Conceptual Database Design

Rusty’s Pizza Database

Christopher Jestice

10/19/2010

Page |1

Table of Contents

Phase I: Conceptual Database Model

Fact-Finding Techniques and Information Gatheringcccccocvveiiie i 8
Description Fact-FiNiNg TECNIQUEScouiiiiioie e 8
Introduction to Enterprise/OrganizZationc.coiieiiieiiieniie e 9
The part of enterprise you are designing conceptual database for............cccccceviieeiiii s 10
User Groups, Data VIEWS and OPEratiONS.couieiiiiiiieiiieiie ettt 11

Conceptual DatabDase DESIGNc.eeiuiiiiiiiiie ittt 12
ENLitY SEt DESCIIPTION ...ttt ettt ettt et e st et e e s e nree s 12

LYo =PRSS TR 12

L1 Y/<] 010 YT PPPRRT PRI 13

=] 0 TSP PP PR TTPPPPPI 14

(O] 0[] PO TR TPRPPRTP 15

DISCOUNTS .tttk b ekt e bbbt ekttt e bt e et et et e e st e e nbb e e bt e nnbeenbee s 16

PUZZA ... 17
Relationship Set DESCIIPLIONviiiiie et e et e s e et e e et e e e snteeeeneeeanns 18
NASDISCOUNES ...tttk e e h bt e bt et e e b bt e e bb e et e e st e et b e e beeanbeennee s 18

4] 1] 0 L TP PPP TP 18

NASPIZZAS ...ttt 18

[Fo R o] o] 011 LSS OPRRSUPRUI 18

EEMSFIOMINVENTOIY ...t e et e e e e e s st b eeee s 18

L0101 LAY =T 1 (o] YOO PP RPPR PP 19
REIALE ENLILY SOL.....ee it e e e s e e et e e et e e et a e e snae e e snbeeeanneeeanes 20

SPECIANIZALION ...t e e e e e e e e e 20

(C1= Lo =2 LA o] PP RTPOPRTP 20

R DI To | - o ST OPRRPTP 21

Page |2

Phase II: Relational Model

E-R model and relational MOlooouriiiiiie e 22
Dol 0] o] o FO TP TP VP PUPTPPRPPRS 22
(O00] 4] o= T 0] o T PP T R UPP TP PPR 22
Conversion: E-R Model to Relational MOGeloouiiiiiii e 23

Mapping of Regular ENtItY TYPES:oiiiieiiieiie it 23
Mapping OF Weak ENILY TYPES:ottt 23
One-to-One Mapping: 3 @PPIrOACNEScouiiiiieiie i 23
Many-t0-Many IMaPPING:coiuieiiiiiee ettt 23
Mapping of Multivalued AttrDULES: ..o 23
Mapping N-ary Relationship TYPES:oouiiiiiiie e 23
(O0] 4151 (=1 [1] 5O OUPRRRPOPPRI 24

Converted E-R model to Relational Modeloooiiiiiiiiiiiiiic e 25

L@ o =T PO OUPRRRROPTRI 25
ATIOULES: ..ot e e e e s e e e e s e e e s et e e e e s e r e e e s ab b e e e e abaraeeaas 25
@001 11511 7= 11 1] £ SRR 25
OF: 100 110 F L Lc I S-SR 25

3o o1 £ PSPPSR 25
N L1 0 (=SSR 25
070 11511 7= 11 1] £ SRS 25
OF: 100 110 F L LI S-S SRS 25

PUZZA et e e ettt e e e e bbbt aaeeeanaas 25
N L1 0 (=SSP 25
070 11511 7= 11 1] £ SRS 26
OF: 1010 110 F L Lo S-S SRRSO 26

=] OO PP PPPR PP 26
N L1 0= SR SUPRSTPR 26
0001115 =111 OSSR 26
OF: 1010 [To F Lol S-S OSSP 26

LN ZT (0] Y2 PPTR P RPPPP 27
N L1 o= STPR PP 27
000115 =111 OSSP 27

(08 1010 [0 Y G (=) SO PP PP PP 27

LYo o OSSR UPPROTRR
N L1 o= PRSPPI 27
000 1511 7211 1] £ RSP RTPR 27
CANAIAALE KBYS: ..ttt 27

0 S D100 11 o | SRR
L1 o (=SSP STRR 28
000 11511 7211 1] £ SR STPR 28
CANAIAALE KBYS: ...ttt ettt 28

00 TS] 1 0PRSS
N L1 0 =SSP STRR 28
@00 11511 7211 1] £ OSSR 28
CANAIAALE KBYS: ..ttt ettt ettt bttt 28

4 Sy (o] o] o] 10 [PSPPSR T U PRUPPOPRPPRS
N L1 0 (=SSP 28
@00 11511 7211 1] £ SRR 29
CANAIAALE KBYS: ..ttt ettt ettt 29

REIATION INSTANCES.eiiiieiiiie ettt e et e e st e et e e beeanree s

Order(Orderld, OrderNumber, OrderType, OrderDate)cccveiiuireiiireiiiee e see e

Discounts(Discountld, DiscNumber, DiscValue, DiscEdate, DISCDESC)cccveevvveeiiieeeiiieesiineene,

hasDiscount(HDID, Orderld, DISCOUNEIA)cccvrieiiieeiiiie e

hasltems(HIID, Orderld, IEMIA)ccouriiiiie e

Items(Itemld, ItemName, ItemPrice, InvId, CONVRALIO)cccvviiiiieiiiec e

Pizza(PID, Orderld, Size, CrUSE, PrICE)cciuieiiieeiiee e et e sttt srtte e see et ae e e e eaae e sbe e e nee e

hasToppingS(HTID, PID, INVId, QUANTILY).........courieiiie e

Inventory(Invld, InVName, UNItOFMEASUIE)oceiiuiieiiieecie e

Invoices(Invoiceld, Supplier, quantity, costPerUnit, Invid, dDate)............cccceevvveeiiieeiiiee e

(@ 01T 4 1S EERRPRPP
L@ U1 Y 0 1 TP PPPRPPRP

1. List all pizzas without extra tOPPINGS.cccvveeiiiieeiiie e 39

2. List all PIZZAS OFAEIEU.eeoeiie et 39

3. List all dISCOUNES QIVEN.oeiiiiie et 40

4. LiSt @ll taKe-0UL OFAEIS.eieiiieiicie e 40

5. List suppliers that are Not JOrdanos.c.cooiuieeiiie e 40

6. List orders that do NOt haVe PIZZAS.cceiiiiiiieiiiiie e 41

Page |4

List inventory items bought that cost at least $20 per unit.cccceeeviiiiiiniiiennn, 41
List orders With 2 0r MOre PIZZaS.coooieiiiiiiiiie s 41
List largest discount available. ... 42
10. List Inventory items received before October 1, 2009.cccovveviiieiiieeiiiee e 42

Phase III: Oracle Implementation

0] S o 43
Oracle SChEMA ODJECTScii it e et e e e nrba e e srra e e e anees 43
LI L0 2SSOSR 43
WEBWVS .ttt ettt ettt e et e e st e e s e e Rttt e e Rt e e e R Rt e oo Rt e e e Rttt e R et e e R et e e eRteeeaRteeeanteeeanteeennneeanneee s 43
LT 11T oL P O PP P PP PPRPUPPPRPUPPPPIS 44
SYNMONYIMS .ottt ettt ekt e kbt ekt e e s et e e R b et oo b bt e e b bt e ek e e e s e e e 44
D 1= 5 (0] PRSPPI 44
0 LoD OSSPSR 44
PrOCEAUIES/FUNCEIONS ... ettt ettt ettt ettt e e st e nbb e beeanbeenree s 44
DatADASE LINKS ... eiiiiiiie ettt 45
(O 1] (=] £ T PP UPP PP 45
Yo 4]0 - O o] 1< £ PSPPSR 46
(0] [(0 [T £ PSSP SUSRSURR 46
(o] I 11T 10 PSSP OURRSUSROPR 47
(0] | 27 VPSSP SUSRSRR 48
(o 0110100 Y/ OSSPSR SUSRSUSRRS 49
(o] (=T 1 PSSP OSSR 50
(o] 1) Y/0] (o= PSSP OUSRSUSRS 51
CINASITEIMIS ...ttt et e et e e e e e e e et e e et e e et b e e e ta e e anra e e aaaeeanaaeas 52
(o4 0] o] 01 L1 [PPSR SRRSO 53
CJNASDIISCOUNL ... tiee ittt et e e e e e st e e e rt e e e e st e e ate e e e teeeessbeeesnbeeesnbaeeansneeanneeens 54
@] I O 1= ¢ 1= PP REERPRRPPP 55

1. List all pizzas without extra tOPPINGScccvveeiiuiee i 55

2. List all PIZZAS OFdEred.........cccuviiiiiie ettt e 55

3. List all dISCOUNES QIVENoeeiiiie ettt 56

4. LiSt @ll taKE-0UL OFUBIS......eiiiiiie et 56

5 List suppliers that are NOt JOrdan0scocvveiiiiiieiiieie e 56
6 List orders that do NOt hAVE PIZZAScueeiiiiiiiiiieice s 57
7. List inventory items bought that cost at least $20 per unitccoceeeiiiiiiiiiens, 57
8 List orders With 2 0r MOIe PIZZAScoiuieiiiiie s 57
9 List largest discount available ... 58
10. List Inventory items received before October 1, 2009cccccccveeviieeiiiee e 58
11. Create a table that lists all order ID’S, dates, Pizza ID’s, pizza sizes, and cost.......... 59
12. Count the number of orders that have Pizzas.cccooeiiiiiiiiiiii e 59
[U 0 - o [o TSROSO 60
IVIBENOTS ...ttt ettt E ettt ettt 60
DBMS Data Loading ULIHIITIES:oiiiiiiiiiieiii e 60
JAVA DATALOAUReeiii etttk b ettt E bbbttt et e e 61
IMIOTITICALTIONS ...ttt ettt e st e bt e et e e bt et e et e e s e nnee s 61

Phase IV: Stored Procedures

Common PL/SQL and MS Trans-SQL FEALUIES..........ccvviieiiiiiiee e ciiieee ettt 62
(00110 [0 11 1=] 0| £SO P PP PR POPOPPPPPRTP 62
PUrpose Of StOred SUDPIOGIAIMS.c..vieiiiieeiiee ettt e st este e st e e s et e e et e e e e e e snae e e snteeesnteeeanneeeanns 62
Benefits of SUbProgram CallS............oooiiii i 63

(O] =Tod [o A1] OO ROOPPPRRPPP 64
PrOQram SEIUCTUIEooiiiiiiee ittt e e e e s sttt et e e e e e s s bbb et e e e e e e s s e bbb b e raeaeeennns 64
(000 01 o] IS t=U=] 11T 0| PRSPPI 65
LOT ST £ TP PUPRRR PRI 66

) 1= OO PP PP TTPPPPPP 66
Y (0] €0 [o (o Tor T LU PR PR TP 66
) 1= OO PP PP PP TPPPPPP 66
1(0] €0 [V0 4 o] PP PR TR 67
) 1= OO P PU PP 67
1o - Vo ST PRSP 67
) 1= OO P PU PP 67
L1 1= PR OPRROUPRSOPRRS 68

PL/SQL Stored Procedures and FUNCLIONScceiiieiiiiiiiiiiieeeee ettt e e e e e eivvrnree e e e e e e 69
CJINSHI(Orderid, IEMIM) ...cooieieeiiie ettt e et e e srb e e e srb e e e enneeeaneee s 69
CJDEIBLEPIZZA(PID) ... e ittt ettt et e et e et e e et e e et e e e st e e e snbe e e nnbe e e anreee s 69
CJHAVGPIZZA(INTEYET) ..tttk ekttt ekttt et e ettt e s e e nte e 70
(o] @ (o (= G o o - 1 PRSP STRRSTRR 71

Phase V: GUI Design and Implementation

USEI GIOUP ACLIVITIES ...eeeiiiiee ettt et e e e st e e et e e s ssb e e e bae e e anbeaeenneaaeanes 72
Relations Views and SUDPIrOGIaMScouuiiiiiiiie ittt 73
APPIICALION SCIEENSNOLS ...ttt ettt e sre e 74
1Y/ 0T SRS 74
L0101 1 1« I PP P PP PPPPPPRP 74
(01 0] 14 1@X0T 111 o Lo SO OUPRRRPOPPRR 74
LAY (o= P OO PP PPPRPTRPRPPI 75
1] = LRSS SUPRSSRR 75
U0 o PSSP 76
(Of0 0 (o B 1= LYo] 011 o] o PRSPPSO 77
(@] - Tod (=T @00] o] T-Tod o] o 1SR SURRTRRTR 77
(@] - Tod [=T@00] 14101 1o o [PSSP SURRSUSRI 77
(@] - Tod [I =17 Ut 1 o PRSP SUSRSUSRRN 77
(@ - Tod (1D T eV AN = o) -] PRSP SUSRSUSRTIS 77
[L W I o - SO ROPS P 78
DALASEL ... ettt e e e e e e b —t e e e e e s rtan e e e e s nnnnar e 78
CIASSES ...ttt et e e e e e e e et e ettt e et e e e te e e antaeeanraeeanreees 78

D] = T o f OO PP POTPP R TROPPPPPPRPT 78

INVIMANAGEIMENT. ...ttt e e e et e e e e s s a bbb e ra e e e e e e s s bbb b e neaes 78

(o0 (0] 0100 1 1] oo TSP 78

(L1 £ NS 1< o TR 78

i
e Edt View Project Buiki Debug Tesm Dpta Took Tet Window Help

HERERET T I Ry =S D e[t e | S Ge BE -,

I, CIMASDISCOUNT
¥ oD
| oroemp
ORDERTYPE DISCOUNTID
'R CUHASDISCOUNTTableAdapter (%]

W Fill GatData O

o Fill GeiData

DISCOUNTID DDATE

DISCHUMBER INVGICEID

DISCVALUE o
UNITOFMEASURE
INVNAME
QuaNTITY

= Fill GetData)

MAJOT FEALUIES ...evvieeetiee ettt e e te et e et e e et aeennaaeennneeeanes

Personal REFIECTIONc.eoiiiiiiiiie e
Design and Implementationccccveiiiie e

Page |7

79

R 4°
TR 4°
e 80

Page |8

Phase |. Conceptual Database Model

Fact-Finding Techniques and Information Gathering

Description Fact-Fining Techniques

Fact finding is a technique adapted to reduce rework as the development process
progresses. Through this process the developer becomes well informed regarding the activities
and structure of a specific company or organization. The result is a high level of understanding
that prevents mistakes that would be made otherwise.

The method used for fact finding in this instance is full submersion. | have been
employed by Rusty’s Pizza for nearly five years and because of my position as the Assistant
Manager, | have become acutely aware of the inner workings of the company and which items
are kept track of, and those that are not. This knowledge has been acquired by learning every
role within the store, including that of the Manager, who keeps track of the inventory, labor, and
sales that the store has. The result of my training and experience is a very high level of

understanding with regards to the structure of Rusty’s Pizza.

Page |9

Introduction to Enterprise/Organization

Rusty’s Pizza is a company that purchases raw ingredients and sells it in the form of a
finished product. The store operates on a first in first out basis and maintains a limited amount
of inventory so as to provide the best product possible.

Rusty’s Pizza Bakersfield is split into two different companies comprised of the east and
the west side businesses. Both are joined by a joint operation in which all of the phone orders
are placed from a single location and then routed to the appropriate store.

Each store has orders that are sent from the phone center and those that are from walk-in
customers. The orders from the phone center are either pick-up orders, where the customer picks
the order up from the store and pays for it at the register, or delivery orders, where payment is
handled at the customer’s house and does not require the use of a register. Walk-in customers
place their orders at the register and can choose from all products that are available.

For every order that is placed, the primary ingredients used (mushrooms, onions, cans of
soda, etc.) are kept track of and compared to the on-hand inventory taken at the conclusion of the
week. Based on these numbers, the quality of product is able to be maintained and theft can be

prevented or stopped.

Page |10

The part of enterprise you are designing conceptual database for

The most critical operations involved in Rusty’s Pizza is the accurate accounting and
tracking of sales and the quantities of items used up during normal business operations. The key
concentrations are comprised of the ingredients used as toppings for pizzas and non-perishable
food or beverage items. Each pizza has a specified weight that is supposed to be distributed per
specific ingredient. These weights are used as a tool to measure how accurately each topping is
being used. The end result is a product that can be counted on to be consistent. Otherwise,
customers would be lost due to varying qualities in the product.

It is for this reason that the focus of this database will be to design and implement a
means of accounting for each sale, the items sold on each order, and the quantity of product used
during normal business operations. This will enable good inventory control, and subsequently
high product quality. To do this, items will need to be added into the inventory, orders must be
placed, their items must be accounted for, and all of the ingredients used will need to be

computable.

Page |11

User Groups, Data views and Operations

There will be two types of users: managers and standard employees. The manager is the
one responsible for recording items received from the suppliers. He is also the one responsible
for entering the current inventory and reviewing the discrepancies between actual and ideal
usage. To enable these activities an invoice entering interface and an inventory report must be
available. Furthermore, there must also be a derivation of the data entry interface must allow for
adjusting stored inventory to actual inventory.

As for the input of orders into the system, a standard employee needs an interface that
will allow the selection of items to be sold and provide a subtotal and total. A further
requirement will be the design of the interface so that it is very user friendly and has built-in

safeguards to prevent improper or unintended actions.

Conceptual Database Design

Entity Set Description

Invoices

Description: Holds the name of the supplier from which a delivery was made.
Candidate Keys: N/A

Primary Key: N/A

Fields to be Indexed: N/A

Name Supplier
Description Name of the

supplier
domain/type string
Value-range 1->30
default value Jordanos
null value allowed |no
Unique no
single/multiple valug single
simple or simple
composite

Strong/Weak

Page |12

Inventory

Page |13

Description: Stores the numerous names and units of measurement for all items

purchased from vendors.

Candidate Keys: InvName

Primary Key: InvName

Fields to be Indexed: InvName, UnitOfMeasure

Name InvName UnitOfMeasure

Description Name of Unit of measure
standard used for
inventory items |inventory

shipments

domain/type string string

Value-range 1->30 2

default value NULL Ib

null value allowed |no no

Unique yes no

single/multiple vallsingle single

simple or simple simple

composite

Strong/Weak strong

Page |14

Items
Description: Contains the name and price, of a single item sold to a customer. The items
are not sold at the same rate or in the same form as when purchased from a
vendor, so it also contains a conversion ratio so that inventory tracking can be
achieved.
Candidate Keys: ItemName
Primary Key: ItemName
Fields to be Indexed: convRatio
Name [temName ItemPrice convRatio
Description Name of the item. Pricing for items to be |Ratio used to convert
Used for display sold from stocked items to
purposes. sold items.
domain/type string currency number
Value-range 1->45 NULL 1->200
default value NULL NULL NULL
null value allowed no yes no
Unique yes no no
single/multiple value |single single single
simple or composite |simple simple simple
Strong/Weak

Order

Page |15

Description: Contains the order number and order type used for differentiation between

orders for a given day. Therefore, each is also give the order date.

Candidate Keys: OrderNumber
Primary Key: OrderNumber + OrderDate

Fields to be Indexed: N/A

during a given day. |up

Name OrderNumber OrderType OrderDate

Description Order Number Order Type, can |Date that the
used for be in-house, order is taken
identification delivery, or pick-

domain/type integer string date/time
Value-range 0 - 100000 0->9

default value n/a In-house today
null value allowed |no no no
Unique no no no
single/multiple valysingle single single
simple or compositjsimple simple simple

Strong/Weak

Discounts

Page |16

Description: Contains the list of discount codes, values, and a description of each. The

discount number is used as input when an order is placed.

Candidate Keys: N/A

Primary Key: N/A

Fields to be Indexed: N/A

Name DiscNumber DiscValue DiscDesc

Description The local unit used|The amount of Description
for identying discount given used to
which discount is identify each
given discount

domain/type integer currency integer

Value-range 0-500 30-Jan

default value NULL NULL

null value allowed |no no no

unique no no no

single/multiple valysingle single single

simple or composit|simple simple simple

Strong/Weak

weak

Pizza

Description: Contains the size, crust type, and price of every pizza ordered.

Candidate Keys: N/A

Primary Key: N/A

Fields to be Indexed: N/A

Page |17

name

Size

Crust

Price

description

Contains the size
of the pizza. Can
be an individual,

Specifies the type
of crust used.
Can be thin or

The price fora
specific pizza.

small, medium, |pan crust.

or large.
domain/type string string currency
Value-range 2->4 thin, pan
default value Irg thin NULL
null value allowed no no no
unique no no no
single/multiple value single single single
simple or composite simple simple simple
Strong/Weak weak

Page |18

Relationship Set Description

hasDiscounts

Description: Links each order to the discounts that can be applied. Each order can
have many discounts

Entity Sets: Order, Discounts

Cardinality: 1..*

Descriptive Field: DiscEdate

Participation Constraint: overlap, partial

hasltems

Description: Links orders to the Items contained in that order. One order can have many items
Entity Sets: Order, Items

Cardinality: 1..*

Descriptive Field: N/A

Participation Constraint

hasPizzas

Description: Links orders to the pizzas contained in that order. One order can have many
pizzas

Entity Sets: Order, Pizza

Cardinality: 1..*

Descriptive Field: N/A

Participation Constraint

HasToppings

Description: Links pizzas to their toppings in the inventory. One pizza has many toppings
Entity Sets: Pizza, Inventory

Cardinality: *..1

Descriptive Field: quantity

Participation Constraint

ItemsFromlInventory

Description: Maps items to the quantities used from the inventory. One item in inventory can
have many item quantities

Entity Sets: Items, Inventory

Cardinality: *..1

Page |19

Descriptive Field: N/A
Participation Constraint

Intolnventory

Description: Links incoming shipments to inventory. Hold details for each item purchased.
Many invoices to one inventory

Entity Sets: Invoices, Inventory

Cardinality: *..1

Descriptive Field: dDate, costPerUnit, quantity.

Participation Constraint

Related Entity Set

Specialization
Subs, Pizza, Chicken, Wings, Items

Contains:
HasPizzas(Order, Pizza)
Partial participation / Overlap
HasSubs(Order, Subs)
Partial participation / Overlap
HasChicken(Order, Chicken)
Partial participation / Overlap
HasWings(Order, Wings)
Partial participation / Overlap
Hasltems(Order, Items)
Partial participation / Overlap
Generalization
Inventory
Contains:
HasToppings(Pizza, Inventory)
Full participation / disjoint
ItemsFromInventory(ltems, Inventory)

Full participation / disjoint

Page |20

Page |21

E-R Diagram

hasDiscounts

-DiscEdate
Discounts “ Order
* -
-DiscNumber | -OrderNumber
-DiscValue ! -OrderType
-DiscDesc -OrderDate
hasPizzas y hasitems
0.:2 0.*
Pizza items
-Size -ltemName
-Price -ItemPrice
-Crust -convRatio
hasToppings / ItemsFrominventory .
-quantity f——~-—-— 2
1 -
Inventory
-InvName

-UnitOfMeasure

1 Intolnventory
-dDate
————|-costPerUnit
-quantity
*
Invoices

-Supplier

Page |22

Phase Il: Relational Model

E-R model and relational model

Description

The entity-relationship model discussed in the previous section is a very good method for
designing the conceptual structure of a database. Unfortunately, the DBMS that are available
have a design based on a different model. Therefore, it is important to convert an E-R model
into a relational model so that the database can be implemented. The Relational model,
conceptualized by Ted Codd, is one that has a strong foundation of mathematics. Because of
this, it has been widely adopted, and is the basis for all mainstream database management

systems.

Comparison

The entity-relationship model is one that focuses on the conceptual design rather than
facts and intricate details. This model overlooks these details and instead has implied, relations,
cardinality, and attributes. While this method is great for coming up with a conceptual design, it
lacks the ability to specify the physical implementation of a database. For this, the relational
model is well suited. The relationship between two entities can be converted into a relationship
between relations, in which each record can be uniquely identified and data is easily retrievable.
Through this method, the designer is able to understand the more intricate needs of the database

by the implementation of constraints and tuple entries.

Page |23

Conversion: E-R Model to Relational Model

Mapping of Regular Entity Types:
e For each strong entity type, create a relation that is comprised of all simple
attributes.
e Choose one of the key attributes as a primary key.

e If the chosen attribute is composite, then the set of simple attributes form the key.

Mapping of Weak Entity Types:
e Create arelation comprised of all simple attributes.
e Include the primary key of owner entity as a foreign key.

e Combine the foreign key and a partial key to create the primary key.

One-to-One Mapping: 3 approaches
e Foreign Key: Add primary key of superclass entity to subclass entity.
e Merged Relation: Merge both entities into one relation having all simple attributes.
e Cross-Reference/Relationship Relation: Create a separate relation to hold foreign

keys of both relations involved.

Many-to-Many Mapping:

e Cross-Reference

Mapping of Multivalued Attributes:

e Create a separate relation for the attribute

Mapping N-ary Relationship Types:

e Cross-Reference

Page |24

Constraints

An entity constraint is one that requires a primary key not to be null. This helps ensure
that a record can be uniquely identified. Otherwise we might not be able to distinguish them
when referenced from other relations. Another constraint is that of the primary key or
uniqueness constraint. This requires that any values within the attribute be unique. A
referential constraint is one that maintains a link between two relations when one is pointed to
by the foreign key field of the other. Removal of the record pointed at by the foreign key is not
permitted. Another type of constraint is a check constraint. It consists of checking that a value
entered satisfies the requirements of that attribute. A DBMS can differ from one to another as
to how they enforce constraints but have fundamental similarities. In the case of ensuring
referential integrity, a DBMS can choose between cascade deleting records that are pointed to

by a record being deleted or choose to display a warning and not take any action.

Page |25

Converted E-R model to Relational Model

Order
Attributes:
Orderld
Domain: unsigned integer: 1 to 2732 — 1. Cannot be NULL
OrderNumber:
Domain: unsigned integer: 1 to 2232 — 1. Cannot be NULL
OrderType
Domain: string. Cannot exceed 30 characters. Cannot be NULL
OrderDate
Domain: valid DateTime. Cannot be NULL
Constraints:
Primary Key: Orderld. It must be unique and not NULL.
Business Rule: OrderType must not exceed 30 characters and cannot be NULL.
Candidate Keys:
Orderld
Discounts
Attributes:
Discountld
Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
DiscNumber
Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
DiscValue
Domain: Currency. Cannot be NULL
DiscEdate
Domain: : valid DateTime. Cannot be NULL
DiscDesc
Domain: string. Cannot exceed 30 characters. Cannot be NULL
Constraints:

Primary Key: Discountld. It must be unique and not NULL.

Candidate Keys:
Discountld

Pizza

Attributes:
PID
Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
Orderld

Domain: unsigned integer: 1 to 2432 — 1. Cannot be NULL

pSize

Domain: String. Must be 2 or 3 characters. Cannot be NULL
Crust

Domain: string. Cannot be NULL
Price

Domain: Currency. Cannot be NULL

Constraints:
Primary Key: PID. It must be unique and not NULL.
Foreign Key: Orderld. It must exist in the Order Table.
Business Constraint: Size kept to 2 or 3 character for screen printing.

Business Constraint: Crust can be only one of two values: thin or pan.

Candidate Keys:
PID

Items

Attributes:

Itemld

Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
ItemName

Domain: string. Cannot exceed 45 characters. Cannot be NULL
ItemPrice

Domain: Currency.
Invid

Domain: unsigned integer: 1 to 2732 — 1. Cannot be NULL
convRatio

Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL

Constraints:
Primary Key: Itemld. It must be unique and not NULL.
Foreign Key: Invld. It must exist in the Inventory Table.

Page |26

Business Constraint: ItemName cannot exceed 30 characters to allow display and

must be unique

Candidate Keys:
Itemld

Page |27

Inventory

Attributes:
Invid
Domain: unsigned integer: 1 to 2432 — 1. Cannot be NULL
InvName
Domain: string. Cannot exceed 30 characters. Cannot be NULL
UnitOfMeasure
Domain: string. Between 2 and 4 characters. Cannot be NULL

Constraints:
Primary Key: Invid. It must be unique and not NULL.
Business Constraint: InvName cannot exceed 30 characters to allow display and
must be unique
Business Constraint: UnitOfMeasure restricted to simple representations not to
exceed 4 characters and no less than 2.

Candidate Keys:
Invid, InvName

Invoices

Attributes:

Invoiceld

Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
Supplier

Domain: string. Cannot exceed 30 characters. Cannot be NULL
Quantity

Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
costPerUnit

Domain: Currency. Cannot be NULL
Invid

Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
dDate

Domain: valid DateTime. Cannot be NULL

Constraints:
Primary Key: Invoiceld. It must be unique and not NULL.
Foreign Key: Invid. It must exist in the Inventory Table.

Candidate Keys:
Invoiceld, Invid

hasDiscount

Attributes:
HDID
Domain: unsigned integer: 1 to 2732 — 1. Cannot be NULL
Orderld
Domain: unsigned integer: 1 to 2432 — 1. Cannot be NULL
Discountld
Domain: unsigned integer: 1 to 2432 — 1. Cannot be NULL

Constraints:
Primary Key: HDID. It must be unique and not NULL.
Foreign Key: Orderld. It must exist in Order Table.

Foreign Key: Discountld. It must exist in the Discount Table.

Candidate Keys:
HDID, Orderld, Discountld

hasltems

Attributes:
HIID
Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
Orderld
Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
Itemld
Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL

Constraints:
Primary Key: HIID. It must be unique and not NULL.
Foreign Key: Orderld. It must exist in the Order Table.
Foreign Key: Itemld. It must exist in the Item Table.

Candidate Keys:
HIID, Orderld, Itemid

hasToppings

Attributes:

HTID

Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
PID

Domain: unsigned integer: 1 to 2*32 — 1. Cannot be NULL
Invid

Domain: unsigned integer: 1 to 2°32 — 1. Cannot be NULL
Quantity

Page |28

Page |29

Domain: Double. Cannot be NULL

Constraints:
Primary Key: HTID. It must be unique and not NULL.
Foreign Key: PID. It must exist in the Pizza Table.
Foreign Key: Invld. It must exist in the Inventory Table.

Candidate Keys:
HTID, PID, Invid

Relation Instances

Order(Orderld, OrderNumber, OrderType, OrderDate)

Order

Orderld

OrderNumber

OrderType

OrderDate

1

Eatin

10/17/2010

Take out

10/17/2010

Take out

10/17/2010

Eatin

10/17/2010

Take out

10/17/2010

Eatin

10/17/2010

Eatin

10/18/2010

Take out

10/18/2010

O Nooju|bjlwWw|N

OCI|INooju|b|jlwW|N

Eatin

10/18/2010

=
o

[ERY
o

Take out

10/18/2010

Page |30

Page |31

Discounts(Discountld, DiscNumber, DiscValue, DiscEdate, DiscDesc)

Discounts
Discountid DiscNumber|DichaIue| DiscEdate DiscDesc l
1 1 $2.98|11/17/2011 |#1 $3 of Irg pizza
2 2 $3.32| 1/20/2011 |#2 Lrg litem 17.99
3 3 $5.00| 2/15/2010 |#3 free ind chz/pep
4 4 $4.42 | 3/13/2011 [#4 lunch special 4
5 5 $3.28| 9/5/2012 [#5 lunch special 5
6 1 $9.02| 3/13/2008 |#1 free sm litem
7 99 $9.55| 8/20/2012 [#99 free sm 2item phbk
8 20 $1.15| 9/19/2019 [#20 free reg wedge
9 13 $2.20(11/12/2013 [#13 free spr wedge
10 14 $3.61| 1/2/2011 [#14 free 6pk

hasDiscount(HDID, Orderld, Discountld)

hasDiscount

HDID | Orderld | Discountld
1 1 1
2 2 2
3 3 3
4 4 5
5 6 4
6 5 10
7 7 8
8 9 5
9 9

10 10 10

Page |32

Page |33

hasltems(HIID, Orderld, Itemld)

hasltems
HIID | Orderld | Itemld

OCIO(IN| OO U B|lW|IN|F

OClon Wl UNIN|FL|KF
DN P WO |N|Pd|lwW|O

[ERY
o

Page |34

[tems(Itemld, ltemName, [temPrice, Invlid, convRatio)

Items
Itemld ItemName ItemPrice|InvidjconvRatio
08 Piece Chicken $16.99 7 0.50
1|25 Hot Wings Medium| $13.99 8 0.25
2 (12 Hot Wings Medium $8.99 8 0.15
3 [Regular Drink $1.76| 9 1.00
4 |Large Drink $2.20| 10 1.00
6|25 Hot Wings Hot $13.99 8 0.25
725 Hot Wings Killer $13.99, 8 0.25
8[12 Hot Wings Hot $8.99 8 0.15
9|12 Hot Wings Killer $8.99 8 0.15

Pizza(PID, Orderld, Size, Crust, Price)

Pizza
PID|Orderld| Size | Crust | Price
1 1iLrg [Thin $17.00
2 2|Med [Thin $13.98
3 3|Lrg [Thin $21.35
4 4{ind [Thin $5.42
5 5/Ind |Pan $5.42
6 6|Lrg [Thin $17.00
7 7/Sm [Thin $9.08
8 8|Lrg [Thin $21.35
9 9lLrg |Pan $16.00
10 9|Med ([Thin $14.50

Page |35

hasToppings(HTID, PID, Invld, quantity)

hasToppings

HTID | PID | Invid | quantity
1 1 14 0.25
2 3 14 0.25
3 4 14 0.1
4 6 15 0.15
5 6 14 0.35
6 6 11 0.4
7 6 13 0.12
8 6 12 0.68
9 6 16 0.55
10 6 17 0.12
11 2 14 0.25
12 5 15 0.3
13 5 15 0.2
14 7 13 0.1
15 7 13 0.1

Page |36

Inventory(Invld, InvName, UnitOfMeasure)

Inventory
Invidf InvName |UnitOfMeasure

7 Whole Chicken|lb
8 |Wings Ib
916 oz. cup cs
10|32 oz. cup cs
11 [Mus Ib
12 [Oni Ib
13|0lv Ib
14 |Pep Ib
15|Sal Ib
16 |Bel Ib
17|Sau Ib

Page |37

Invoices(Invoiceld, Supplier, quantity, costPerUnit, Invid, dDate)

Invoices
Invoiceld Supplier quantity|costPerUnit Invid|f dDate
12 |Cross Distributing 20 $3.62 7[11/19/2001
13 [Cross Distributing 15 $2.72 8[11/19/2001
14 Jordanos 1 $16.98 9|11/19/2001
15 |Jordanos 1 $20.68| 10(11/19/2001
16 |Jordanos 10 $2.98| 11|11/19/2001
17 Jordanos 20 $2.13| 12|11/19/2001
18 Jordanos 30 $3.13| 13|11/19/2001
19 Jordanos 60 $6.72| 14|11/19/2001
20 Jordanos 15 $3.38| 15(11/19/2001
21 Jordanos 20 $4.25| 16(11/19/2001
22 [Jordanos 40 $6.10| 17[11/19/2001

Page |38

Page |39

Queries

List all pizzas without extra toppings.
List all pizzas ordered.
List all discounts given.

List all take-out orders.

List orders that do not have pizzas.
List inventory items bought that cost at least $20 per unit.

1.

2

3

4

5. List suppliers that are not Jordanos.
6

7

8. List orders with 2 or more pizzas.
9

List largest discount available.

10. List Inventory items received before October 1, 2009.

Query Forms

1. Listall pizzas without extra toppings.

Relational Algebra
ITp2.0rderld A p2.Size A p2.Crust A p2.price(Opz.pip =p2.pin (P24 Pizza X (mpin(pl« Pizza) -

mtpip(hasToppings))))

Tuple Relational Calculus

{P|Pizza(P) A =(3h)(hasToppings(h) A h.PID = PPID)}

Domain Relational Calculus

{<ab,c,d,e>|Pizza(a,b,c,d, e) A =(hasToppings(_=a,)}
2. Listall pizzas ordered.

Relational Algebra

TUPID, A Orderld A Size A Price A Crust(Pizza)

Tuple Relational Calculus

{P|Pizza(P)}

Page |40
Domain Relational Calculus
{<ab,c,d, e>|Pizza(ab,c,d,e)}
. List all discounts given.

Relational Algebra

TUDiscNumber A DiscValue A DiscDesc(ah.DiscountId = D.Discountld(D — DiSCOUl’ltS) X (h « hasDiscount))

Tuple Relational Calculus

{D|Discounts(D) A (3h)(hasDiscounts(h) A h.Discountld = D.Discountld)}

Domain Relational Calculus

{<ab,c,d,e>|Discounts(a,b,c,d,e) A hasDiscount(_, _, =a)}

. List all take-out orders.

Relational Algebra

L OrderNumber(aOrderType = “take—out"(order)

Tuple Relational Calculus

{0|Orders(0) A 0.0rderType = “Take-Out”}

Domain Relational Calculus
{<ab,c,d>|0rder(a,b,="Take-Out"d)}

. List suppliers that are not Jordanos.

Relational Algebra

T[Supplier(InVOiceS) - aSupplier = “]ordanos"(nSupplier(InVOiceS))

Tuple Relational Calculus
{L.Supplier|Invoices(I) A (3i2)(Invoices(I2) A 12.Supplier = “Jordanos” A 12.Invoiceld =
LInvoiceld)}

Domain Relational Calculus

{<s>|Invoices(_, # “Jordanos”,_,_,_,)}

Page |41

6. List orders that do not have pizzas.

Relational Algebra

Tt02.0rderld A 02.0rderNumber A 02. OrderType A OZ.OrderDate(aOZ.Orderld = 0.0rderld (02 « Order X (T[O.Orderld(o

« Order) - Torderd(Pizzas)))

Tuple Relational Calculus
{O|Orders(0) A —(3P)(Pizza(P) A POrderld = 0.0rderld)}

Domain Relational Calculus

{<ab,c,d>|0rder(a,b,c,d) A =Pizza(_, =a, _, _,)}
7. Listinventory items bought that cost at least $20 per unit.

Relational Algebra

Ttiz.InvName (O12.1nv1d = Linvid (12 < Inventory) X mit.invia(Ocostperumit > s20(I1 < Invoices))))

Tuple Relational Calculus
{I|Inventory(I) A (312)(Invoice(I12) A 12.CostPerUnit = $20 A 12.Invld = LInvld)}

Domain Relational Calculus

{<a>|(3i)Inventory(], a, _) A Invoices(,, _, _, = $20, =1,)}
8. List orders with 2 or more pizzas.

Relational Algebra

TtO.OrderNumber(aO.OrderId = pl.OrderId((O «— Order) X T[pl.OrderId(apl.Orderld = p2.0rderld A p1.PID # p2.PID((p 1

« Pizza) X (p2 « Pizza)))))

Tuple Relational Calculus
{0|Orders(0) A (3P)(Pizza(P) A P.Orderld = O0.0Orderld A (3P2)(Pizza(P2) A P2.0rderld
= 0.0rderld A P2.PID # PPID))}

Domain Relational Calculus

{<ab,c,d>|0rder(a,b,c,d) A (3p)(Pizza(p,a, ., _,) A Pizza(#p,a,_ _)}

Page |42

9. Listlargest discount available.

Relational Algebra

D * (Smax(Dichalue)Discount)

Tuple Relational Calculus

{D|Discounts(D) A =(3D1)(Discount(D1) A D1.DiscValue > D.DiscValue)}

Domain Relational Calculus

{<ab,c,d,e>|Discounts(a,b,c,d,e) A —=Discounts(_, _, >c, _,)}
10.List Inventory items received before October 1, 2009.

Relational Algebra

Tlnvid A InvName A UnitofMeasure (O12.1nvid = 11.invid (12 < Inventory) X mi1.mvid (011.dpate <

“10/01/2009"(Invoice))))

Tuple Relational Calculus
{I|Inventory(I) A (312)(Invoice(12) A I2.dDate < “10/01/2009” A 12.Invld = LInvIld)}

Domain Relational Calculus

{<a>|(3i)Inventory(i, a, _) A Invoices(,, _, _, _,i,<“10/01/2009")}

Page |43

Phase I11: Oracle Implementation

SQL*PLUS

SQL*Plus is a command-line interface that connects to an Oracle database. It primary
purposes include allowing a user to create, edit, and view the results of queries. The Developers
are able to inspect the structure of the database along with the ability to enter and execute
PL/SQL code. The interface also incorporates a data definition language (DDL) which allows
the creation of database tables, views, indexes, and other objects. Furthermore, database
administrators have added functionality so that commands like SHUTDOWN and STARTUP can

be given making SQL*PLUS a valuable tool no matter what level of user a person may be.

Oracle Schema Objects

Tables

Tables are the objects that hold all user-accessible data within an Oracle database. Each
table is comprised of a series of columns and rows. The columns represent the different types of
data that the table holds, whereas the rows represent each individual instance of a set of data of

the given types.

Views

Views represent a specific set of data that spans one or more tables. Views do not store
any actual data they just retrieve the data from the tables that they reside in by calling upon a
stored query. Views and tables share the ability to be queried, updated, inserted into, and deleted

from, assuming that the constraints of the underlying tables are met. An additional advantage to

Page |44

a view is the ability to restrict access to specific rows and columns of a table along with

implementing information hiding techniques.

Sequences

Sequences are objects within the database that enable multiple users to generate unique

integers. Frequently used as a method to generate primary key values.

Synonyms
A synonym is an alias for a table, view, sequence, function, procedure, or other object type
including other synonyms. It only requires a definition in the data dictionary without any other

storage allocation.

Dimensions

A dimension is a structure that allows users to answer business questions by putting data into

categories.

Indexes

Indexes are used in an effort to aid in increasing the performance of data retrieval.
Indexes point to the location of a specific attribute or set of attributes. Oracle automatically uses
indexes for the primary key of tables and the designer is able to create other indexes for fields

that may be accessed frequently. After instantiation, Oracle automatically maintains all indexes.

Procedures/Functions
Stored procedures are a set of SQL statements that have been assigned a name. It is
stored in the database in a compiled form. The primary difference between a procedure and a

function is that a procedure can return many values while a function returns only one.

Page |45

Database Links
Database links are pointers that define a one-way communication path between an Oracle
database server and another database server. It is implemented as a data dictionary entry and in

order to access the link, the local database must be the one that contains that entry.

Clusters

Tables that share common attributes are stored in the same location. Because of this,
related records are physically stored together and disk access time is improved. While clusters
serve an important role, end-users and application designers are not necessarily aware of their

existence since access and implementation is unaffected.

Schema Objects

cjOrders

CS342 SQL> desc cjOrders;

Name

Page |46

ORDERID

ORDERNUMBER

ORDERTYPE
ORDERDATE

CS342 SQL> select * from cjOrders;

ORDERID

ORDERNUMBER

ORDERTYPE

NOT NULIL NUMBER (30)
NUMBER (4)
VARCHAR?Z (30)

ORDERDATE

O W oo JoyUdbd W

=

=

10 rows selected.

O W oo JoyUdbd W

Eat-in
Take-out
Take-out
Eat-in
Take-out
Eat-in
Eat-in
Take-out
Eat-in
Take-out

17-0CT-10
17-0CT-10
17-0CT-10
17-0CT-10
17-0CT-10
17-0CT-10
18-0CT-10
18-0CT-10
18-0CT-10
18-0CT-10

DATE

Page |47

cjDiscounts

CS342 SQL> desc cjDiscounts;

Name Null? Type
DISCOUNTID NOT NULL NUMBER (30)
DISCNUMBER NUMBER (4)
DISCVALUE NUMBER (10, 2)
DISCEDATE DATE
DISCDESC VARCHAR?2 (30)

CS342 SQL> select * from cjDiscounts;

DISCOUNTID DISCNUMBER DISCVALUE DISCEDATE DISCDESC

1 1 2.98 15-NOV-11 #1 $3 of 1lrg pizza

2 2 3.32 15-JAN-11 #2 Lrg litem 17.99

3 3 5 15-FEB-10 #3 free ind chz/pep

4 4 4.42 15-MAR-11 #4 lunch special 4

5 5 3.28 15-SEP-12 #5 lunch special 5

6 1 9.02 15-MAR-08 #1 free sm litem

7 99 9.55 15-AUG-12 #99 free sm 2item phbk
8 20 1.15 15-SEP-19 #20 free reg wedge

9 13 2.2 15-NOV-13 #13 free spr wedge
10 14 3.61 15-JAN-11 #14 free o6pk

10 rows selected.

cjPizza

CS342 SQL> desc cjPizza;
Name

Page |48

PID
ORDERID
PSIZE
CRUST
PRICE

CS342 SQL> select * from cjPizza;

PID ORDERID PSIZ
1 1 Lrg
2 2 Med
3 3 Lrg
4 4 Ind
5 5 Ind
6 6 Lrg
7 7 Sm
8 8 Lrg
9 9 Lrg

10 9 Med

10 rows selected.

NOT NULL

NUMBER (30)
NUMBER (30)
VARCHAR? (4)
VARCHAR? (4)
NUMBER (10, 2)

Page |49

cjInventory

CS342 SQL> desc cjInventory;

Name Null? Type

INVID NOT NULL NUMBER (30)
INVNAME VARCHARZ2 (30)
UNITOFMEASURE VARCHAR?2 (4)

CS342 SQL> select * from cjInventory;

INVID INVNAME UNIT

8 Wings 1b
9 16 oz. cup Ccs
10 32 oz. cup Cs
11 Mus 1b
12 Oni 1b
13 Olv 1b
14 Pep 1b
15 sal 1b
16 Bel 1b
17 Sau 1b

11 rows selected.

Page |50

cjltems

CS342 SQL> desc cjltems;

Name Null? Type

ITEMID NOT NULL NUMBER (30)
INVID NUMBER (4)
ITEMNAME VARCHAR?2 (45)
ITEMPRICE NUMBER (10, 2)
CONVRATIO NUMBER (5, 3)

CS342 SQL> select * from cjltems;

ITEMID INVID ITEMNAME ITEMPRICE CONVRATIO
0 7 8 Piece Chicken 16.99 .5
1 8 25 Hot Wings Medium 13.99 .25
2 8 12 Hot Wings Medium 8.99 .15
3 9 Regular Drink 1.76 1
4 10 Large Drink 2.2 1
5 8 12 Hot Wings Spicy Barbeque 8.99 .15
6 8 25 Hot Wings Hot 13.99 .25
7 8 25 Hot Wings Killer 13.99 .25
8 8 12 Hot Wings Hot 8.99 .15
9 8 12 Hot Wings Killer 8.99 .15

10 rows selected.

cjInvoice

CS342 SQL> desc cjInvoice;

Name

Page |51

INVOICEID
INVID
SUPPLIER
QUANTITY
COSTPERUNIT
DDATE

CS342 SQL> select * from cjInvoice;

DATE

NUMBER (30)
NUMBER (30)
VARCHAR? (30)
NUMBER (4)
NUMBER (10, 2)

QUANTITY COSTPERUNIT

DDATE

INVOICEID INVID SUPPLIER
12 7 Cross Distributing
13 8 Cross Distributing
14 9 Jordanos
15 10 Jordanos
16 11 Jordanos
17 12 Jordanos
18 13 Jordanos
19 14 Jordanos
20 15 Jordanos
21 16 Jordanos
22 17 Jordanos
23 17 Jordanos

12 rows selected.

CS342 SQL> spool off

N -

15-0CT-10
15-0CT-10
15-0CT-10
15-0CT-10
15-0CT-10
15-0CT-10
15-0CT-10
15-0CT-10
15-0CT-10
15-0CT-10
15-0CT-10
12-0CT-99

Page |52

cjhasltems

CS342 SQL> desc cjhasItems;

Name Null? Type

HIID NOT NULL NUMBER (30)
ORDERID NUMBER (30)
ITEMID NUMBER (30)

CS342 SQL> select * from cjhasItems;

HIID ORDERID ITEMID
1 1 0
2 1 3
3 2 4
4 5 7
5 6 8
6 3 9
7 4 3
8 5 1
9 6 2

10 9 6

10 rows selected.

Page |53

cjhasToppings

CS342 SQL> desc cjhasToppings;
Name Null? Type
HTID NOT NULL NUMBER (30)
PID NUMBER (30)
INVID NUMBER (30)
QUANTITY NUMBER (6, 4)

CS342 SQL> select * from cjhasToppings;

HTID PID INVID QUANTITY
1 1 14 .25
2 3 14 .25
3 4 14 .1
4 6 15 .15
5 6 14 .35
6 6 11 .4
7 6 13 .12
8 6 12 .68
9 6 16 .55

10 6 17 .12
11 2 14 .25
12 5 15 .3
13 5 15 .2
14 7 13 .1
15 7 13 .1

15 rows selected.

Page |54

cjhasDiscount

CS342 SQL> desc cjhasDiscount;

Name Null? Type

HDID NOT NULL NUMBER (30)
ORDERID NUMBER (30)
DISCOUNTID NUMBER (30)

CS342 SQL> select * from cjhasDiscount;

HDID ORDERID DISCOUNTID
1 1 1
2 2 2
3 3 3
4 4 5
5 6 4
6 5 10
7) 8
8 9 5
9 9 4

10 10 10

10 rows selected.

Page |55

SQL Queries

1. Listall pizzas without extra toppings.

select *
from cjpizza
where not exists(select * from cjhasToppings where

cjhasToppings.PID = cjPizza.PID);

PID ORDERID PSIZ CRUS PRICE
9 9 Lrg Pan 16
10 9 Med Thin 14.5
8 8 Lrg Thin 21.35

2. Listall pizzas ordered.

select p.*
from cjPizza p
where exists
(select 0.0rderId from cjOrders o
where o0.0rderId = p.OrderId);

PID ORDERID PSIZ CRUS PRICE
1 1 Lrg Thin 17
2 2 Med Thin 13.98
3 3 Lrg Thin 21.35
4 4 Ind Thin 5.42
5 5 Ind Pan 5.42
6 6 Lrg Thin 17
7 7 Sm Thin 9.08
8 8 Lrg Thin 21.35
9 9 Lrg Pan 16

10 9 Med Thin 14.5

Page |56

3. Listall discounts given.

Select d.*
from cjdiscounts d
where exists
(select h.DiscountId from cjhasDiscount h
where h.DiscountId = d.DiscountId);

DISCOUNTID DISCNUMBER DISCVALUE DISCEDATE DISCDESC

1 1 2.98 15-NOV-11 #1 $3 of 1lrg pizza
2 2 3.32 15-JAN-11 #2 Lrg litem 17.99
3 3 5 15-FEB-10 #3 free ind chz/pep
5 5 3.28 15-SEP-12 #5 lunch special 5
4 4 4.42 15-MAR-11 #4 lunch special 4
10 14 3.61 15-JAN-11 #14 free o6pk
8 20 1.15 15-SEP-19 #20 free reg wedge
4. Listall take-out orders.
select *
from cjOrders
where cjOrders.OrderType = 'Take-out';

ORDERID ORDERNUMBER ORDERTYPE ORDERDATE
2 2 Take-out 17-0CT-10
3 3 Take-out 17-0CT-10
5 5 Take-out 17-0CT-10
8 8 Take-out 18-0CT-10
10 10 Take-out 18-0CT-10

5. List suppliers that are not Jordanos.

select distinct inv.Supplier
from cjInvoice inv
where inv.Supplier != '"Jordanos';

SUPPLIER

Cross Distributing

Page |57

6. List orders that do not have pizzas.

select o.*
from cjOrders o
where not exists
(select p.* from cjPizza p
where p.OrderId = o0.0rderId);

ORDERID ORDERNUMBER ORDERTYPE ORDERDATE

10 10 Take-out 18-0CT-10

7. Listinventory items bought that cost at least $20 per unit.

select i.InvName, inv.CostPerUnit
from cjInventory i inner join cjInvoice inv on i.InvId = inv.InvId
where inv.CostPerUnit >= 20;

INVNAME COSTPERUNIT

8. List orders with 2 or more pizzas.

select distinct o.~*
from cjOrders o, cjPizza p
where o0.0rderId = p.OrderId and exists
(select * from cjPizza where cjPizza.PID != p.PID and o0.0rderID

cjPizza.OrderId);

ORDERID ORDERNUMBER ORDERTYPE ORDERDATE

9 9 Eat-in 18-0CT-10

Page |58

9. Listlargest discount available.

select d.*
from cjDiscounts d
where not exists
(select * from cjDiscounts
where cjDiscounts.DiscValue > d.DiscValue) ;

DISCOUNTID DISCNUMBER DISCVALUE DISCEDATE DISCDESC

7 99 9.55 15-AUG-12 #99 free sm 2item phbk

10. List Inventory items received before October 1, 2009.

select i.InvName
from cjInventory i
where exists
(select * from cjInvoice
where cjInvoice.InvId i.InvId
and cjInvoice.dDate < (to date('10/01/2009"',

'mm/dd/yyyy')));

INVNAME

Page |59

11. Create a table that lists all order ID’S, dates, Pizza ID’s, pizza sizes, and cost.

create table cjNewOrders

As (Select cjOrders.OrderId, PID, OrderDate, pSize, Price from
cjOrders left outer join cjPizza on cjOrders.OrderId =
cjPizza.OrderId) ;

Table created.

CS342 SQL> desc cjNewOrders

Name Null? Type
ORDERID NUMBER (30)
PID NUMBER (30)
ORDERDATE DATE
PSIZE VARCHAR?2 (4)
PRICE NUMBER (10, 2)

CS342 SQL> select * from cjNewOrders

2 ’
ORDERID PID ORDERDATE PSIZ PRICE
1 1 17-0CT-10 Lrg 17
2 2 17-0CT-10 Med 13.98
3 3 17-0CT-10 Lrg 21.35
4 4 17-0CT-10 Ind 5.42
5 5 17-0CT-10 Ind 5.42
6 6 17-0CT-10 Lrg 17
7 7 18-0CT-10 Sm 9.08
8 8 18-0CT-10 Lrg 21.35
9 9 18-0CT-10 Lrg 16
9 10 18-0CT-10 Med 14.5
10 18-0CT-10

11 rows selected.

12. Count the number of orders that have pizzas.

Select cjOrders.OrderDate, count (cjOrders.OrderId) "Orders Per Day"
from cjOrders left outer join cjPizza on cjOrders.OrderId =
cjPizza.OrderId

where PID is not null

group by OrderDate;

ORDERDATE Orders Per Day

17-0CT-10 6
18-0CT-10 4

Page |60

Data Loading

Methods
Insert
INSERT INTO "table_name" ("columnl", "column2"”, ...)
VALUES ("valuel”, "value2", ...)
INSERT INTO "tablel” (“columnl1”, "column2®, ...)
SELECT "column3", "column4"”, ...
FROM "table2"
Update
UPDATE "table_name"
SET "column_1" = [new value]
WHERE {condition}
Delete

DELETE FROM "table_name"
WHERE {condition}

DBMS Data Loading Utilities:

Oracle Data Pump
Oracle Data Pump has been released with the second release of 11g. It enables

fast bulk data movement between Oracle databases. It includes integrated export

and import utilities.

SQL Loader
SQL Loader is a high-speed utility that loads data from external files. Accepts

data in a variety of formats, can filter data, and load it into multiple tables during

one execution.

Page |61

Java DataLoader

The java DataLoader is a java program that takes preformatted text files and inserts the
data into database tables. The program integrates user password authentication and allows the
user to choose the data separating character. The usefulness of this program is demonstrated in
its ability to quickly reload the data from a table upon a loss or mass insertion.

Modifications

To increase the user friendliness of this application, we have been instructed to make
modifications the the Java DatalLoader. My first thought was regarding the issue regarding
database connections. The connection must be hard coded and makes it impossible to update
different servers without modifying the code. That is why I made these changes:

--String url added to allow passing of local variable url.

public DataLoader(String user, String passwd , String url)
DataLoader Idr = new DataLoader(user, passwd, url);

--Code added to allow passing in a new connection at runtime.
--Default connection was also set to helios.

String tmp = null;

char UserSel;

String url = "jdbc:oracle:thin:@helios.cs.csubak.edu:1521:orcl";

tmp = ScreenlO.promptForString("New Connection String Desired? ");
tmp.toUpperCase();

UserSel = tmp.charAt(0);

if (UserSel =="Y" || UserSel =="y")

{

url = ScreenlO.promptForString("Enter the new connection string");

Page |62

Phase IV: Stored Procedures

Common PL/SQL and MS Trans-SQL Features

Components:
While the exact implementation of PL/SQL and MS Trans-SQL have significant differences, the
fact that both share the Structured Query Language as their base language, lends to the separate
creation of these corresponding database abilities.
Ability to Create:

o Tables

o Constraints

o Functions

o Procedures

o Cursors

o Triggers

o Packages

Purpose of Stored Subprograms

A stored program is designed to limit the need for compilation for queries that are
executed often. The subprograms are stored in a compiled state so that system resource demands
are minimized and transaction times are decreased due to not requiring compilation at runtime

and reduced network traffic.

Page |63

Benefits of Subprogram Calls

Benefits include:

o

Modular: it is easier to troubleshoot a subprogram than it is to troubleshoot large
section of code within the graphical user interface.

The stored procedures can be modified without any change to deployed front-end
software.

Easier to code front-end applications due to a separation of client and server side
functions.

Server memory usage is minimized by lessening the number of times a query must be
compiled

No data transfer required during query processing, request is sent, then results are
received.

Enhanced security controls.

Page |64

Oracle PL/SQL

Program structure

Declaration section: Space where variables, cursors, types and local subprograms are stored.
Executions section: Contained within a BEGIN and END statement, this section contains all
code that the main execution of the program consists of. This is the only section required.
Exception section: Space where exception handling procedures are coded.

Basic Format:

Create [or Replace] <Procedure, Trigger, or Function> program_name
[Declaration statements]

BEGIN
<Execution statements>

EXCEPTION
[Exception statements]

End;

/

Page |65

Control statements
Control statements are features of programming languages that perform computations or
actions depending on the conditions present.
IF—THEN:
IF condition THEN
sequence_of_statements
END IF;
IF-THEN-ELSE
IF condition THEN
sequence_of_statementsl
ELSE
sequence_of_statements2
END IF;
IF-THEN-ELSIF
IF conditionl THEN
sequence_of_statementsl
ELSIF condition2 THEN
sequence_of_statements2
ELSE
sequence_of_statements3
END IF;
CASE STATEMENT
[<<label_name>>]
CASE selector
WHEN expressionl THEN sequence_of statementsl;
WHEN expression2 THEN sequence_of statements2;
WHEN expressionN THEN sequence_of _statementsN;
[ELSE sequence_of statementsN+1;]
END CASE [label_name];

Page |66

Cursors

A cursor is a control structure that allows for the iterative traversal and processing of

records from a result set.

Syntax
Declare
Cursor cursor_name[parameters]
IS <select statement>
Usage:
FOR x in cursor_name LOOP
Statements
END LOOP:

Stored Procedure
A stored procedure is a subroutine that is available to applications accessing a database.
These procedures are stored in the database’s data dictionary. For improving database

performance, stored procedures are compiled once, then stored in executable form.

Syntax
Create [or Replace] Procedure procedure_name [(variable name IN|OUT, ...)]
IS or AS
[Declaration statements]
BEGIN
<Execution statements>
EXCEPTION
[Exception statements]
End;
/

Page |67

Stored Function
Stored functions are very similar to stored procedures in the ways that they are created an ran.
The difference is that a function must have a return variable.

Syntax
Create [or Replace] Function function_name [(variable name IN|OUT, ...)]
Return datatype;
IS or AS

[Declaration statements]
BEGIN

<Execution statements>
EXCEPTION

[Exception statements]
End;
/

Package

An Oracle package is a schema object that groups logically related PL/SQL subprograms, types
and items together. It is generally comprised of two parts: the specification and the body. The
specification declares the types, variables, exceptions, cursors, and subprograms available for

use. The body is where those items are implemented.

Syntax
Create [or Replace] PACKAGE package _name
IS or AS

Procedure names;

Function names;

End [package_name];

Create [or Replace] PACKAGE BODY package _name
IS or AS

Page |68

Procedure names;

Function names;

[BEGIN]
Statements
END [package_name];

Trigger
Triggers are a form of procedure that is run implicitly upon the occurrence of a predefined event.
These events include: insert, delete, and update events.

Syntax
Create [or Replace] TRIGGER trigger name [(variable name IN|OUT, ...)]
IS or AS
[Declaration statements]
BEGIN
<Execution statements>
EXCEPTION
[Exception statements]
End;
/

Page |69

PL/SQL Stored Procedures and Functions

cjinsHI(Orderld, Itemld)

This procedure takes two integer values in as input and stores those values in the
cjhasltems table with the first integer referencing the Orderld and the second referencing the
Itemld.

CREATE OR REPLACE PROCEDURE cjInsHI (OrderIdent IN number, item IN number) is
BEGIN
INSERT INTO cjhasItems (OrderId, ItemId) values (OrderIdent,item);
EXCEPTION
when others then
raise application error(-1269, 'An error occurred in ' || SQLCODE | |
'-ERROR-'" || SQLERRM) ;

END cjInsHi ;
/

cjDeletePizza(PID)

This procedure takes a valid PID number and deletes the corresponding record in cjPizza
where the PID is located.

CREATE OR REPLACE PROCEDURE cjDeletePizza(id in IN number) is
BEGIN
DELETE FROM cjPizza
where PID = id in;
EXCEPTION

when others then

raise application error(-1269, 'An error occurred in ' || SQLCODE | |
'-ERROR-" || SQLERRM) ;

END cjDeletePizza;
/

Page |70

cjHavgPizza(integer)
This function takes an integer value as input and returns the average of the top ‘n’ pizza
prices from the cjPizza table.

CREATE OR REPLACE FUNCTION cjHavgPizza (n IN number)
RETURN number
IS

I
(@)
(@)

cnum number (9, 2)
snum number (9,2) := 0.0;
cursor cl is
select Price
from cjPizza
Order by Price Desc;
BEGIN

OPEN c1;

FOR 1 IN 1 .. n LOOP
fetch cl into cnum;
snum := snum + cnum;

END LOOP;

CLOSE cl1;

RETURN snum/n;

EXCEPTION
when others then
raise application error(-1269, 'An error occurred in ' || SQLCODE | |
'-ERROR-" || SQLERRM) ;
END cjHavgPizza;
/

Page |71

cjOrder_update_tr

This trigger fires after a record has been updated and stores the current date, a string
containing the old Orderld and OrderNumber, and a string containing the new Orderld,
OrderNumber in the cjLogTable.

CREATE OR REPLACE TRIGGER cjOrder update tr
after update
ON cjOrders
FOR EACH ROW
DECLARE
0ldV varchar?2 (40) ;
newV varchar?2 (40) ;
BEGIN
select concat(:0ld.OrderId, :o0ld.OrderNumber)
into oldv
from cjOrders;
select concat (:new.OrderId, :new.OrderNumber)
into newV
from cjOrders;
INSERT INTO cjLogTable
VALUES (sysdate,o0ldV, newV);
END;

Page |72

Phase V: GUI Design and Implementation

User Group Activities

There is only one group that this program has been developed to facilitate: Managers.
Managers are responsible for maintaining an accurate count of the store’s inventory and as such,
must be able to add, edit, and view items that have been received from suppliers. These invoices
are associated by vendor, date, and invoice numbers and can be differentiated by those fields
accordingly.

The original goal for this project was to design applications that would cover the aspects
of inventory management as well as the placement of orders with their associated component
allocated to their corresponding ingredients in the inventory. Unfortunately, due to
complications with developing using a newer version of oracle and incorporating into the
development techniques that had yet to be discovered, the program has been cut short.
Therefore, the program only incorporates the inventory management aspect of the originally

conceived project.

Page |73

Relations Views and Subprograms

The following tables have been used during the implementation of this program. They share a
1:N relationship with one item in cjlnventory having many items in cjlnvoice associated to it.
cjinvoice : has foreign key field Invid that relates cjlnvoice to cjinventory.

cjlnventory : root table.

cjinvView : view was created but never implemented.

For implementation purposes, a trigger has been created for the cjlnvoice table so that writing the
front-end code is easier.
CREATE OR REPLACE TRIGGER cjlnvoices_bir
BEFORE INSERT or UPDATE
ON cjlnvoice
REFERENCING NEW AS NEW
FOR EACH ROW
WHEN(new.Invoiceld IS NULL)
BEGIN
SELECT cjlnvoices_seq.NEXTVAL
INTO :new.Invoiceld
FROM dual;
END;
/
The following sequence has also been created for use by the trigger.
CREATE SEQUENCE cjlnvoices_seq;

Page |74

Application Screenshots

Menu
The menu contains the new, save, and exit options.
New: allows puts the user in add mode and accordingly updates the data in the table.

Save: option performs the update, delete, and insert operations that interact with the

database.
Exit: prompts the user to save changes and then exits the program.

e |

1 Mew Ctrl+N |

[l Save Ctrl+S

Exit

Irenirs Bomber

Tool Strip
The tool strip has all of the menu actions except the exit option. Each button has tooltips

to inform the user of its purpose.
| T—
=

customCombo
Templated child-class of combobox. It has added functionality for easer integration with

oracle data types. The added function sets the valuemember, displaymember, and datasource. Its

implementation involves the display of all distinct supplier names.

Supplier
Horganos JN 2.
‘

Cross Distributing

Page |75

Invoices
This table displays the item name, quantity received, cost per unit, and cost of that item.
Item name: bound to the Inventory table, its value is the Invld and the display member is
the item name associated with that ID number.
Quantity/Cost per unit: belong to the Invoice table.
Total: calculated total (Quantity * CostPerUnit).

ITEM NAME QUANTITY COSTPERUNIT TOTAL
| Winas - 5 10.23 5115
| Winas - 10 11.25 1125
|16 oz. cup - 1 32,57 3257
lsam & ma .0 . 8 -

Invoices table has three modes:
Add: The table is displayed without any rows in it.
Edit: The table shows entries grouped by supplier and date.
View: By default shows all invoice entries. It can be refined by checking the

Vendor or Date check box.

Cperating Mode Refine By
Add | Vendor
Edit Diate

@ View

Total

Total: Displays the calculated total of all invoice items currently displayed in the grid
view.

Total
1442 82

Page |76

Main Form
i ™
. InvManagement E@Q
Supplier Date
Jordanaos - N27/2010 G- Qperating Mode Refine By
= Vendaor
Invoice Mumber Total © Add ;
& Edi Date
1442 82 O Edt
@ View
ITEM NAME GUANTITY COSTPERUNIT TOTAL
b Wings - 5 10.23 51.15
Wings - 10 11.25 1125
| 16 0z. cup - 1 3257 3257
Whole Chicken - 22 462 101.64
16 0z. cup - 1 16.58 16.58
I 32 0z. cup - 1 2068 20.68
Mus - 10 258 258
Cini - 20 213 426
Cllw - 30 313 535
|| Pep - &0 6.72 4032
Sal - 15 338 B0.7
Bel - 20 425 25
Sau - 40 75 300
Sau - 10 10,41 1021
* -

s s e = o s, W = e ae e aa ae — ae —

When the form loads, the table is empty, the date is set to the current date, and all radio buttons,
check boxes, combo boxes, and textboxes are empty. From there the user can choose to add,

edit, or view invoices.

Page |77

If the choice is given to add, the add radio button is selected and the table is enabled.
From there the vendor, date, invoice number, and items can all be selected. When done, the user
saves and the items are inserted into the database.

If the user chooses to edit, the invoice items from the current supplier and date are
displayed. Once changed, the corresponding records are displayed and can be edited and saved.

When the user chooses view, the group box Refine By appears with two new check
boxes. The data in the table is a list of all invoice entries. The selection can then be refined by
selection one or both check boxes and then selecting the appropriate supplier or date. Upon
leaving the view state, the check boxes are no longer visible.

Code Description

This project incorporates the use of the Oracle.DataAccess.Client library and as such implements
an OracleConnection, OracleCommand, OracleTransaction, and OracleDataAdapter.

OracleConnection
An oracle connection is a class that takes a string formatted string as input and creates a
connection with the specified database. Methods used involve open: create an open connection,

and close: close the open connection.

OracleCommand
An oracle command represents a stored procedure or statement to execute against a
database. The parameters property was used to depict the variable name, data type, size, and

location taken from.

OracleTransaction
An oracle transaction represents a transaction to be made in the database. More

specifically, it is the ability to perform Rollback, Commit, and Finalize.

OracleDataAdapter

An oracle data adapter is a set of commands coupled with a connection to a database that

is used to fill a dataset and update the database.

Page |78

DataTable

A DataTable was also used in the project. It belongs to the System.Data namespace. It
represents a single table of in memory data. More specifically, It holds part of the information
that the OracleDataAdapter points to.

DataSet
A DataSet is also in the System.Data namespace and represents an in-memory cache of
data.

Classes

RDBcon1
The name stands for Rustys DataBase connection. It is the class that performs database
connectivity, loading, updating, inserting, and deletion of data.
It is comprised of three sections:
Database connections: open and closing of connections.
Modification: performs insert, update, and delete procedures.

Get data: returns adapters, tables, and connections.

InvManagement

It is the only form of the project. It instantiates all form objects and defines the behavior
of those objects. The main functions involved in this class are the filtering of data represented in
the grid view, modifying the data in that table, and calling functions defined in the RDBconl

class.

customCombo
As stated earlier, it is a simple overloaded combobox class with a simplified function to

set the datasource, valuemember, and displaymember.

DataSet1

This dataset is a compilation of all tables in the database. The original intent was to incorporate

all tables into the project but time consideration limited the selection to only the cjinvoice table

and cjlnventory table.

Page |79

B ———— e —— e SR

Gl fdt View Propc Buid Debug Tewm Dim Took Tem Window Help
L b [Debug

(R Rger g g~ N e e
§ 9510 J 4

GGGk RS-,

ORDERID
ORDERNUMEER
ORDERTYPE
ORDERDATE

a

= Fill GetData 0

HOID
ORDERID

| oiscounmo

=
DISCOUNTID
DISCHUMBER
DISCVALUE
DISCEDATE
DISCOESC

&

9 FalGetData)

HID
ORDERID
TEMID

]

W il GetData)

b
ITEMD
VD
TTEMMAME
ITEMPRICE
CONVRATIO

3
% Fill GetData)

B

DDATE

UNITOFMEASURE
INUNAME
QuaNTITY
COSTPERUNIT

L

[5 Fill GetData

&
INVCICEID
NiD
SUPPLIER
quanTITY
cosTRERUNIT
DOATE

@)

[Fil.GetDats O

=
DDATE
PAHAME
QuANTITY
COSTPERUNIT
|

[Fill GetData ()

'\

2] CIDELETEPIZZA (0_IN)

2 CHAVGPIZZA (M)

2 CANSERTORDER

2 CANSHI (ORDERIDENT, ITEM)

L
HTID
"D

= D

QUANTITY

"

[B Fill GetDsta

L./
D
THNAME
UNITORMEASURE
B Fill GetData

INVOICED
o

1 suepuen

QuanTITY
COSTPERUMIT
ODATE

195 e

sapadong B wa sseyy g soides wiea) g ssojdig uour

ToTAL
A,
[2¢ FilGetData 0

B Eror Uit I Output 55, Find Resuts 1 . Find Symbol Results
Reacy

Major Features

The major features of this project are the ability to view data that is dependent upon
multiple tables concurrently. That data is then able to be inserted, updated and deleted. Then
everything is represented in a way that is useful when large amounts of data are present with
unnecessary information withheld from the user. The information being displayed is accurate

with textual references to numerical fields for ease of use and understanding.

Personal Reflection

The design process has been one full of trial and error. While writing code and getting
the desired result naturally come easy to me, trying to get a group of unfamiliar tools to work
together is a much more laborious process. Beyond that, once a person has learned which
objects are available to be used and how to use them, developing in C# is very easy. The code is
very similar to C++ and if you don’t remember the proper syntax, Visual Studio tends to give

hints. Oracle isn’t that hard to manage if the install process is done the right way the first time.

Page |80

If not, diagnosing the issue can be very time consuming.

Design and Implementation

The first step in designing this application was determining which programming language
to use. The primary reasons for developing in C# are the similarity to the C++ language and the
ease of designing a GUI using Visual Studio.

The second step was to create a connection between a rudimentary C# application and the
oracle database. This step was simple after installing the Oracle client.

After being shown how to integrate database control into the Visual Studio graphical
interface, it was time to install oracle database and get things going. This is where the issues
started. The next three days were dedicated to uninstalling, installing, doing Google searches,
and waiting long periods of time in between each step. In the end, a greater appreciation for the
uninstall processes undertaken by most software programs (except oracle database) was
achieved. The uninstall is very sloppy in the fact that it does not remove created database
folders, files, and registry entries. After many attempts, | was able to install the x64 oracle 11g
database with the x86 ODAC client drivers and have full use of the integration with Visual
Studio once | copied the tnsnames.ora file to the client folder.

In the final days of my project | began to implement C# code to produce a meaningful
front-end application. My process involves:

1) Design a visual representation of the imagined project.

2) Write code until an unfamiliar object or method is needed.

3) Search Google for possible answers.

4) Examine other examples of code that are available.

5) If that doesn’t work, try another approach, if it does, repeat.

The end result: a program that works but, as with all programs, more refinement can still be

done.

