Zombie Arcade

Team 7 Technical Report

[START GAME]
CONTROLS
HIGH SCORES

Press Enter to Select

Jonathan Halbrook
Alvaro Juban Jr.
Brandon Ware

Lifecycle

For the lifecycle of the project we decided it was best to go with the
spiral model. We started out deciding that what would be best would be to
create a basic working game with all the necessities of what a game is, a
hero, an enemy or Al, an objective, functionality of the player and
enemy/Al, and a score. And then once we had a working a game we would
go back through the same process and implement new ideas or extras that
would make the game better and more enjoyable to the player as long as
time permitted. This allowed us to be certain that once the deadline was

reached we would have at the very least a working product.

Daterming Objectivas,
Alternafives, and Constraints

Committe | | [

Risk
I Analysis

Evalualz Allarmalivas
and Risks

Cumudative Cost

%

\
l

Maxl Cycla L\

Plan Mext Phase

\
)

Develop and Tast

Determining how and where to spawn the zombies

At first we took the functionality of the asteroids program to determine
how to spawn the zombies. Once we understood the code and functionality
of code we implemented into our own program. We started with just five

spawn points alongside the windows edge.

(xres*.25, 0)

®

(0, yres*.25) 8 >

4
X

(xres, yres*.5)

(0, yres*.75) {X) .

&

(xres*.75, yres)

Also causing them to go at a constant speed straight ahead. Once the
functionality was finished the challenge was to make the Zombie go straight
towards the player.

In order for the Zombie to go straight towards the player the
hypotenuse and the distance between the Zombie and the Player had to be
found. Once found it was only a matter of checking to see once the player

moved at what angle he moved and in what direction. This rotates the

Zombie and we made the Zombie maintain a constant speed that was just
slower than the player. Once the Zombie was appropriately moving towards
the player we decided it would be best and a lot more challenging if the
zombie spawn points were randomized along the left, top, right, and bottom
of the screen. In order to accomplish this we made the zombie spawn mod
four since the screen has four sides. So all the zombies that once modded
by four equal zero would go on the left side of the screen, the ones that
equaled one would go on the right side, two would go on the top, and three

on the bottom.

zombie % 4 =2

zombie zombie
D.'fﬂ ﬁ.l"lfﬂ
4 4
0 1

zombie % 4 =3

Zombie Collision

In the structure we give the Zombies a radius. So for collision to work
all that was needed to be done was to check the distance of the other
Zombies. Once the distance was less than the radius we had the option of
either giving it some sort of penalty or to push the other Zombie it was
colliding with forward or sideways. We decided that it would be better if it
made it seem like the Zombies were actually pushing each other once they

collided to get to the Player.

- Leollision:

Backgrounds

For the backgrounds we made all decided that we would only use five

different backgrounds for the player to kill zombies on. The first background

being the welcoming of the player to threshold of our game.

All the backgrounds were made on the Starcraft || map editor,
screenshotted, converted to a ppm image, then inserted into the game.
Once you go past zone five or the fifth background it will return you to the
second background using a modulus operator. After each zone not only
does the background change but the zombie count is also multiplied by

two.

Textures

As a group we decided that we wanted to create a zombie game
using the framework of an asteroid game. Based off the asteroid model we
came to the conclusion that using “top-down” textures would be the most
natural and easier. Normally most games use sprite-sheets that include a
large image with multiple perspectives of said sprite. To create the illusion
of animation this method requires coordinates of a certain sprite and timing
for when you would like to change. From a top-down perspective we can
simply rotate the image to create the animation of the object changing its

view.

Though a bunch of square pictures moving around doesn't look as
appealing as actual textures. In order to make parts of an image we didn't
want to be seen disappear we had to convert the image. This was done by
coloring undesired parts of our image black. We then use OpenGL
functions to create a silhouette of the original image. This method takes the
color black in our image and doesn't display it to the screen. Once this is

done the undesired parts of our image appear to be transparent.

Transi@arent

Texture Binding

Once we decided what type of textures we wanted to use we had to
figure out how to attach these textures to both the player object and zombie
objects. For this we used OpenGL, which was very convenient because not
only did it offer the function of binding textures it also had the function for
rotating the image. Without going into to much detail binding a texture to an
object is pretty simple. For example with our player object (soldier) we first
find where the player is located by using glTranslate() with the position of
the object . Once found we simply use gIBindTexture() and call forth the
image to be displayed onto the screen. We then resize the image to fit into
the designated object so that correct collision properties still apply to our

texture.

Animation

Now that the textures were binded to the textures we wanted to add
little more detail to our player. This little detail was the implementation of
animation. We aimed to make our soldier texture appear to take steps on
screen. As stated early we used the gIBindTexture() but instead of
attaching the same image automatically to the player object, we placed
conditions to decide which image would be displayed. When the player isn't
moving the standard soldier is attached, but once the player begins to
move a walking animation initialized. This is done by seeing if the user is
pressing any of the designated keys that moves the player. In this case it is
‘w, a, s, d”. Simply put whenever any of these keys are pressed 3 images

begin to loop and continue to loop just so as long the player keeps moving.

Screen Control / Program Flow

In order to implement several of the requirements for our game, it
was necessary to create a menu screen. The start menu acts as a gateway

to all of the other parts of our program; a starting point for the user.

Game
Over

Gameplay

High

Start Menu Scores

Controls

This was done by creating a set of ‘states’, or variables, set to 0 or 1
depending on which screen was currently active. Each state corresponds to
its own function, and its own loop nested within the main program loop.
These variables work similarly to how semaphores function, except in
regards to program flow in place of user access. These variables, for the
most part, are mutually exclusive; two screens can not, and should not be

displayed at the same time for obvious reasons.

A loot system was implemented by creating this simple structure:

struct Loot {
Vec pos; /I Set this to the position of the ‘dead’ zombie

Ppmimage *lootbg;

GLuint lootTex; /[Each loot object has it's own texture

int type; I/l type determines what the powerup() will be
struct Loot *next; /I List stuff...

struct Loot *prev; /...

struct timespec lootTimer; // Each loot object has it's own timer

Loot() {

/Iconstructor stuff...

}

Each loot object houses an image to be bound and displayed, a type
which corresponds to a specific powerup, and a timer which lets us know
when to delete the loot object.

After every zombie kill, a value is randomized and given a 5% chance
to succeed. If the randomized value succeeds, we roll again to determine
the type of the loot. After the type is determined, we call the powerup()
function to accomplish our goal. Each loot object is deleted when either
picked up, or left on the ground for more than 5 seconds, as determined by

the timer check within render().

Sound

Contrary to what several other groups experienced, there were very
few problems with the addition of sound to our game. We used the FMOD
library provided in some of the other frameworks used throughout the
course.

In addition to the standard functionality, we also implemented a way
of accessing and setting the volume of specific sounds within the game, so
that certain shots or powerups did not ring more loudly than others. The
functionality existed within FMOD.hpp, but was not accessed within any of

the files included with other frameworks.

int fmod_volume(float i)
{
FMOD_RESULT result;
result = FMOD_Channel_SetVolume(channel,i);
if (ERRCHECK(result)) {
printf("error fmod_volume()\n");
return 1;
}
result = FMOD_Channel_SetPaused(channel,false);
if (ERRCHECK(result)) {
printf("error channel->setPaused()\n");
return 1;

}

return O;

We created this function and called it within the playsound() function
whenever any sound was to be played.

Conclusion

We very much enjoyed working on this project throughout the quarter.
We learned a great deal about the software engineering process, and
gained some valuable coding skills in the process (especially within the
realm of program modularization!). There are so many additional features,
concepts, and ideas that could have been implemented given more time,
but we are quite happy with what we managed to accomplish in such a

seemingly short period of time, and with only three people involved.

