same as the “IsA” relationship. The superclass and subclass entity types
become their own relations respectively. The attributes follow the same
mapping as well.

- Single relation with multiple type attributes​ - With this approach, one
relation is made from the union of attributes from the superclass and all of
the subclasses combined. The relation then contains a boolean attributes for
every subclass belonging to the relationship types. A “true” value signifies
that the tuple belongs to that subclass.

The advantages and disadvantages for the first method are exactly the same

as the “IsA” method using multiple relations. For the second method the advantage
is it requires less joins. The disadvantage for this method is that the attributes for
the subclasses that a relation isn’t belonging to makes it NULL. Thus, space is
wasted by containing these attributes within certain relations.

Relationships involving other Relationship Types

Relationships involving other relationship types are mapped by using a single
primary key attribute for the relationship type. The relationship is then mapped
into the relational model using the foreign key approach or cross reference
approach based on the cardinality of the relationship. The primary key within the
relationship type will be the base for the foreign keys in the methods.

Recursive Relationships

Recursive relationships happen when an entity type in the ER model is
related to itself. To represent this relationship type within the relational model
there are two methods:

- Foreign Key Approach: With this approach we map the relationship
into a relation. The relation then contains a foreign key attribute that is
composed of the primary key of the same relation.

- Cross Reference Approach: With this approach, a new relation for the
recursive relationship is made. Then it contains two foreign keys that
reference the primary key of the original relation. The combination of
the foreign keys forms the primary key of the new recursive relation.

Both methods contain advantages and disadvantages depending on the

layout of the types and attributes. The advantage of foreign key is it makes for less
join operations. The advantage for cross reference approach is it eliminates the
NULL values that are not participating in the relationship. The disadvantage for the
foreign key approach is that it includes tuples that are NULL but required to

31

represent the relation. The only disadvantage of the cross reference is it requires
more join operations when making queries.

Relationships involving more than Two Entity Types

For relationships involving more than two entity types, a new relation is
created to represent the relationship type. Every entity type composing the
relationship is automatically already converted into their own relations. The new
relation then contains foreign key attributes made up from the primary keys of
each of the entity types. The combination of all the foreign keys then makes up the
primary key for the new relation. Any foreign key created from the “1” side of an
1:N cardinality are excluded since they don’t have the necessary participation.

Relationship and Categories (or Union) Types

For categories or union relationship types, multiple superclass entities relate
to a subclass entity. The relations corresponding to different superclass entities are
already given different primary keys when converted over. To represent the union
relationship, the superclass relations have surrogate key attributes added into
them. When multiple entities are superclasses of a subclass entity the relation
tuples corresponding to the superclasses share the same surrogate key.

2.2.3 Database Constraints

Constraints are placed within a database to make sure that all of the data
that is stored is significant and useful. The tuples (rows) within the relation
therefore has to satisfy certain conditions and rules which are constraints that
allow the database to be represented correctly. If any of these constraints are
violated then the data becomes meaningless and therefore the relation state is now
invalid. In order to understand constraints within a database management system
it will be useful to define the following constraints:

● Domain Constraints
● Entity Constraints
● Primary and Unique Key Constraints
● Referential Constraints
● Check Constraints and Business Rules

Domain Constraints

The domain constraints are placed in order to ensure that values within the
tuples of a relation state correspond with the attribute’s domain in the schema.
This includes restrictions on the values to specify the data type to be given to that
attribute. The database management system is in charge of rejecting any INSERT or

32

UPDATE operations that would cause tuples to have invalid values. It can also make
invalid values NULL or “default” depending on the constraints involved.

Entity Constraints

Entity constraints focus on verifying that all the tuples of a relation state have
a valid primary key and that a NULL value is not present within its state. If the
constraint is violated it is impossible to accurately or uniquely identify the tuple
making the database next to useless when querying.The database management
system enforces any INSERT or UPDATE operations and rejects any primary key
attributes set to NULL.

Primary Key and Unique Key Constraints

Primary Key and Unique Key Constraints focus on providing tuples with a
uniquely identifiable state within the relation or table. To ensure this, tuples must
include a minimal set of attributes, or a key, whose values are never the same for
any two tuples in the relation state. The primary key constraint therefore
guarantees that no two tuples will have the same value for the primary key
attribute. Attributes within a relation state can also have a uniqueness constraint if
they are not the primary key. Within either case, the database management system
can reject any INSERT or UPDATE operations that contain invalid values or existing
values in the primary key attribute. The database system can also enforce a
constraint by making the primary key value auto-increment during the INSERT
operation of new tuples.

Referential Constraints

Relation schema contain foreign keys in the form of attributes therefore a
tuple within the relation state which the foreign key references must exist in order
for the relation schema to be valid. The referential constraints prevents tuples from
being created that have foreign keys belonging to another tuple. The two tuples
being distinct tuples in the relation but not containing the same primary key.

The referential constraint must be enforced by the database system for the
INSERT, UPDATE, and DELETE operations. The INSERT operation rejects any new
tuple that has a foreign key value that is either invalid, or assigns the foreign key to
be NULL or default under certain conditions. The DELETE operation has three
possible options:

- Restrict:​ With the restrict option an operation that attempted to delete a
tuple referenced by a foreign key of another tuple will be rejected.

- Cascade​: With this option the database system will delete all the tuples that
reference the deleted tuple through the foreign key.

- Set Default​: With this option the tuple will be deleted and any foreign key
values referenced to it will be set to NULL or default.

33

The UPDATE operation is rejected if the foreign key value becomes invalid or
preceding options can be followed to allow the operation to proceed.

Check Constraints and Business Rules

All of the constraints and rules above are included with a database
management system, but a business might decide to implement additional rules
specific to their system. The business will then develop additional rules coded into
the application using the database that then will need to be followed by designers.
It is important to know these new constraints and rules specific to the business.

2.3. Convert Green Landscape Conceptual Database into a
Relational Database

In this section we convert all of the entity types and relationship types into
relational schema for the Green landscape. Constraints will be placed on the entity
and relationship attributes for the sake of organization and logic. Sample tuples for
each relation show how the relationship would look in the real world.

2.3.1 Relation Schema
All of the Green Landscape’s relationship schemas are listed below. This
includes constraints for all entity relationship type attributes.

34

Relation Schema:​ Employee

employee(​employee_ID, payment_ID, ​date, type, amount, hrs_worked,
description)

Attributes

*employee_ID Integer, 1-1000, primary key

*paymentID Integer, 1-1000, foreign key

name varchar(50)

address varchar(100)

phone Integer, 0000000000 - 0000000000

salary decimal (7,2)

Candidate Keys: ​employee_ID (primary)

Primary Key/Entity Integrity Constraint: ​“employee_ID” must be

unique and cannot be NULL

Uniqueness Constraint: “​employee_ID” and ​“​phone” must be unique

Derivation From Entity Relationship Types: ​car

Derived from car entity type. Employee “assigned_to” car.

35

Relation Schema:​ Payment

payment(​payment_ID,​ date, type, amount, hrs_worked, description)

Attributes

*payment_ID Integer, 1-1000, primary key

date date

type varchar(20)

amount decimal (7,2)

hrs_worked decimal(2,1)

description varchar(255)

Candidate Keys: ​payment_ID(primary)

Primary Key/Entity Integrity Constraint: ​“payment_ID” must be

unique and cannot be NULL

Uniqueness Constraint: ​“payment_ID” must be unique

Derivation From Entity Relationship Types: ​employee

Derived from employee entity type. Payment “paid” employee.

36

Relation Schema:​ Route

route(​route_ID, car_ID, ​start_date, end_date)

Attributes

*route_ID Integer, 1-1000, primary key

*car_ID Integer, 1-1000, foreign key

start_date date

end_date date

Candidate Keys: ​route_ID(primary)

Primary Key/Entity Integrity Constraint: ​“route_ID” must be unique

and cannot be NULL

Uniqueness Constraint: ​“route_ID” must be unique

Derivation From Entity Relationship Types: ​route

37

Relation Schema:​ Car

car(​car_ID,​ start_date, end_date, car_desc)

Attributes

*car_ID Integer, 1-1000, primary key

*tool_ID Integer, 1-1000, foreign key

start_date date

end_date date

car_desc varchar(255)

Candidate Keys: ​car_ID(primary)

Primary Key/Entity Integrity Constraint: ​“car_ID” must be unique and

cannot be NULL

Uniqueness Constraint: ​“car_ID” must be unique

Derivation From Entity Relationship Types: ​route

Derived from route entity type. Route “worked_by” car.

38

Relation Schema:​ assign_to

assign_to(​car_ID,​ ​employee_ID, ​start_date, end_date)

Attributes

*car_ID Integer, 1-1000, primary key

*employee_ID Integer, 1-1000, primary key

start_date date

end_date date

Candidate Keys: ​[car_ID, employee_ID]

Primary Key/Entity Integrity Constraint: “​car_ID” must match the

car’s “car_ID”, “employee_ID” must match the employee’s

“employee_ID”.

Derivation From Entity Relationship Types: ​Car ​assign_to ​employee

Derived from using the cross-reference; 1..N relationship approach
between Car and Employee.

39

Relation Schema:​ Tool

tool(​tool_ID, repair_ID, ​brand, name, description)

Attributes

*tool_ID Integer, 1-1000, primary key

*repair_ID Integer, 1-1000, primary key

brand varchar(50)

name varchar(50)

car_desc varchar(255)

Candidate Keys: ​tool_ID(primary)

Primary Key/Entity Integrity Constraint: ​“tool_ID” must be unique

and cannot be NULL.

Uniqueness Constraint: ​“tool_ID” must be unique

Derivation From Entity Relationship Types: ​car

Derived from car entity type. car “contains” tool.

40

Relation Schema:​ Repair

repair(​repair_ID,​ supplier, date, cost, description)

Attributes

*repair_ID Integer, 1-1000, primary key

supplier varchar(100)

date date

cost decimal(7,2)

description varchar(255)

Candidate Keys: ​repair_ID(primary)

Primary Key/Entity Integrity Constraint: ​“repair_ID” must be unique

and cannot be NULL.

Uniqueness Constraint: ​“repair_ID” must be unique

Derivation From Entity Relationship Types: ​tool

Derived from tool entity type. tool “has” repair.

41

Relation Schema:​ House

house(​house_ID,​ ​service_ID, client_ID, contract_ID, ​address,
house_number, street_name, city, zip_code)

Attributes

*house_ID Integer, 1-1000, primary key

*service_ID Integer, 1-1000, foreign key

*client_ID Integer, 1-1000, foreign key

*contract_ID Integer, 1-1000, foreign key

number varchar(7)

street_name varchar(30)

city varchar(30)

zip_code varchar(9)

Candidate Keys: ​house_ID(primary)

Primary Key/Entity Integrity Constraint: ​“house_ID” must be unique

and cannot be NULL, “contract_ID” must be unique and cannot be null

Uniqueness Constraint: ​“house_ID, ” “contract_ID” must be unique

Derivation From Entity Relationship Types: ​house

42

Relation Schema:​ Additional_Service

additional_service(​service_ID,​ price, date, description)

Attributes

*service_ID Integer, 1-1000, primary key

price decimal(7,2)

date date

description varchar(255)

Candidate Keys: ​service_ID(primary)

Primary Key/Entity Integrity Constraint: ​“service_ID” must be unique

and cannot be NULL.

Uniqueness Constraint: ​“service_ID” must be unique

Derivation From Entity Relationship Types: ​house

Derived from house entity type. additional_service “provided_to” house.

43

Relation Schema:​ Client

client(​client_ID,​ name, address, phone)

Attributes

*client_ID Integer, 1-1000, primary key

name varchar(30)

address varchar(150)

phone varchar(10)

Candidate Keys: ​client_ID(primary)

Primary Key/Entity Integrity Constraint: ​“client_ID” must be unique

and cannot be NULL.

Uniqueness Constraint: ​“client_ID” must be unique, “phone” must be

unique

Derivation From Entity Relationship Types: ​house

Derived from house entity type. House “owned by” client.

44

Relation Schema:​ Contract

contract(​contract_ID,​ ​income_ID,​ date, montly_fee, description, sDate,
eDate)

Attributes

*contract_ID Integer, 1-1000, primary key

*income_ID Integer, 1-1000, primary key

montly_fee decimal(7,2)

description varchar(250)

sDate date

eDate date

Candidate Keys: ​contract_ID(primary)

Primary Key/Entity Integrity Constraint: ​“contract_ID” must be

unique and cannot be NULL.

Uniqueness Constraint: ​“contract_ID” must be unique

Derivation From Entity Relationship Types: ​house

Derived from house entity type. Contract “written_for” house.

45

Relation Schema:​ Income

income(​income_ID,​ date, type, amount, description)

Attributes

*income_ID Integer, 1-1000, primary key

date date

type varchar(150)

amount decimal(7,2)

description varchar(250)

Candidate Keys: ​income_ID(primary)

Primary Key/Entity Integrity Constraint: ​“income_ID” must be unique

and cannot be NULL.

Uniqueness Constraint: ​“income_ID” must be unique

Derivation From Entity Relationship Types: ​contract

Derived from contract entity type. Income “produced_by” contract.

46

 2.3.2. Sample Data of Relation

Below is a list of tuple data for the Green Landscape’s schema. This data
represents the real-world scenario for all entities and relationships types. The
tuples will be listed in a table format, were relational schema attributes are
columns and individual tuples are rows. Each relation derived from another entity
will have 1 to 10 sample tuples, while others will have 20 samples

Employee

employee_ID payment_ID name address phone salary

1 9 Eadie Paulus 734 Hollow Ridge Parkway 500-707-0171 $67.67

2 1 Annabal Brosio 5 Nova Crossing 407-885-0736 $105.72

3 8 Brit Tumilson 717 6th Street 354-433-9490 $81.68

4 2 Lonna McCutcheon 57 Jenna Trail 440-225-1045 $85.08

5 18 Evered Mizen 55 Sage Hill 951-672-7627 $68.62

6 3 Eldridge Coundley 19 Bayside Court 299-920-5922 $90.76

7 10 Gelya Mingotti 280 Tennyson Pass 991-246-3112 $119.87

8 20 Robers Decruse 2 Macpherson Way 938-190-3490 $92.05

9 4 Leese Ferris 0991 Ludington Street 204-527-6807 $77.15

10 19 Auberta Richly 023 Everett Parkway 871-947-1668 $76.83

11 6 Laverne Attwell 5 Northview Road 406-540-8813 $60.64

12 11 Saundra Villiers 17132 Dahle Avenue 718-994-0342 $74.34

13 12 Alistair Iveson 4 Weeping Birch Pass 748-461-1464 $69.54

14 5 Evy Heimann 59668 Merchant Court 946-249-0230 $85.35

15 13 Clarine Thews 665 Redwing Pass 474-581-2039 $113.67

16 15 Marleen Chaffen 092 Utah Lane 513-765-7735 $118.79

47

17 7 Osbourne Foort 8 Logan Junction 385-397-5671 $108.48

18 16 Atlante Gonoude 23 Mccormick Pass 519-601-7836 $91.52

19 14 Hazlett Summerrell 5025 Riverside Alley 915-749-7550 $89.59

20 17 Danette Mowlam 04 Kenwood Pass 611-133-8804 $118.39

Payment

payment_ID date type amount hrs_worked description

1 5/4/2018 cash $109.90 5 Maecenas pulvinar lobortis est.

2 3/3/2018 cash $80.01 8 Maecenas tristique, est et tempus semper, est
quam pharetra magna, ac consequat metus
sapien ut nunc.

3 7/19/2018 bank
deposit

$102.46 6 Vestibulum rutrum rutrum neque.

4 12/7/2017 money
order

$94.50 8 Duis consequat dui nec nisi volutpat eleifend.

5 6/19/2018 money
order

$63.74 9 Phasellus sit amet erat.

6 6/12/2018 money
order

$63.70 3 Aenean auctor gravida sem.

7 12/4/2017 cash $78.01 10 Morbi non lectus.

8 3/13/2018 cash $76.62 2 In blandit ultrices enim.

9 9/1/2018 cash $78.01 2 Integer ac neque.

10 5/21/2018 cash $87.06 6 Nam dui.

48

Repair

service_ID supplier date cost description

1 Realfire 1/14/2018 $466.14 Morbi sem mauris, laoreet ut, rhoncus aliquet, pulvinar
sed, nisl.

2 Brainsphere 11/26/201
7

$536.68 Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus.

3 Oyoyo 11/5/2017 $59.02 Aenean fermentum.

4 Zava 4/14/2018 $951.20 Vestibulum ante ipsum primis in faucibus orci luctus et
ultrices posuere cubilia Curae; Mauris viverra diam
vitae quam.

5 Yabox 11/23/201
7

$312.79 Morbi a ipsum.

6 Gigazoom 9/13/2018 $749.54 Cras in purus eu magna vulputate luctus.

7 Eidel 3/17/2018 $862.23 Morbi a ipsum.

8 Topiczoom 10/4/2018 $381.30 Etiam
vel
augue.

9 Roombo 10/31/201
7

$746.27 Sed sagittis.

10 Skimia 1/24/2018 $358.26 Nam tristique tortor eu pede.

Tool

tool_ID brand name serviceID car_ID description

1 Echo Brush Cutter 9 3 Quisque ut erat.

2 Echo Stump Grinder 2 2 Nulla ut erat id mauris vulputate
elementum.

3 Honda Blower 8 3 Morbi a ipsum.

4 Shindaiwa Pole Pruner 5 1 Donec odio justo, sollicitudin ut, suscipit a,
feugiat et, eros.

5 Shindaiwa Tiller 9 2 Praesent blandit.

6 Honda Blower 9 2 Nulla tempus.

7 Echo Blower 5 4 Morbi non lectus.

49

8 Toro Trimmer 6 7 Cum sociis natoque penatibus et magnis
dis parturient montes, nascetur ridiculus
mus.

9 Toro Shredder 1 5 Phasellus in felis.

10 Blue-bird Lawnmower 8 1 Morbi a ipsum.

Car

car_ID start_Date end_Date description

1 8/30/2018 4/12/2019 19XFB4F27FE859591

2 4/1/2018 5/29/2019 1G6DX67D170548661

3 11/23/2017 9/17/2019 1G4GA5GR9FF255678

4 2/1/2018 1/26/2019 WBAVC93588K828898

5 7/13/2018 8/16/2019 1FTMF1EW6AF048049

Assign_to

car_ID employee_ID date

2 8 7/30/2019

3 3 11/15/2018

1 20 6/5/2019

3 18 10/5/2019

3 3 2/27/2019

2 2 6/9/2019

4 16 12/24/2018

3 13 4/3/2019

3 8 12/17/2018

3 12 2/27/2019

50

Route

route_ID weekday sDate eDate house_ID carID

1 Thursday 9/15/2019 7/24/2019 117 4

2 Wednesday 3/22/2019 8/10/2019 257 1

3 Wednesday 2/19/2019 4/21/2019 173 5

4 Wednesday 1/21/2019 1/2/2019 126 1

5 Tuesday 3/13/2019 7/15/2019 85 2

6 Monday 7/17/2019 6/17/2019 252 5

7 Tuesday 2/8/2019 10/19/2019 217 2

8 Friday 4/8/2019 1/26/2019 205 2

9 Thursday 3/12/2019 8/10/2019 212 3

10 Thursday 11/27/2018 11/18/2018 130 3

11 Wednesday 1/22/2019 3/16/2019 138 4

12 Wednesday 6/8/2019 5/6/2019 199 2

13 Monday 3/8/2019 8/7/2019 72 1

14 Saturday 4/6/2019 4/10/2019 2 2

15 Friday 3/6/2019 2/27/2019 13 5

16 Tuesday 11/28/2018 5/16/2019 93 2

17 Wednesday 9/26/2019 3/9/2019 199 2

18 Saturday 8/24/2019 2/4/2019 33 4

19 Wednesday 8/30/2019 5/11/2019 261 5

20 Wednesday 8/22/2019 7/16/2019 247 2

51

House

house_I
D

Number Street name zipCode sDate eDate n_house
_ID

contract_
ID

client_
ID

1 8 Manufacturers 75044 10/21/2019 10/6/2019 177 261 51

2 56734 Lerdahl 4/6/2019 11/14/2018 248 58 133

3 67 Rusk 4/14/2019 4/25/2019 42 24 187

4 4 Jenna B3T 3/9/2019 9/10/2019 54 33 199

5 47645 Rowland 2965-212 9/17/2019 1/8/2019 253 108 38

6 0 Waubesa 8424 1/9/2019 11/18/2018 148 68 152

7 845 Nobel 4/30/2019 9/6/2019 173 66 167

8 43 Montana 673377 9/22/2019 5/12/2019 195 31 148

9 8 Gina 4216 4/24/2019 10/27/2018 166 241 123

10 14764 Bartelt 8/20/2019 5/6/2019 103 45 83

11 08 Eastwood 94180 12/29/2018 7/28/2019 84 202 54

12 8 Sutteridge 14604 10/5/2019 1/17/2019 60 266 188

13 179 Grayhawk 3/9/2019 5/16/2019 11 25 92

14 882 Novick 2/27/2019 2/10/2019 97 16 49

15 68 Orin 905 92 5/19/2019 8/4/2019 169 253 85

16 8 Fairview 2/23/2019 11/20/2018 220 53 158

17 8992 Village Green 0620 9/14/2019 5/4/2019 70 5 142

18 88380 American Ash 12/3/2018 3/6/2019 260 12 45

19 64 Esker 11/25/2018 9/12/2019 201 232 16

20 90 Mayer 72-510 2/8/2019 9/14/2019 108 122 103

52

Client

client_ID name address phone

1 Bernardina Connick 63 Nova Court 345-299-6113

2 Mabel O'Brogan 198 Lawn Road 959-718-3623

3 Eddie Noddings 555 Hayes Circle 733-226-2777

4 Darb Woloschinski 919 Lotheville Crossing 802-396-7730

5 Caty Charrette 0 Wayridge Plaza 788-538-9938

6 Linn Durnall 7599 Lerdahl Crossing

7 Wilbur Craighall 68029 Carpenter Court 991-442-7082

8 Ailyn McArt 537 Portage Point 278-836-2460

9 Tonya Spread 23181 Lakewood Avenue 814-322-0320

10 Fancie Daybell 2 Merchant Road 793-398-6830

11 Bernete Demare 61775 Homewood Terrace 722-170-3517

12 Jess Ingree 6810 Blue Bill Park Drive 773-314-9708

13 Florri Bottleson 04 Randy Lane 393-145-9648

14 Pren Ianne 5394 Jay Place 612-754-2045

15 Calv Pellissier 30 Moland Point 336-562-0786

16 Mario Verbeek 3 Schlimgen Crossing 473-550-9225

17 Sergeant Silman 9328 Spenser Way 567-580-7840

18 Cesar Heersema 7 Havey Terrace 923-574-3611

19 Cy Bourrel 4 Steensland Hill 664-154-2943

20 Albert Muspratt 1 Brown Drive 506-153-6929

53

Additional_Service

service_ID price description house_ID

1 $85.47 Vivamus in felis eu sapien cursus vestibulum. 3

2 $492.69 Nam dui. 9

3 $311.46 In quis justo. 13

4 $158.14 Nullam sit amet turpis elementum ligula vehicula consequat. 4

5 $445.78 Praesent blandit. 17

6 $291.61 Aenean lectus. 5

7 $362.70 Donec semper sapien a libero. 10

8 $197.59 Nunc purus. 4

9 $194.87 Morbi ut odio. 5

10 $333.00 Maecenas rhoncus aliquam lacus. 17

Contract

contract_ID monthly_fee sDate eDate description

1 $158.42 9/11/2019 7/4/2019 Proin at turpis a pede posuere
nonummy.

2 $189.97 8/15/2019 12/1/2018 Quisque ut erat.

3 $287.62 11/7/2018 9/5/2019 Proin at turpis a pede posuere
nonummy.

4 $323.30 9/20/2019 11/2/2018 Integer ac leo.

5 $337.06 5/30/2019 2/9/2019 Proin at turpis a pede posuere
nonummy.

6 $179.88 6/14/2019 12/14/2018 Aenean auctor gravida sem.

7 $458.85 10/22/2019 7/24/2019 Quisque porta volutpat erat.

8 $367.14 6/19/2019 4/7/2019 Integer pede justo, lacinia eget,
tincidunt eget, tempus vel, pede.

9 $172.96 7/21/2019 12/6/2018 Nulla nisl.

10 $338.85 1/23/2019 7/15/2019 Vestibulum quam sapien, varius
ut, blandit non, interdum in, ante.

54

Income

income_I
D

type amoun
t

date description contract_ID

1 cash $162.9
0

9/30/2019 Praesent blandit. 109

2 cash $499.2
6

1/12/2019 In est risus, auctor sed, tristique in, tempus sit
amet, sem.

254

3 bank
deposit

$140.2
0

5/18/2019 Nulla tellus. 207

4 check $77.76 11/20/201
8

Maecenas ut massa quis augue luctus tincidunt. 3

5 bank
deposit

$234.4
1

8/8/2019 Vivamus tortor. 182

6 bank
deposit

$213.7
5

1/3/2019 Donec odio justo, sollicitudin ut, suscipit a, feugiat
et, eros.

269

7 cash $248.2
3

7/9/2019 In sagittis dui vel nisl. 152

8 money
order

$486.7
2

4/13/2019 Vestibulum ante ipsum primis in faucibus orci
luctus et ultrices posuere cubilia Curae; Duis
faucibus accumsan odio.

89

9 bank
deposit

$370.8
5

12/14/201
8

Donec ut mauris eget massa tempor convallis. 129

10 check $1.72 2/16/2019 Curabitur gravida nisi at nibh. 218

55

2.4. Sample Queries for Database

In Section 2.4, we will discuss how to design queries for the sample data
given in the previous section. The relational database allows us three methods for
writing queries which include: relational algebra, tuple calculus, and domain
calculus. We will present the queries by retrieving data from our relations, or tables,
creating in the relational model. Specific data retrievals or specific data retrievals
will be described and then solved using all three methods.

2.4.1 Design Of Queries

In order to design the queries for our database it is important to know all the
attributes and relations within the relational model. After defining all constraints,
attributes, and keys we can solve any appropriate query using query language. The
following section will present ten queries and three methods to solving the query.

2.4.2 Relational Algebra Expressions

Relational algebra is the first method in which we will design our queries. The
expressions involved in relational algebra are a set of operations for retrieving
tuples from a relational state. The expressions then describe the process for
retrieving the tuples which means they are procedural. The order and nesting of
the expressions is important for the query.

1. List all clients who have been under contract for past three
months.

 c h ct

Π (σ Client x House x Contract)
C.* c.clientID = h.clientID ^ h.contractID = ct.contractID ^

ct.sDate <= f(‘Today,3 months’) ^ ct.eDate >= ‘Today’

2. List names of clients who have at least two houses under
contract.

 c h1 h2 ct

Π (σ Client x House x House x Contract)
C.* c.clientID = h1.clientID ^ h1.clientID = h2.clientID ^

h1.houseID != h2.houseID ^ h1.contractID = ct.contractID ^
h1.contractID = h2.contractID ^ ct.eDate > ‘Today’

56

3. List all employees who have worked over 50 hours and were
paid cash in the month of September (paid monthly at end of
month).

 e p

Π (σ Employee x Payment)
e.* p.paymentID = c.paymentID ^ p.hrs_worked >= 50 ^ p.Type =

‘cash’ ^ p.date = ‘9-30-18’

4. List houses that have a yearly contract and included more than
one additional service.

 h c a1 a2

Π (σ ​House x Contract x Additional_Service x Additional_Service)
h.* h.contractID = c.contractID ^ a1.houseID = h.houseID ^

a2.houseID = h.houseID ^ a.serviceID != a2.serviceID

5. List the houses worked on the date 3/6/18 and all employees
who worked those houses.

 h r c a e

Π (σ ​House x Route x Car x Assign_To x Employee​)
h.ID, e.ID h.houseID = r.houseID ^ c.routeID = r.routeID ^ c.carID =

a.carID ^ a.employeeID = e.employeeID ^ r.date = ‘3-6-18’

6. List all cars that hold only tools made from ‘Honda’.

 c t

Π (Car - Π (σ Car x Tool))
h.* c.* c.carID = t.carID ^ t.brand != ‘Honda’

7. List all clients whose contract has a monthly fee of $100 or
more.
 ct c h

Π (σ Contract x Client x House)
c.* h.contractID = ct.contractID ^ h.clientID = c.clientID ^

 ct.monthly_fee > 100

57

8. List all employees who worked in specific car on 3/1/18 on route
#4.
 r c a e

Π (σ Route x Car x Assign_to x Employee)
c.* c.routeID = r.routeID ^ a.carID = c.carID ^ a.employeeID =
c.employeeID ^ a.date = 3-1-18 ^ r.routeID = 4
9. List the second most expensive contract.

c1 c2

Result​ <= ​Π (σ Contract x Contract)
 ​c1.* c1.monthlyfee > c2.monthlyfee

c1 c2

Π (Result - Π (σ Result x Result))
c.* c1.* c1.monthlyfee > c2.monthlyfee

10. List all the employees who worked with John Doe on dates
between 3/1/18 and 3/5/18.

 c a el c a e

Π​ ((​σ​ Car x Assign_To x Employee) x ​Π (​σ​ Car x Assign_to x Employee))
e.* c.carID = a.carID ^ c.carID c.carId = a.carID ^ a.eID

a.employeeID = c.employeeID a.employeeID = e.employeeID ^
 E.name = ‘John Doe’

58

 2.4.3 Tuple Relational Calculus Expressions

Tuple relational calculus uses procedural expressions. It uses free variables
(the variables that describe what the query will retrieve), bound variables (variables
bounded by existential or universal quantifiers), and logical expressions with truth
or false value.

1. List all clients who have been under contract for past three
months.
{ c.* | client(c) ^ (Ǝh) (Ǝc) (house(h) ^ Contract(ct) ^

c.clientID = h.clientID ^
h.contractID = ct.contractID ^
ct.sDate <= pastMonth(now,3) ^
cs.eDate >= now) }

2. List names of clients who have at least two houses under
contract.
{c.* | client(c) ^ Ǝ(h1) Ǝ(h2) Ǝ(ct) (house(h1) ^ house(h2) ^ contract(ct) ^

c.clientID = h1.clientID ^
c.clientID = h2.clientID ^
h1.contractID = ct.contractID ^
h2.contractID = ct.contractID ^
h1.houseID != h2.houseID ^
ct.eDate > ‘now’) }

3. List all employees who have worked over 50 hours and were
paid cash in the month of september (paid monthly).
{e.* |employee(e) ^ Ǝ(p) (payment(p) ^

p.payment = e.payment ^
P.hrs-worked >= 50 ^
p.type = “cash” ^
p.date = ‘9-30-18’) }

4. List houses that have a yearly contract and included more than
one additional service.
{h.* | house(h) ^ Ǝ(c) Ǝ(a) Ǝ(a2) (contract (c) ^ add_service(a) ^

 add_service(a2) ^
h.contractID = c.contractID ^
a.houseID = h.houseID ^
a2.houseID = h.houseID ^
a.serviceID != a2.serviceID) }

59

5. List the houses worked on the date 3/6/18 and all employees
who worked those houses.
{<h.houseID, e.employeeID> | house(h) ^ Ǝ(r) Ǝ(c) Ǝ(a) Ǝ(e) (

route(r) ^ car(c) ^ assign_to(a) ^
employee(e) ^

h.houseID = r.houseID ^
c.routeID = r.routeID ^
c.carID = a.carID ^
A.employeeID = e.employeeID ^
R.date = ‘3-6-18’) }

6. List all trucks that hold only tools made from specific "brand"
{c.* | car(c) ^ ∀(t) (tools(t) → Ǝ(c2) (car(c2) ^

c2.carID = t.carID ^
T.brand = “Honda”) }

7. List all clients whose contract has a monthly fee of $100 or
more.
{c.* | contract(c) ^ Ǝ(h) Ǝ(c1) (house(h) ^ client(c1) ^

c.contractID = h.contractID ^
h.clientID = c1.clientID ^
C.monthly_fee > 100) }

8. List all employees who worked in specific car on 3/1/18 on route
#4.
{e.* | route(r) ^ Ǝ(c) Ǝ(a) Ǝ(e) (car(c) ^ assign_to ^ employee(e) ^

c.routeID = r.routeID ^
a.carID = c.carID ^
a.employeeID = e.employeeID ^
A.date = ‘3-01-18’ ^
r.routeID = 4) }

9. List the second most expensive contract
{c.* | contract(c) ^ Ǝ(c2) ​(​contract(c2) ^

c2.monthly_fee > c.monthly_fee ^
¬Ǝ(c3)(contract(c3) ^

c3.monthly_fee > c2.monthly_fee)​) ​}

60

10. List all the employees who worked with John Doe on dates
between 3/1/18 and 3/5/18.
{e1.* | car(c1) ^ Ǝ(a1) Ǝ(e1) ​(​assign_to(a1) ^ employee(e1) ^

c1.carID = a1.carID ^
a1.employeeID = e1.employeeID ^
Ǝ(c) Ǝ(as) Ǝ(e) (car(c) ^ assign_to(as) ^ employee(e) ^

c.carID = as.carID ^
e.employeeID = as.employeeID ^
e.name = ‘John Doe’)​)​ }

2.4.4 Domain Relational Calculus Expressions

Domain relational calculus is another branch of relational calculus that
focuses on domains of the relation state. Each variable represents a single value
with a tupe, instead of the entire tuple. Just like tuple relational calculus, it makes
use of the existential (∃) and universal (∀) quantifiers and uses the same
operators.

1. List all clients who have been under contract for past three
months.

{<n, a, p, s> | client (n,a,p,s) ^ (∃c) (Contract(_ , _ , f(today - 3 months), e

> ‘today’)}

2. List names of clients who have at least two houses under
contract.

{<n> | client (c, n , _ , _, _) ^ (∃ct) (Contract (ct , _ , _ , _ , > ‘Today’) ^

(∃h1 ∃h2) (House (h1, _ , _ , _ , _ , _ , _ , ct ,
c)
 ^ House (h2, _ , _ , _ , _ , _ , _ , ct, c)^ h1 != h2)}

3. List all employees who have worked over 50 hours and were
paid cash in the month of september (paid monthly).

{<e> | employee (e, _ , _ , _ , _) ^ (∃p) (Payment (p, 9/30/18, cash, _, 50,

 _ ,e)}

61

4. List houses that have a yearly contract and included more than
one additional service.

{<h> | house (h, _ , _ , _ , _ , _ , _ , ct , _) ^ (∃ct) (Contract (ct , _ , _ , _) ^

(∃a1∃a2) (Additional_Service(a1 , _ , _ , h) ^
 Additional_Service(a2 , _ , _ , h) ^

a1 != a2)}

5. List the houses worked on the date 3/6/18 and all employees
who worked those houses.

{<h,n> | house (h, _ , _ , _ , _ , _ , _ , _ , _) ^ (∃r) (Route (r, _ , _ , _ , h) ^

(∃c) (Car (c , _ , _ , _ , r) ^
(∃a) (Assign (c , 3/6/18, e) ^
(∃e) (Employee (e , n , _ , _ , _)}

6. List all trucks that hold only tools made from 'Honda'.

{<c> | Car (c , _ , _ , _ , _) ^ (∃t)(∀b) (Tool (t, b , _ , _ , c) -> b = Honda}

7. List all clients whose contract has a monthly fee of $100 or
more.

{<n> | Client (c, n, _ , _ , _) ^ (∃h) (House (h, _ , _ , _ , _ , _ , _ , _ , _) ^

(∃ct)(Contract(ct, >= 100, _ , _ , _)

8. List all employees who worked in specific car on 3/1/18 on route
#4.

{<e,n> | Employee (e , n , _ , _ , _)^ (∃c∃r∃a∃e) (Car (c , _ , _ , _ 4) ^

(Route (4, _ , _ , _ , _) ^
(Assign_To(a, c , 3/1/18, 3/1/18, e) ^
(Employee(e , n , _ , _ ,_))}

9. List the second most expensive contract

{ <c2> | Contract (c2, m2, _ , _ , _) ^ (∃m1 ∃c1) (Contract(c1, m1, _ , _ , _
)

 ^ (∃m2 ∃c2) (Contract(c3, m3, _ , _ , _
)

 ^ m2 > m1 ^ m2 < m3)}

62

10. List all the employees who worked with John Doe on dates
between 3/1/18 and 3/5/18.

{<e,n> | Employee (e, n, _ , _ , _) ^ (∃c) (Car(c, _ , _ , _ , _) ^

(∃a) (Assign_To(a, c, 3/1/18, 3/5/18, e)
^

(∃e2)(Employee(e2, John Doe, _ , _) ^
 (∃a2)(Assign_To(a2, c, 3/1/18, 3/5/18,

e2)}

63

