
Lab Assignment: Interprocess Communication with pipe() and
execve()

Start

Log on to Odin and do the following...
$ cd 3600
$./lab-start.sh
$ cd e
$ vi vrlab14.c

Using a Makefile might be helpful.
Remember to check for compile warnings.
Files to be collected: vrlab14.c

Objective

In this lab, you will implement a program that demonstrates interprocess
communication (IPC) using:

 fork() to create child processes
 pipe() to communicate between processes
 execve() to re-execute the same program in different roles

You will simulate a producer-consumer system, where:
 The producer generates a random two-digit number and writes it to a

pipe
o Producer exits using first digit of the random number

 The consumer reads the number from the pipe
o Consumer exits using second digit of the random number

 The parent waits for both to finish and exits using the full two-digit
number

 The parent must also accept a command-line argument that will be
used as a random number seed value. The value will be passed to the
producer, as the producer actually generates the random number.
Seed the random number generator: srand(seed_number);

Purpose of Lab

The purpose of this lab is to use IPC to communicate information between
three separate processes. First, the producer communicates with the
consumer via the information sent through the pipe. Then, both the
producer and consumer communicate with the original process using the
program’s exit code. By default, file descriptors are shared among processes
even after replacing the process image.

Code Skelton

The provided code defines different roles based on argv[1]:
if (argc == 1) {

// parent mode
// create pipes and open log file
// launch producer and consumer processes with execve()
// *hint* do you need to tell the new process any information about

the pipe?

 // wait and log the exit status of the producer and consumer
 waitpid(cpid_producer, &wstatus1, 0); // wait for producer
 printf("Producer exited with status %d\n",
WEXITSTATUS(wstatus1));
 dprintf(logfd, "Producer exited %d\n", WEXITSTATUS(wstatus1));

 waitpid(cpid_consumer, &wstatus2, 0); // wait for consumer
 printf("Consumer exited with status %d\n",
WEXITSTATUS(wstatus2));
 dprintf(logfd, "Consumer exited %d\n", WEXITSTATUS(wstatus2));
 short exit_status = WEXITSTATUS(wstatus1)*10 +
WEXITSTATUS(wstatus2);
 printf("Main process exit status: %d\n", exit_status);
 dprintf(logfd, "Main process exit status: %d\n", exit_status);
 close(logfd);

 return exit_status;

} else if (strcmp(argv[1], "PRODUCER") == 0) {
// producer mode
// generate random number
// write it to the pipe

// log
// return first digit as exit code

} else if (strcmp(argv[1], "CONSUMER") == 0) {
// consumer mode
// read random number from pipe
// log
// return last digit as exit code

}

Example Execution

Execution Timeline

