City of Delano
Public Works Department
Sewer & Waste Treatment

Water Production

FINAL PROJECT

Eddie Rangel
CMPS 342 — Database Systems
Dr. Huaqing Wang
November 24, 2010



Table of Contents

a.

Fact-Finding, Information Gathering and Conceptual Database Design ........ccccceeeeviieeercieeeecieee e 5

Fact Finding Techniques and Information Gathering .......cccccvvvvviiiii e, 5
1. MEENOAS USEA ...ttt e bt sb e she e saee st e sat e st e et eneeenee s 5
ii.  Introduction to the OrganizatioN ... e e e e e 5
iii.  Structure of the Organization ...........cociii i et e et e e ree e e e bae e e e ares 5
A N |V =1 [T G @ o1 =Tt £ UUU SRR 6
Vo Data VWS i bbb a bt b abababa b ettt bt atbaaaae eeeas 6

Conceptual Database DESIZN .....ciiccuiiiiiiiiie ettt e st e e s e e et ae e e s e e e e s btee e e sbeeeeesareeeeennres 6
i ENTITY SOt D@SCIIPTION. . .utitiiiiiiiiiiiiiiiiiiiirrrrerererere et e e et et et e eereteeeeeeeeeaeaeaeaeeaeaeeeeeeeeeeeeeesaseeees 6
ii.  Relationship Set DESCIIPLION ... ..uuiiiieie e e e e e e e e e e e s e e e e e e e e esnnrrneeeeeeean 9
T P =T LYo I oY Y =1 U SEPN 9
LA R B 1T = 1 o DR 9
From ER (Conceptual) Model to Relational (Logical) Model.........cccccveeiiiiiiiiiciiee e 10

ER Model and Relational Model ........cc.cooiiiiiiiiiieieeeee ettt 10
i D T=E ol T o1 {0 o FN PP TP T TP 10
PR 6o T oY o T- 1 Ko o S PP P PP PURPU 10
1T IR o] o V=T ] oY o TSRO TPRP TSRO 11
IV.  DEfiNe CONSTIAINES. ... uuiiiiieeiie ettt st et s e s b e e sbe e e sar e e st e e sabeeesneeesanes 11

Convert the ER Database ......ccueiiiiiiiiiiiieiec ettt ettt sttt et s e st e sbae e sabee e 11
i EMPLOLYEE REIGLION ...ttt ettt sane e 11
ii DEPARTIMENT REIATION ..viiiiiiiiiiiiiee ettt sttt st sttt e e s sbee e e ssabae e s sntaeessbaeeesnne 12
iii.  SERVICE_REQUEST relation.....cccoicuiieiiiiiieiiiiee ettt ssitee sttt e s satre e svte e e s sbee e e ssabaeessneaeesnans 12
V.  TECHNICIAN FeIation ..cooueeeiiieiiee ettt ettt sttt et e b e e sae e e sar e sar e e sbeeesnneesanes 13
LY I o] o T - T o I PSPPI 13
LY T NS =l I =1 =1 i o o [PPSR 14
vii. WORKS_FOR FEIGTION w.eeiitiiee ettt ettt ettt e e e e et e e s eata e e e s bte e e esnbaeeesntaeeesseaaananes 14
Vill. WORKS_ON L.ttt ettt ettt e b e bt b e be e s bt e sbe e sae e satesatesatesmteemteeneeeneean 14
D O o 1N A VPSPPSR 15
o SUM BT S A e a e babebabnrarneeenenenenenee e 15
XIe IS /A et e e e et ee e e e ee e ee e ee e er et erereererens 16
Xii. POSSESES. ...ttt ettt sttt b b b e e bt she e sae e st sae e ettt eene e e 16



V.

C.

a.

Xill.  SKILL ot s 16

DeSiZN RElAtiON INSTANCES ....uviiiieiei ittt e et e e e e e e e e e e e e s reeae e e e e s e e ssnbataeeeeeessansresaeeaessennnnnes 17
i EMPLOYEE(emplID, fName, IName, mName, DOB, SSN, PhoneNumber) .........cccccceveecvveeennnenn. 17
ii. DEPARTMENT(deptID, deptName, LOCAtioN)......cccuiieeiiieeeciiiee ettt ettt e e e 17
iii. SERVICE_REQUEST(serviced,openDate, CloSeDAte).........eeevcriiiiiciiiieiiiiie e evee s 17
iV.  TECHNICIAN(EMPID, SKIllID) c..e.ovoeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseesesseeseesesseesesseeseesesseessseesesseeseeseesessenens 17
V. TYPE(LYPEID, @TYPE) cuutriieiiuiiieeeiieeeeeitee e eittee e e ttaeesetteeeesatteeessabaeeeeabaeesanssaeeennsteeesnnsaeeessseesessens 18
vi. ASSET(assetlD, InsDate, LstMaintenance, LOCatioNn)........cccceeeeieeeeiciieecciiee et e 18
vii. WORKS_FOR(deptID , strDate, @NdDAte).......ccccuueeeecuiiieeiiieee ettt et eevre e e eeree e e aaee e 18
viii.  WORKS_ON(servicelD, emplD, strDate, eNdDate).......c.cceceevreeeeriiieeeeiiee et 18
D S N X Y o 1Y | =TT =14 1 ) IS 18
X, HAS_A(SEIVICEID, tYPEID) ...uiiiieeiiieeeeiee ettt erte e e e e te e e e bae e e et ae e e s nsbe e e e snbaeeeennbeeeeenneeas 18
Xi.  SUBMITS_A(€MPID, SEIVICEID) . .uuiiiiiiieieiiiieeeeiieeeeste e e estre e e s sitee e estte e e e sbae e e snbaeeseaaeeessnseeeeenneens 19
Xii. POSSESES(EMPID,SKIIIID) ..eeicereieeeitiee ettt ettt et e e e re e e e bee e e e atee e e enee e e e nbaeeeeneeas 19
Xiii.  SKILL(SKillID, Name, DESCIIPTION) ...ueiiiiiiiieeiiiee ettt ettt ettt ee ettt e e e are e e e tte e e e te e e e eareeeeeannas 19

QUUETIES .. ettt ettt ettt e sttt e s e et e s e s et e e s mr et e s s s s e e e s s e et e s s b e e e e e nr e e e s e nn e e e s ann e e e e e eeesanneeeenn 19

QUETY REPIrESENTAtION ... .uiiii ittt e s e e e e ebee e e et e e e e s bte e e esabeeesentaeeesnneens 20

Implementation of Relational Database...........coccuiiiiiiiiii i e 23

SQLHEPLUS ..ttt ettt ettt et e b e e bt e bt e bt e e bt e she e she e sabesab e et e et e e be e beenbeesbe eenbeen 23

Schema ODbJECES IN OraCle c.ocii e e e e e e st re e e e e s s e nnraeeeeeeeans 23
T - o] [T USSP US TP 23
Hle VWS ottt e e et e e et et e eeeeeeeeeeeeeaeeeaeaaaeaaaaaeaaeaesasesesasasasasasasasassssasasaaann senerenanane 23
TP B 11 0 1=1 s Y Lo s - P P P P P TP PP TP PP TPt 24
IV, SEOUEBNCES ..vvvvviviiiiiiiiiiiriereeeeeee ettt eeeeeeteeeteeeteteteteteteteeeeeeeeeeeseeaeeeeeeeasesesesesesssesssssssssssssssssssssssssssssens 24
A I T 01V o P 24
YT [ o [ T TSP OPRT PR 24
vii. Database LINKS ....cccueiiiiieiieeiiie ettt ettt ettt st e s e b sab e b e e s ne e e sareesnee e 24
viii. Stored procedures and fUNCLIONS ......uviiiiciiiii it s e s baee e e 24
D o Yol & T TR 24

Schema ObjJects iN this PrOJECE .....ciiciiii it e e e bre e e e sba e e e senaeeeeeaes 24

Stored Subprograms, Packages and TrigEerS......ciiuiiiiieie e sbeane e e e 35

Common Features in Oracle PL/SQL and Microsoft Transact-SQL .....cccovveeeeeeireeeieeeeeeeeeeeeeeeeeeenn 35

3



b.

C.

C.
d.

e.

L@ L= Tl L= 2 17 A | ORI 35
Oracle PL/SQL SUDPIOZIAMS ....ccccueieiiiecieeeciee ettt ettt et ete e eetee e ette e ebeeeteseetaeesabeeebeeebeeensreesareeeanes 38
Graphical User Interface Design and Implementation ..........cccceeeecieeeciiiee et 41
(D 11 VYol 1 Y7 [T USRI 41
. AAMINISrative STaff ..o ettt sab e s 41
P =YooV o 1T ol - o TP 41
1TR Y/ - T o - T=4=T PP TP P PRI 41
The Management Team can add/delete all items in the database. These items include employees,
assets, and service requests. They can keep track of their technicians certifications. ..................... 41
Relations, Views and SUDPrOgramsS..........uiiiiiiiiiiiee et sree e sre e e e e e sbee e s saree e e nreeeeennees 41
I RELATIONS .ttt ettt sttt ettt et s b et b e bt e s bt e sbe e shee s bt e smeesaeesmteemeeenteennen een 41
H. VIEWWS ettt sttt st st sttt et et e bt e s bt e e bt e b e e bt e e be e e be e eae e eeneenneen 41
fii.  SUBPROGRAMS ...ttt ettt h e s h et sat e st e a e e st e et e e be e bt e be e beenbeesbeesbeesanesanenas 41
SCIEEN SHOES ..ttt s e e s bt e s bt e e sab e e sab e e sbe e e sareesabeeeneeene sanes 42
(DT o aT o o] T} i ©fo Yo [T U SSPRROt 47
Major Steps in Design and IMplementation ...........ccceiieiiiiiee i 49



l. Fact-Finding, Information Gathering and Conceptual Database Design

a.

Fact Finding Techniques and Information Gathering

Fact finding is used to gain an understanding of what will be needed in order to develop and
implement an Information Management System. There are a variety of ways that information can be
gathered including phone conversations and e-mails consisting of survey as well as face to face
meetings.

The information you are seeking will generally direct you to which methods you will use. If you are
looking for a generic response from many people then surveys will be a very convenient way to go.
However, if you would like a very detailed account of specific requirements then face to face
meetings will be more appropriate.

Once you begin understanding what the requirements will be you can begin to develop small
components that will eventually make up the final System.

i. Methods Used

o Kick off meeting
The Development Team made arrangements to have an initial face to face meeting with
some of the stakeholders of the project. The Stakeholders consisted of Department Heads
and Middle Managers of the divisions that will work directly with the System once it is in
place.

e Interviews
Following the initial meeting the Development Team began making individual one on one
meetings with many of the Divisions staff members. This included the Administrative
Secretary and Office Assistant to the Division Manager and Lead Technicians.

The Team began documenting the internal work flow for a service request for the Water and
Sewer Divisions. Copies of their forms were obtained to better understand what information
the Division wanted to keep track of.

ii. Introduction to the Organization

The City of Delano’s population has reached more than 53,972, as of 2009. This makes it the
second largest City by population in Kern County. The City operates many essential services for
the Citizens of Delano including Water Utilities, Solid Waste, and Streets.

The City’s current System for managing the day to day operations of the Public Works
Department is outdated and tedious. Many of their routine tasks are done manually and on hard
copies. They would like to stream line common tasks into an automated system. This will help
manage their Work Orders and will provide a way track Citizen Requests.

iii. Structure of the Organization

This project will focus specifically on the Water Production and Sewer Divisions of the Public
Works Department. The Divisions consists Certified Technicians that manage the Cities

5



Infrastructure. The Department will enter a service request when they need to service one of
their assets which include water pipes, water valves, and fire hydrants.

Major Objects

The Database System will use an Entity named EMPLOYEE to represent the standard employee
for the City. Any EMPLOYEE can work for only one DEPARTMENT. There are certain EMPLOYEEs
who HAS_SKILLS that are TECHNICANs. The TECHNCIAN WORKS_ON submitted
SERVICE_REQUESTSs for ATYPE of asset. ATYPE of asset is defined by the attributes within the
entity ASSET.

Data Views

Each employee can view their SERVICE_REQUESTSs. Due to the complexity of some of the
SERVICE_REQUESTs multiple TECHNICIANs may work on a single SERVICE_REQUEST. Only one
type of asset can be related to a SERVICE_REQUEST.

b. Conceptual Database Design

Entity Set Description

e EMPLOYEE

- This Entity Type represents all Employees in the City. Since this database will focus on
one Department, we will only require basic employee information to be used.

- Candidate keys: emplD, SSN

- Primary key: empID

- Strong/Weak Entity: Strong

- Fields to be indexed: emplD

Attribute/ emplID fName IName mName DOB SSN Phone Wage

Description Number

Description Unique First Last Name Middle Date of Social Home Hourly
Identifier Name Name Birth Security Number Rate

Number

Domain/ Char Varchar  Varchar Varchar  Date nchar Nchar float

Type

Value/ 9 50 50 50 9 10

Range

Default N/A N/A N/A N/A N/A N/A N/A N/A

Value

NULL (Y/N) N N N Y N N Y N

Single/ Single Single Single Single Single Single Multi Single

Multi

Simple/ Simple Simple Composite Simple Simple Simple  Composite Simple

Composite




e DEPARTMENT
- This Entity Type represents all Departments in the City.
- Candidate keys: deptID
- Primary key: deptID
- Strong/Weak Entity: strong
- Fields to be indexed: deptID

Attribute/  deptID deptName deptlLocation
Description
Description Unique First Last Name
Identifier Name
Domain/ Char Varchar Varchar
Type
Value/ 9 50 50
Range
Default N/A N/A N/A
Value
NULL (Y/N) N N N
Single/ Single Single Single
Multi
Simple/ Simple Simple Composite
Composite
e TYPE

- This entity represents a type of asset being serviced.
- Candidate keys: assetID

- Primary key: assetID

- Strong/Weak Entity: Strong

- Fields to be indexed: assetID

Attribute/ typelD aType

Description

Description Unique First
Identifier =~ Name

Domain/ Char Varchar

Type

Value/ 9 50

Range

Default N/A N/A

Value

NULL (Y/N) N N

Single/ Single Multi

Multi

Simple/ Simple Simple

Composite




e ASSET
- Each type of asset is defined by a set of attributes with the ASSET entity
- Candidate keys: assetID
- Primary key: assetID
- Strong/Weak Entity: Strong
- Fields to be indexed: assetID

Attribute/ assetIiD Geometry InsDate LstMaintenance

Description

Description Unique First Last Name Middle Name
Identifier Name

Domain/ Char varchar DateTime DateTime

Type

Value/ 9 10

Range

Default N/A N/A N/A N/A

Value

NULL (Y/N) N Y N N

Single/ Single Single Single Single

Multi

Simple/ Simple Simple Simple Simple

Composite

e SERVICE_REQUEST
- The entity SERVICE_REQUEST will be used to track when a SERVICE_REQUEST is opened
and closed.
- Candidate keys: servicelD
- Primary key: servicelD
- Strong/Weak Entity: Strong
- Fields to be indexed: assetID

Attribute/ servicelD openDate closeDate

Description

Description Unique Open Close Date
Identifier ~ Date

Domain/ Char DateTime DateTime

Type

Value/ 9

Range

Default N/A N/A N/A

Value

NULL (Y/N) N N N

Single/ Single Single Single

Multi

Simple/ Simple Simple Simple

Composite




ii. Relationship Set Description
e WORKS_FOR
- Thisis a Relationship between and EMPLOYEE and DEPARTMENT
- Entity Set Involved: EMPLOYEE, DEPARTMENT
- Mapping cardinality: 1..1
- Participation Constraints: Total Participation for EMPLOYEE

e POSSESES
- This is a Relationship between and EMPLOYEE and TECHNCIAN
- Entity Set Involved: EMPLOYEE, TECHNICIAN
- Mapping cardinality: M..M
- Participation Constraints: This is an optional relationship for EMPLOYEE

e WORKS_ON
- Thisis a Relationship between TECHNCIAN and SERVICE_REQUEST
- Entity Set Involved: TECHNICIAN, SERVICE_REQUEST
- Mapping cardinality: M..M
- Participation Constraints: Total Participation for TECHNICIAN

iii. Related Entity Set
e TECHNICIAN
- TECHNICIAN is a specialization of EMPLOYEE. It is disjointedness constraint.
- Specialization/Generalization
- Aggregation/has-relationship

iv. E-R Diagram



= 1 SERVICE_REQUEST ASSET
EMPLOYE
SUBMITS PK | servicelD 1 HAS_A PK |assetlD
PK | employeelD >
openDate InstallDate
fName closeDate LastMaintenance
IName Description Location
minitial M:M
DOB :
s, pbeee=s WORKS_ON-——
|
PhoneNumer 1:1 subClass [ 1 131 IS_A
Wage P | TECHNICIAN
1 PK [employeelD
TYPE
FK2 | skilllD startDate
el WORKS_FOR—l endDate PK | typelD
|
| M:M aType
: _____ POSSESES- = Description
1 l
A 4 !
DEPARTMENT SKILL '
PK startDate
endDate PK | skilllD
jeplLNamEj Name startDate
eptlocation Description expDate

From ER (Conceptual) Model to Relational (Logical) Model

a. ER Model and Relational Model

i. Description

Prior to the implementation of a database system there are some prerequisite steps that need
to be completed. These steps include the creation of an Entity-Relationship Model and the
Relational model. The ER Diagram previously discussed is a representation of the organization of
the systems data. It serves as a guide in determining the required components of a developed
database system.

The creation of a relational model is required in order to develop an efficient application for the
organization. It is defined by a set of relations which have constraints on their specific domains.

Comparison

The entity relationship is meant to provide a framework of information for which to base a
conceptual model on. It does not require specific details required for an implementation.
Instead it is focused on providing a visual representation of how data is organized and where it
flows. It provides attributes, relationships, and cardinality.

The relational model provides the database developer with an understanding of how the data
will be constrained for it given domains. It builds on the ER model by creating valid tuples and
their given relationships. This model is a more accurate representation of how the database will
physically be created.

10



iii. Conversion

There are several steps to take when converting an ER model to a relational model. A
conceptual design provides the basic structure from which the relational model will be built and
the relational model’s relations will be mapped.

The first step will include creating a relation R for every regular strong entity type. This includes
all simple attributes for the entity E. A primary key will be chosen from the attributes of the
entity to uniquely identify the relation R.

The second step will include the mapping of the weak entity types. For each week entity type we
will create a relation R and will include all the simple attributes for the entity E. We will also
include a foreign key attribute.

The third step will map binary 1:1 relations types. For every binary relation R we need to identify
its relations as S and T. There are three possible approaches which include the Foreign Key
method, the merged relation method, and the cross-reference method.

In the fourth step we will focus on mapping the binary 1:M relationship types. For every 1:M
relation R we will identify the S that corresponds the entity of the M-side of the relationship. We
include a foreign key in S the primary key of the relation T.

A fifth step includes the mapping of binary M:N relationship types. For every binary M:N relation
R we will create a new relation S to represent R. We will include a foreign key attribute in S.

iv. Define Constraints

A relation consists of an ordered set of unique tuples, with each tuple having the same amount
and type of attributes. In the relational model Entities are represented and each row is a valid
instance, record, or tuple for the entity. The constraints ensure that no primary key can be
NULL. This ensures that there exists a unique element of each tuple in the relation. This is
necessary for comparisons and representations in queries and data integrity. The constraints for
foreign keys exist to enforce referential integrity.

b. Convert the ER Database
i. EMPLOLYEE Relation
e Attributes
- emplD
Domain: Integer, Cannot be NULL
- fName
Domain: String, up to 30 Characters

- IName
Domain: String variable characters, cannot be NULL

11



mName
Domain: String variable characters, can be NULL

DOB
Domain: DateTime, Cannot be Null

SSN
Domain: Integer, Cannot be Null

Wage
Domain: Currency, cannot be NULL

PhoneNumber
Domain: String, cannot be NULL

e Constraints

Primary Key

emplD will be the primary key. This unique identifier cannot be NULL.

Foreign Key

Works_For is the Foreign Key which corresponds to a deptlID. All employees belong to
one department.

Business Rules

e Candidate Keys

emplD, SSN

ii. DEPARTMENT Relation

e Attributes

deptID

Domain: Integer, Cannot be NULL

deptName

Domain: String, up to 30 Characters, cannot be NULL
Location

Domain: String, up to 20 Characters, cannot be NULL

e Constraints

Primary Key

deptID will be the Primary Key
Foreign Key

Business Rules

e Candidate Keys

deptID, deptName

iii. SERVICE_REQUEST relation
e Attributes

servicelD: DateTime, cannot be NULL

12



- openDate: DateTime, cannot be NULL
- closeDate: DateTime, can be NULL

e Constraints
- Primary Key
servicelD is the Primary Key, it cannot be null.
- Foreign Key
- Business Rules
The closeDate has to be greater than the openDate. The servicelD will be incremented.

e Candidate Keys
- servicelD

iv. TECHNICIAN relation
e Attributes
- emplD
Domain: integer, cannot be NULL
- POSSESES
Domain: integer, cannot be NULL

e Constraints
- Primary Key
emplD
- Foreign Key
- Business Rules
A TECHNICIAN is a child class of EMPLOYEE. All TECHNICIAN s must possess a skill

e (Candidate Keys
emplD

v. TYPE relation
e Attributes
- typelD:
Domain: Integer, cannot be NULL
- alype
Domain: String, up to 20 Characters, cannot be NULL
- Description:
Domain: String, up to 150 Characters, cannot be NULL
e Constraints
- Primary Key
typelD is the Primary Key
- Foreign Key
- Business Rules

e Candidate Keys
- typelD

13



vi. ASSET relation
e Attributes
- assetlD
Domain: Integer, cannot be NULL
- InsDate
Domain: DateTime, cannot be NULL
- LstMaintenance
- Domain:DateTime, can be NULL
- Location
Domain: String, can be NULL
- IS_A:
Domain: Integer value corresponds to type of asset, cannot be NULL

e Constraints
- Primary Key
assetlD is the unique identifier. Must only cont numeral values that increment
- Foreign Key
IS_Ais the unique identifier that every ASSET must have that relates it to the type of
asset it is.
- Business Rules

e Candidate Keys
- assetlD

vii. WORKS_FOR relation
e Attributes

- strDate
Domain: DateTime, cannot be NULL

- endDate
Domain: DateTime, can be NULL

- emplD
Domain: Integer, Cannot be NULL

- deptlD

e Constraints
- Primary Key
- Foreign Key

emplD, deptID
- Business Rules

e Candidate Keys

viii. WORKS_ON

14



e Attributes

strDate
Domain: DateTime, cannot be NULL

endDate
Domain: DateTime, can be NULL

emplD
Domain: Integer, Cannot be NULL

servicelD
Domain: Integer, Cannot be NULL

e Constraints
e Candidate Keys

ix. HAS_A

e Attributes

servicelD
Domain: Integer, cannot be NULL

assetID
Domain: Integer, cannot be NULL

e Constraints

Primary Key
Foreign Key
servicelD, assetID
Business Rules

e (Candidate Keys
X. SUMBITS_A
e Attributes

emplD
Domain: Integer, cannot be NULL

servicelD
Domain: Integer, cannot be NULL

e Constraints

Primary Key
Foreign Key
emplD, servicelD
Business Rules

15



In order for a work order to close it must have an close date.

e Candidate Keys
xi. IS_A
e Attributes
- typelD
Domain: Integer, cannot be NULL

- assetlD
Domain: Integer, cannot be NULL

e Constraints
- Primary Key

- Foreign Key

typelD, assetID are both required
- Business Rules

e Candidate Keys
xii. POSSESES
o Attribute
- emplD
Domain: Integer, cannot be NULL
- skilliD
Domain: Integer, cannot be NULL
e Constraints
- Primary Key
- Foreign Key
emplD & skilllD are both required
- Business Rules
All technicians are required to have a skill. Some skills are associated with Certifications
which are required to be maintained. If the Certification expires then the technician may
not be able to perform certain work items.

e Candidate Keys

xiii. SKILL
e Attributes
e skilllD

Domain: Integer, Cannot be NULL
e SkillName

Domain: String, Variable Length, cannot me null
e Description

Domain: String, Variable Length, cannot me null

16



Constraints

Primary Key
skilllD

Foreign Key
Business Rules

Candidate Keys

skilllD

c. Design Relation Instances
i. EMPLOYEE(emplID, fName, IName, mName, DOB, SSN, PhoneNumber)

empliD, fName IName mName DOB SSN PhoneNumber

01 John Rodriguez 7/1/1970 555-66-8888 661-720-2201

02 Steve Smith 8/1/1977  555-66-9999 661-720-2202

03 Taylor Dane 9/7/1978  555-77-6644 661-720-2202

04 Jason Davis 10/71974 555-77-7755 661-720-2203

05 Ted Mason 1/8/1972  555-66-8822 661-720-2204

06 Jason Frank Alexander 2/15/1976 555-88-6644 661-720-2205

07 Doug Parker Author 2/28/1978 555-88-4482 661-720-2206
ii. DEPARTMENT(deptID, deptName, Location)

deptiD deptName Location

01 Water Production Corporation Yard

02 Sewer Treatment Plant

03 Waste Water Treatment Plant

04 Water Treatment Corporation Yard

iii. SERVICE_REQUEST(serviced,openDate, closeDate)

servicelD srtDate endDate Description

01 10/10/2010 Water Leak

02 10/1/2010 10/5/2010 Water
PipeMaintenance

03 9/30/2010 Clogged Drain

04 8/30/2010 9/1/2010 Waste Water Leak

iv. TECHNICIAN(empID, skilllD)

emplD skilllD
01 03
02 01




03 03
04 01
05 02

v. TYPE(typelD, aType)

typelD aType

01 Water Valve

02 Water Pipe

03 Waste Water Valve
04 Waste Water Pipe

vi. ASSET(assetID, InsDate, LstMaintenance, Location)

assetID InsDate LstMaintenance Location
01 2/10/2000 2/10/2010 Lexington St
02 2/15/2000 2/15/2009 Lexington St
03 3/15/2005 5/30/2010 Jefferson St
04 1/30/1998 9/27/2003 Jefferson St
vii. WORKS_FOR(deptID, strDate, endDate)
emplD deptiD strDate endDate
01 01 1/2/2000
02 02 11/10/2005
03 03 7/15/2008
04 04 8/20/2003
viii. WORKS_ON(servicelD, emplD, strDate, endDate)
servicelD emplD strDate endDate
01 02 1/20/2010 2/1/2010
02 02 2/15/2010 2/16/2010
03 01 7/1/2010 7/2/2010
04 05 8/15/2010

ix. IS_A(typelD,assetID)

typelD assetlD
01 01
02 02
03 03
04 04

Xx. HAS_A(servicelD, typelD)

servicelD typelD
01 01
02 02

18



03 03
04 04
xi. SUBMITS_A(emplD, servicelD)

empiD servicelD
01 01
02 02
03 03
04 04

xii. POSSESES(emplD,skilllD)
emplD skilllD

xiii. SKILL(skilllD, Name, Description)
skilllD Name Description
01 Water Operator State Certified
02 Waste Water Operator State Certified
03 Maintenance Technician Misc. Employee
04 Data Entry Misc. Employee
d. Queries

Select all technicians who worked on service requests.
Select all technicians who have more than 2 service requests.
Select All employees who have submitted a service request.
Show what skills all technicians have

Show Employees with no skills

Show all open service requests

Which employees have open service requests?

What types of assets has service requests?

Show Former Employees

Show Departments with more than 1 Employee

19



e. Query Representation
e Select all technicians who worked on service requests.
Relational Algebra

1t (employee_id) o (er_technician T * er_works_on W)
T=employee_id = W.employee _id

Tuple Relational Calculus

{e|er_employee(e) ~ (3T)(er_technician(T) A (3W)(er_works_on(W) » W.employee_id =
T.employee_ID)}

Domain Relational Calculus
SELECT T.EMPLOYEE_ID

FROM ER_TECHNICIAN T
WHERE EXISTS(SELECT * FROM ER_WORKS_ON W WHERE W.EMPLOYEE_ID = T.EMPLOYEE_ID);

e Select all technicians who have more than 2 service requests.
Relational Algebra
T(P.*) o(er_possesses P)

Tuple Relational Calculus
{p|er_possesses(p) » (AW)(er_works_on(W) * p.employee_id = W.employee_id) }

Domain Relational Calculus

SELECT P.*

FROM ER_POSSESSES P

WHERE EXISTS(SELECT EMPLOYEE_ID, COUNT(*)
FROM ER_WORKS_ON W

WHERE P.EMPLOYEE_ID = W.EMPLOYEE_ID
HAVING COUNT(*) > 1);

e  Select All employees who have submitted a service request.

Relational Algebra
Tuple Relational Calculus

{e|er_employee_id(e) * (3S)(er_submits_a(S) *s.employee_id = e.employee_ids }

20



Domain Relational Calculus

SELECT E.EMPLOYEE_ID

FROM ER_EMPLOYEE E

WHERE EXISTS (SELECT * FROM ER_SUBMITS_A'S
WHERE S.EMPLOYEE_ID = E.EMPLOYEE_ID);

Show what skills all technicians have

Relational Algebra

Tuple Relational Calculus
{p | er_possesses(p) }
Domain Relational Calculus

SELECT P.SKILL_ID, P.EMPLOYEE_ID
FROM ER_POSSESSES P;

Show Employees with no skills

Relational Algebra
Tuple Relational Calculus

{e|er_employee(e) » ~(3P)(er_possesses(P) » P.employee_id = e.employee_id}

Domain Relational Calculus

SELECT E.F_NAME, E.L_NAME

FROM ER_EMPLOYEE E

WHERE NOT EXISTS(SELECT * FROM ER_POSSESSES P WHERE P.EMPLOYEE_ID =
E.EMPLOYEE_ID);

Show all open service requests

Relational Algebra

Tuple Relational Calculus
{s|er_service_requests(s) » s.end_date = NULL}
Domain Relational Calculus

21



SELECT S.SERVICE_ID, S.START_DATE, S.END_DATE
FROM ER_SERVICE_REQUEST S
WHERE END_DATE IS NULL;

e Which employees have open service requests?
Relational Algebra

Tuple Relational Calculus

Domain Relational Calculus

SELECT UNIQUE SA.EMPLOYEE_ID

FROM ER_SUBMITS_A SA INNER JOIN ER_SERVICE_REQUEST SR ON (SA.SERVICE_ID =
SR.SERVICE_ID)

WHERE SR.END_DATE IS NULL;

e  What types of assets has service requests?

Relational Algebra
Tuple Relational Calculus
Domain Relational Calculus

SELECT A.* FROM ER_A_TYPE A
WHERE EXISTS(SELECT UNIQUE IA.TYPE_ID

FROM ER_HAS_A HA INNER JOIN ER_IS_A IA ON(HA.ASSET_ID = IA.ASSET_ID));

Show Former Employees

Relational Algebra
Tuple Relational Calculus

Domain Relational Calculus

SELECT WF.EMPLOYEE_ID
FROM ER_WORKS_FOR WF INNER JOIN ER_DEPARTMENT D ON(WF.DEPARTMENT_ID =
D.DEPARTMENT_ID)

22



WHERE NOT WF.END_DATE IS NULL;

e Show Departments with more than 1 Employee

Relational Algebra
Tuple Relational Calculus
Domain Relational Calculus

SELECT D.*

FROM ER_DEPARTMENT D

WHERE EXISTS(SELECT EMPLOYEE_ID, COUNT(*) FROM ER_WORKS_FOR WF
WHERE WF.DEPARTMENT_ID = D.DEPARTMENT_ID

HAVING COUNT(*) > 1);

[l Implementation of Relational Database

a.

SQL*PLUS

With the creation of the relational model completed, the description for each relation will be used to
develop a database that will meet the requirements of the attributes, constraints, and relationships.
We will use the Oracle Relational Database Management System implementation of SQL. Structured
Query Language is a language used to manipulate data within a Relational Database Management
System. SQL was first introduced by Edgar F. Codd in his 1970 paper, "A Relational Model of Data for
Large Shared Data Banks." It was first developed at IBM in the 1970s. It has since gone through the
standardization process. Today there are now many popular implementations including Microsoft’s
Transact-SQL, or T-SQL, MySQL, and Oracle. Oracle provides a command line interface called
SQL*PLUS which allows SQL commands to be run interactively. This tool allows users to create and
destroy a database very quickly.

Schema Objects in Oracle

The Oracle Database Management System uses a collection of schema objects to form a schema. A
tablespace is used to logically organize the structure of the database. Schema objects are logical data
structures which are stored in a tablespace within the database. The data for each schema object is
stored in the tablespace’s data files. This allows a tablespace to contain several different types of
schema objects.

i. Tables
Tables represent relations from the relational model. They are the basic storage unit for an
Oracle database. A table’s columns represent the relation’s attributes. The rows in the table
represent a records or tuple in the relation. Each attribute has a unique name. The Tables store
information about the relation’s primary key, foreign keys, and constraints. After the table is

created, data can be inserted into rows which represent the existence of tuples.

ii. Views

23



C.

Vi.

Vii.

viii.

Views are virtual tables that return tuples from one or more tables. They are used when a
command will be used repeatedly. Views do not use storage space like a table. Views can be
used to display data that simplify the actual representation for users.

Dimensions

Dimensions are relationships between columns in a table. This can be used between columns of
that exist in the same table or in separate tables.

Sequences
Sequence generators create a sequential set of numbers. The sequence numbers can then be

used to determine order for queued operations or requests. They can be used to generate
primary keys for a specific table.

Synonyms

Synonyms are aliases for different types of schema objects, such as tables, procedures, or views.
They do not require any storage space. Synonyms can be used to hide internal data from
outside users and can be used simplify SQL commands.

Indexes

Databases optimize the traversal of each table by caching the values of unique attributes, such
as primary keys. Indexes are used as additional attributes that will allow the database to more
quickly accesses their values during comparisons. Indexes can also be created for combinations
of certain attributes.

Database Links

Database links are hard-coded, read-only links to other databases. These links allow one
database to perform queries and retrieve results using another database.

Stored procedures and functions

These can be used to automate repetitive tasks. A stored procedure or function always performs
the same task as instructed upon its creation. Functions in Oracle always return a single value to
the user, while stored procedures do not.

Packages

Packages are a set of specific stored procedures, functions, and cursors. They act as a single unit

of instructions. This is ideal for large-scale operations performed by stored procedures.
Packages organize and simplify design requirements for databases that require complex tasks.

Schema Objects in this project

24



In this project, the two most frequently used schema objects are the table and the view.
Most of the tables are created using syntax similar to this:

CREATE Table [TableName]
(

attributes attribute types nullable?,

ey

Constraints:
pk_tablename PRIMARY KEY (AttributeName)
k_ParentName_ChildName FOREIGN KEY (AttributeName) REFERENCES ParentName
(ParentAttributeName)

The scheme objects created are as follows:

ER_DEPARTMENT Department Relation
ER_EMPLOYEE Employee Relation
ER_SERVICE_REQUEST Service Request Relation
ER_TECHNICIAN Technician Relation
ER_SKILL Skill Relation
ER_A_TYPE Type Relation
ER_ASSET Asset Relation
ER_WORKS_FOR Works For Relation
ER_WORKS_ON Works On Relation
ER IS A Is A Relation

ER_HAS A Has A Relation
ER_SUBMITS_A Submits A Relation
ER_POSSESSES Possesses Relation

Following are the schemas and instances for each relation:

ER_DEPARTMENT

CS342 SQL> desc er_department;

Name Null? Type
DEPARTMENT_ID NOT NULL NUMBER(4)
DEPARTMENT_NAME NOT NULL VARCHAR2(25)
LOCATION VARCHAR2(30)

CS342 SQL> select * from er_department;

DEPARTMENT_ID DEPARTMENT_NAME LOCATION

1 ENGINEERING CITY HALL

25



n b wN

ER_EMPLOYEE

PLANNING

WATER PRODUCTION
SEWER

STREETS

CS342 SQL> desc er_employee;

COMMUNITY DEVELOPMENT
CORPORATION YARD

WASTE WATER TREATMENT PLANT
CORPORATION YARD

Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(4)
F_NAME NOT NULL VARCHAR2(25)
M_NAME VARCHAR2(20)
L_NAME NOT NULL VARCHAR2(30)
BIRTH_DATE NOT NULL DATE
SOCIAL_SECURITY NOT NULL NUMBER(12)
PHONE NOT NULL NUMBER(10)
CS342 SQL> select * from er_employee;
EMPLOYEE_ID F_NAME M_NAME L_NAME BIRTH_DATE SOCIAL_SECURITY PHONE
1 Lucas Alexander Skye 01-JAN-70 123456789 6615550001
2 Alvin Chipmunk 02-FEB-80 234567891 6615550002
3 Simon Chipmunk 03-MAR-80 345678912 661555003
4 Theodore Chipmunk 04-APR-80 456789123 6615550004
5 Billy Joe Armstrong 05-MAY-71 567891234 6615550005
6 Tim Armstrong 06-JUN-72 678912345 6615550006
7 Scott Weiland 07-JUL-73 789123456 6615550007
8 Tom Morello 08-AUG-74 891234567 6615550008
9 Karen Lee Orzolek 22-NOV-78 912345678 6615550009
10 Dave Navarro 09-SEP-74 129834765 6615550010
ER_SERVICE_REQUEST
CS342 SQL> DESC ER_SERVICE_REQUEST;
Name Null? Type
SERVICE_ID NOT NULL NUMBER(4)
START_DATE NOT NULL DATE
END_DATE DATE
DESCRIPTION VARCHAR2(30)
CS342 SQL> SELECT * FROM ER_SERVICE_REQUEST;
SERVICE_ID START_DATE END_DATE DESCRIPTION
1 01-JAN-10 02-JAN-10 WATER LEAK
2 10-JAN-10 11-JAN-10 SEWER LEAK
3 02-FEB-10 02-FEB-10 WATER LEAK
4 12-FEB-10 13-FEB-10 SEWER LEAK
5 03-MAR-10 03-MAR-10 MAINTENANCE
6 13-MAR-10 14-MAR-10 MAINTENANCE
7 04-APR-10 04-APR-10 MAINTENANCE
8 14-APR-10 14-APR-10 WATER LEAK
9 05-MAY-10 10-MAY-10 REBUILD
10 15-MAY-10 16-MAY-10 WATER LEAK
11 06-JUN-10 10-JUN-10 REBUILD

26



12 07-JUL-10
13 08-AUG-10

ER_TECHNICIAN

CS342 SQL> DESC ER_TECHNICIAN;

MAINTENANCE
MAINTENANCE

Name Null? Type
EMPLOYEE_ID NUMBER(4)
SKILL_ID NUMBER(4)

CS342 SQL> SELECT * FROM ER_TECHNICIAN;

EMPLOYEE_ID  SKILL_ID

= O W o
N O WN R

ER_SKILL

CS342 SQL> DESC ER_SKILL;

Name Null? Type

SKILL_ID NOT NULL NUMBER(4)
SKILL_NAME NOT NULL VARCHAR2(30)
DESCRIPTION VARCHAR2(30)

CS342 SQL> SELECT * FROM ER_SKILL;

SKILL_ID SKILL_NAME DESCRIPTION
1 Water Operator State Certified
2 Waste Water Operator State Certified
3 Maintenance Technician Misc. Employee
4 Data Entry Misc. Employee
5 Street Technician Misc. Employee

ER_A_TYPE

CS342 SQL> DESC ER_A_TYPE;

27



Name Null? Type

TYPE_ID NOT NULL NUMBER(4)
A_TYPE NOT NULL VARCHAR2(25)
DESCRIPTION VARCHAR2(30)

CS342 SQL> SELECT * FROM ER_A_TYPE;

TYPE_ID A_TYPE DESCRIPTION

1 Water Valve Copper

2 Water Line PVC

3 Sewer Valve Copper

4 Sewer Line PVC

5 Generator Gas Power

6 Fire Hydrant Cast Iron
ER_ASSET
CS342 SQL> DESC ER_ASSET;
Name Null? Type
ASSET_ID NOT NULL NUMBER(4)
INSTALL_DATE NOT NULL DATE
LAST_MAINTENANCE DATE

LOCATION

CS342 SQL> SELECT * FROM ER_ASSET;

VARCHAR2(25)

ASSET_ID INSTALL_DATE LAST_MAINTENANCE LOCATION
1 01-JAN-81 12-DEC-09 CORPORATION YARD
2 02-FEB-82 11-NOV-09 LEXINGTON AVE
3 03-MAR-99 10-0CT-08 JEFFERSON ST
4 04-APR-04 04-MAY-10 DCCF
6 02-FEB-02 03-MAR-03 CECILAVE ST
7 10-OCT-90 12-DEC-02 CITY HALL
8 11-NOV-01
9 06-JUN-96 02-FEB-07
10 09-SEP-99 09-SEP-09
5 05-MAY-05 01-JAN-09 WWTP
ER_WORKS_FOR
CS342 SQL> DESC ER_WORKS_FOR;
Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(4)
DEPARTMENT_ID NOT NULL NUMBER(4)
START_DATE NOT NULL DATE
END_DATE DATE

CS342 SQL> SELECT * FROM ER_WORKS_FOR;

28



EMPLOYEE_ID DEPARTMENT_ID START_DATE END_DATE
1 5 01-JAN-01 11-NOV-09
2 4 02-FEB-02
5 3 03-MAR-03
4 1 04-APR-04
3 2 05-MAY-05
7 4 06-JUN-06
6 3 07-JUL-07
8 1 08-AUG-08
9 2 09-SEP-09
10 5 10-0OCT-10
ER_WORKS_ON
CS342 SQL> DESC ER_WORKS_ON;
Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(4)
SERVICE_ID NOT NULL NUMBER(4)
START_DATE NOT NULL DATE
END_DATE DATE
CS342 SQL> SELECT * FROM ER_WORKS_ON;
EMPLOYEE_ID  SERVICE_ID START_DATE END_DATE
6 1 02-JAN-10 02-JAN-10
6 04-APR-10 04-APR-10
6 10 16-MAY-10 16-MAY-10
6 3 02-FEB-10 02-FEB-10
6 13 10-AUG-10
7 2 11-JAN-10 11-JAN-10
7 4 13-FEB-10 13-FEB-10
7 14-APR-10 14-APR-10
7 11 08-JUN-10 10-JUN-10
7 12 10-JUL-10
8 5 03-MAR-10 03-MAR-10
6 6 13-MAR-10 13-MAR-10
6 9 07-MAY-10 09-MAY-10
ER_IS_A
CS342 SQL> DESC ER_IS_A;
Name Null? Type
ASSET_ID NOT NULL NUMBER(4)
TYPE_ID NOT NULL NUMBER(4)

CS342 SQL> SELECT * FROM ER_IS_A;

ASSET_ID TYPE_ID

29



ER_HAS_A

CS342 SQL> DESC ER_HAS_A
Name Null? Type

SERVICE_ID NOT NULL NUMBER(4)
ASSET_ID NOT NULL NUMBER(4)

CS342 SQL> SELECT * FROM ER_HAS_A;

SERVICE_ID ASSET_ID

P OOONWNDP_O®

N
HOKDOO\ICDU'IBWND—‘
=
o

Jany
N
N W U o

[y
w

ER_SUBMITS_A

CS342 SQL> DESC ER_SUBMITS_A
Name Null? Type

EMPLOYEE_ID NOT NULL NUMBER(4)
SERVICE_ID NOT NULL NUMBER(4)

CS342 SQL> SELECT * FROM ER_SUBMITS_A;

EMPLOYEE_ID  SERVICE_ID

WNEREDWNPRE
NO U WN R

30



10
11
12
13

Uu b WN R B

ER_POSSESSES

CS342 SQL> DESC ER_POSSESSES;

Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(4)
SKILL_ID NOT NULL NUMBER(4)
START_DATE NOT NULL DATE
END_DATE DATE

CS342 SQL> SELECT * FROM ER_POSSESSES;

EMPLOYEE_ID  SKILL_ID START_DATE END_DATE

1 08-AUG-08

2 07-JUL-07

3 08-AUG-08

4 09-SEP-09

5 10-0CT-10

2 02-FEB-02 10-0CT-09

SQL Queries
Select all technicians who worked on service requests.

SELECT T.EMPLOYEE_ID
FROM ER_TECHNICIAN T
WHERE EXISTS(SELECT * FROM ER_WORKS_ON W WHERE W.EMPLOYEE_ID = T.EMPLOYEE_ID);

EMPLOYEE_ID

Select all technicians who have more than 2 service requests.

SELECT P.*

FROM ER_POSSESSES P

WHERE EXISTS(SELECT EMPLOYEE_ID, COUNT(*)
FROM ER_WORKS_ON W
WHERE P.EMPLOYEE_ID = W.EMPLOYEE_ID
HAVING COUNT(*) > 1);

31



EMPLOYEE_ID SKILL_ID START_DATE END_DATE

6 1 08-AUG-08
7 2 07-JUL-07

Select All employees who have submitted a service request.

SELECT E.EMPLOYEE_ID

FROM ER_EMPLOYEE E

WHERE EXISTS (SELECT * FROM ER_SUBMITS_A'S
WHERE S.EMPLOYEE_ID = E.EMPLOYEE_ID);

EMPLOYEE_ID

Show what skills all technicians have

SELECT P.SKILL_ID, P.EMPLOYEE_ID
FROM ER_POSSESSES P;

SKILL_ID EMPLOYEE_ID

Show Employees with no skills

SELECT E.F_NAME, E.L_NAME
FROM ER_EMPLOYEE E
WHERE NOT EXISTS(SELECT * FROM ER_POSSESSES P WHERE P.EMPLOYEE_ID = E.EMPLOYEE_ID);

F_NAME L_NAME
Billy Armstrong
Dave Navarro

Theodore Chipmunk
Alvin Chipmunk
Simon Chipmunk

Show all open service requests

SELECT S.SERVICE_ID, S.START_DATE, S.END_DATE

32



FROM ER_SERVICE_REQUEST S
WHERE END_DATE IS NULL;

SERVICE_ID START_DATE END_DATE
12 07-JUL-10
13 08-AUG-10

Which employees have open service requests?

SELECT UNIQUE SA.EMPLOYEE_ID
FROM ER_SUBMITS_A SA INNER JOIN ER_SERVICE_REQUEST SR ON (SA.SERVICE_ID = SR.SERVICE_ID)
WHERE SR.END_DATE IS NULL;

EMPLOYEE_ID

What types of assets has service requests?

SELECT A.* FROM ER_A_TYPE A
WHERE EXISTS(SELECT UNIQUE IA.TYPE_ID
FROM ER_HAS_A HA INNER JOIN ER_IS_A IA ON(HA.ASSET_ID = IA.ASSET_ID));

TYPE_ID A_TYPE DESCRIPTION
1 Water Valve Copper
2 Water Line PVC
3 Sewer Valve Copper
4 Sewer Line PVC
5 Generator Gas Power
6 Fire Hydrant Cast Iron

Show Former Employees

SELECT WF.EMPLOYEE_ID

FROM ER_WORKS_FOR WF INNER JOIN ER_DEPARTMENT D ON(WF.DEPARTMENT_ID =
D.DEPARTMENT_ID)

WHERE NOT WF.END_DATE IS NULL;

EMPLOYEE_ID

33



Show Departments with more than 1 Employee

SELECT D.*

FROM ER_DEPARTMENT D

WHERE EXISTS(SELECT EMPLOYEE_ID, COUNT(*) FROM ER_WORKS_FOR WF
WHERE WF.DEPARTMENT_ID = D.DEPARTMENT_ID

HAVING COUNT(*) > 1);

DEPARTMENT_ID DEPARTMENT_NAME LOCATION
1 ENGINEERING CITY HALL
2 PLANNING COMMUNITY DEVELOPMENT

34



3 WATER PRODUCTION CORPORATION YARD

4 SEWER WASTE WATER TREATMENT PLANT

5 STREETS CORPORATION YARD

V. Stored Subprograms, Packages and Triggers

a.

Common Features in Oracle PL/SQL and Microsoft Transact-SQL

Oracle PL/SQL and Microsoft’s Transaction has evolved overtime to complement the needs of
developers. Through the use of standardization the two languages have a comparable set of tools for
use by developers. Both languages support basic commands to create tables, constraints, and
functions. The also support commands such as cursors, stored procedures, triggers, and packages.
The primary differences are in the syntax used to create and maintain these objects in the database.

Stored subprograms, or stored procedures, are supported in both PL/SQL and T-SQL and are used for
tasks that can be run repeatedly and quickly by specific users. Tasks can typically consist of inserting,
deleting, or updating records in the database. By only allowing the users to interface with the
subprograms sensitive information can be protected.

Oracle PL/SQL

Most PL/SQL sub programs follow a similar syntax for declaration. Code statements are organized
into blocks and there are three main sections of a block:

. Declaration: Declaration of variables, cursors, and user-defined exceptions are made here.

e  Execution: This portion consists of the SQL statements that perform the task’s job.

e  Exception: This section catches any exceptions, either system or user-defined, raised during
execution of the task.

Layout:

DECLARE

variable_name variable_type :=value | DEFAULT
BEGIN

SELECT | INSERT | UPDATE | DELETE
END;

Variable types:

Oracle PL/SQL support standard types such as numbers, floating points, character arrays, dates, and
unique IDs.

Cursors:

35



They are user-defined SQL statements that allow traversal of a table using a loop structure. They are
defined with the following syntax.

DECLARE

CURSOR cursor_name [parameters]

IS select_statement;
After creation, a cursor can be used in the following format:
BEGIN

FOR t in cursor_name LOOP

Perform tasks

END LOOP;

END;

Control statements

These are used to manage the logic of a PL/SQL subprogram. With all procedural languages the
location of each statement can cause unexpected results. The following are example control
statements:

IF condition THEN statement;

ELSEIF condition THEN statement;

END IF;

LooP
EXIT WHEN can be used to quit this loop

END LOOP;

FOR I IN lowerbound .. upperbound LOOP
statement

END LOOP;

FOR cursor_variable IN cursor_name LOOP
statement

END LOOP;

Exception Handling

In PL/SQL users can also catch and raise exceptions. The syntax to raise and handle exceptions is as
follows:

DECLARE
User_defined_exception EXCEPTION;
BEGIN
IF condition THEN RAISE User_defined_exception;
END IF;
EXCEPTION
WHEN Exception_name THEN statement;
END;

Stored procedures

Each Stored procedures can perform complex tasks on the database while maintaining abstraction.
The structure of a stored procedure depends on the type of work it will be performing.

CREATE [OR REPLACE] PROCEDURE procedure_name
[ (variablename IN|OUT variabletype)]
AS
(DECLARE variables go here)
BEGIN
SQL statements

36



END;

Stored functions

Stored functions are very similar to stored functions with the exception that they return a value. The
following is the syntax for a stored function.

CREATE [OR REPLACE] FUNCTION function_name
[ (variablename IN|JOUT variabletype)]
RETURN datatype;
AS
(DECLARE variables go here)
BEGIN
SQL statements;
RETURN variable;
END;

Packages

Packages are a collection of stored procedures and stored functions.

CREATE PACKAGE package_name AS
PROCEDURE names..;
FUNCTION names...;

END package_name;

CREATE PACKAGE BODY package_name AS
PROCEDURE name IS...

BEGIN
Statements
END;
FUNCTION name RETURN DATATYPE IS...
BEGIN
Statements
RETURN variable
END;

END package_name;

Triggers

Triggers allow for the easy collection of records, logs, and audits. Triggers are executed when a
specific condition is met. These typically include UPDATE, DELETE, and INSERT. Once the triggers are
created they will automatically perform. There is no need to maintain or check data before or after
the operations.

CREATE [OR REPLACE] TRIGGER trigger_name
BEFORE|AFTER INSERT| DELETE | UPDATE OF COL [column_name] [OR DELETE|UPDATE | INSERT]
ON table_name
DECLARE
variables

BEGIN

FOR EACH ROW

[WHEN CONDITION]

Statements;
END;

37



c. Oracle PL/SQL Subprograms

| have create several subprograms for this database project. Included are 2 Stored Procedures, 4
Functions, and 1 trigger.

Stored Procedures

ER_SP_INSERT_EMPLOYEE

CREATE OR REPLACE PROCEDURE er_sp_insert_employee
(

emplD IN NUMBER,
fName | N VARCHAR2,
DOB IN DATE,
oPhone IN VARCHAR2,
cPhone IN VARCHAR?2,
eMAIL IN VARCHAR?2,
deptID IN NUMBER,
sDate IN DATE,
eDATE IN DATE
)
AS
BEGIN
INSERT INTO er_employee
VALUES
(
emplD,
fName,
DOB,
oPhone,
cPhone,
eMAIL

);
INSERT INTO er_works_for
VALUES
(
emplD,
deptID,
sDate,
eDate
);
EXCEPTION
WHEN OTHERS THEN
ROLLBACK;
raise_application_error( -40001, 'An error occurred in ' || SQLCODE ||
"-ERROR-' | | SQLERRM );
END er_sp_insert_employee;

/

ER_SP_INSERT_SERVICE_REQUEST

CREATE OR REPLACE PROCEDURE er_sp_insert_service_request
(

serviD IN NUMBER,
emplD IN NUMBER,
assetlD IN NUMBER,
sDate IN DATE,
eDate IN DATE,

38



descn IN VARCHAR2
)

AS
BEGIN
INSERT INTO er_service_request
VALUES
(
serviD,
sDate,
eDate,
descn

);
INSERT INTO er_submits_a
(

emplD,

serviD

);
INSERT INTO er_has_a
(

serviD,

assetlD

)i
EXCEPTION
WHEN OTHERS THEN
ROLLBACK;
raise_application_error( -40001, 'An error occurred in ' || SQLCODE ||
"-ERROR-' | | SQLERRM );
END er_sp_insert_service_request;

/

FUNCTIONS
ER_FUN_GETSKILLS

This function returns the number of skills an employee has.

create or replace function er_fun_getskills(empID IN number)
return number
is numSkills number(10);
begin
select count(*)
into numskills
from er_technician
where er_technician.employee_id = emplID;
return(numSkills);
end;

/

ER_FUN_GETEMPLOYEES

This function returns the number of employees a department has.

create or replace function er_fun_getemployees(deptID IN number)
return number
is numEmployees number(10);
begin
select count(*)
into numEmployees
from er_works_for

39



where er_works_for.department_id = deptID;
return(numEmployees);
end;

/

ER_FUN_GETASSETS

This function returns the number of assets of a specific type

create or replace function er_fun_getassets(typelD IN number)
return number
is numAssets number(10);
begin
select count(*)
into numAssets
fromer_is_a
where er_is_a.type_id = typelD;
return(numAssets);
end;

/

ER_FUN_GETSKILLAVG

This function returns the average skills each technician has in a department

CREATE OR REPLACE FUNCTION er_fun_getskillavg(deptID IN NUMBER)
RETURN NUMBER
IS
avgskills NUMBER(10) := 0;
no_skills NUMBER(10) := 0;
no_employees NUMBER(10) := 0;
CURSOR employees IS
SELECT employee_ID, department_ID FROM er_works_for ORDER BY department_id;
BEGIN
avgskills := 0;
no_skills := 0;
no_employees := er_fun_getemployees(deptID);
FOR e IN employees LOOP
IF e.department_id = deptID THEN no_skills := no_skills + er_fun_getskills(e.employee_ID);
END IF;
END LOOP;
avgskills := trunc(no_skills/no_employees, 3);
RETURN(avgskills);
END;
/

TRIGGERS
This trigger tracks updates made to ER_SERVICE_REQUEST
ER_TR_UPDATE_SERVICE_REQUEST

CREATE OR REPLACE TRIGGER er_tr_update_service_request

40



V.

BEFORE UPDATE
ON er_service_request
FOR EACH ROW
BEGIN
INSERT INTO er_sr_logtable
VALUES(:old.service_id, :old.end_date);
END;
/

Graphical User Interface Design and Implementation

a.

Daily Activities
This application will service many positions within the organization.
i. Administrative Staff
Administrative Users will be able to submit service requests for and generate reports. They will
be able to view Assets by Type, View Employees, and Submitted Service Requests.

ii. Technicians
Technicians can add/update the service requests, view all service requests, and view their
certifications.

iii. Managers
The Management Team can add/delete all items in the database. These items include
employees, assets, and service requests. They can keep track of their technicians certifications.

Relations, Views and Subprograms

In order to meet the needs and requirements this application will access most of the relations that
are built into the database. Each of these relations will have a corresponding Table Adapter to
facilitate data access and manipulation.

i. RELATIONS
ER_A_TYPE
ER_ASSET
ER_DEPARTMENT
ER_HAS_A
ER_IS_A
ER_SERVICE_REQUEST
ER_SKILL
ER_SUBMITS_A
ER_TECHNICIAN
ER_WORKS_FOR
ER_WORKS_ON

ii. VIEWS
ER_VW_AST TYP
ER_VW_EMP_DEPT
ER_VW_SR_AST_TYP
ER_VW_TEC_SKL_DEPT
ER_VW_UP_EMP_DEPT

iii. SUBPROGRAMS
ER_SP_DELETE_TECHNICIAN
ER_SP_INSERT ASSET
ER_SP_INSERT_EMPLOYEE
ER_SP_INSERT_SERVICE_RECORD
ER_SP_UPDATE_EMPLOYEE
ER_SP_UPDATE_SERVICE_RECORD

These relations are used in the application to display the data in a meaningful way for the users. The
Views are used to combine relations together to represent information that is used to perform tasks

41



within the application. The tasks include viewing which skills a technicians possess by department.
The service requests submitted along with the assets and type.

Screen Shots

The applications interface is organized using a menu strip. The menu consists of options for File,
View, User, Technician, Report and Help. An overview will be given of each of the menu options. The
Main Form is a Multiple Document Interface. Each of the Windows forms that are selected via the
menu options are child forms.

File View UserForm Technician Form Reports Help

File -> New

These options can be used to create new objects within the system. Several stored procedures are
used to insert data into the database. The stored procedures are a more efficient method to use for
repetitive tasks.

\ﬁew User Frrn Technician Form  Reports  Help
v || ServiceRequest |

Employee

Department
Asset

Type

Skill

o Of

Each of the options has a Windows Form to perform the tasks offered. The most complex forms
include SubmitRequest and Add Employee.

42



SubmitRequest

Contact Information Service Request Infomation
Enter Employee 1D Asset 1D Description Service ID
|
Entexed doscnon of e
[ selet | [ cear | [ submt | [ Cose
ASSET_ID A_TYPE DESCRIPTION LOCATION INSTALL_DATE  LAST_MAINTEM ~
» Generator Gas Power CORPORATION ... | 1/1/1981 12/12/2009 I
2 | Water Line PVC LEXINGTON AN... |2/2/1982 11/11/2009
3 [semertne _|PvC |sereRsonsT [vaniss  [1o0200s
4 | Sewer Valve Copper DCCF 4/4/2004 5/4/2010
5 ' Sewer Valve Copper WASTE WATER... | 5/5/2005 1/1/2009 bt
6 | Water Valve Copper CECIL AVE AND ... | 2/2/2002 3/3/2003
7 | Generator Gas Power CITY HALL 107101890 12/12/2002
8 | Water Valve Copper 111172001 -
« | [ ] »

This form is used to add a new Service Request. A user will need to enter their employee ID. They will
browse for the asset. This Data Grid View uses a view, ER_VW_AST TYP, in order to display they
required information. A user can enter their employee ID, browse for an asset, and provide a brief
description of the issue. If they make a mistake prior to submitting their request, then they can clear
all entered information to start the process over.

Once an asset is selected its information will be populated within the Service Request Information
Group Box.

File -> Update

To update an Employee or a Technician you can navigate to these forms. These options also used
stored procedures to update the necessary tables within the database.

File | View UserForm Technician Form Reports Help
New »

| Update » Employee

Exit ] Technician |

43



UpdateTechnician

a; Update Technician o[- &[]
Technician Start Date End Date
Sunday . November 28,2010 O~ Sunday . November 28,2010 [~
Department Name Skill ] Expires
Water Operator s Cerificat Number

FULL_NAME DEPARTMENT_M: SKILL_NAME | START_DATE | EXFIRAT'ON_DA'I. CERTIFICATE_M
» ENGINEERING | Maintenance Te... | 8/8/2008

Karen Lee Orzolek | PLANNING Data Entry 9/9/2009 /9/2011 HW1029 B

Karen Lee Orzolek | PLANNING Street Technician | 10/10/2010 EFG5678-CA

Scott Weiland SEWER Waste Water Op... | 7/7/2007

Lucas Skye STREETS Waste Water Op... | 2/2/2002 10/10/2009 abcd1234-ca -
4 m 3

This form can be used to add a skill to an existing Technician as well as modify any attribute
associated with their skills, including expiration dates and certification numbers. This form uses view
ER_TEC_SKL_DEPT in the Data Grid View to display the information provided. Here you can select the
technician that will be update. Once selected, a technicians information will populate some of the
text fields, then a new skill can be added by selecting the appropriate skills from the combo boxes.

The application also has forms to view data within the database. These forms use Data Grid Views to
either display data directly in the tables or use views to construct the necessary arrangement of data.

44



File | View | UserForm Technician Form Reports Help

Employees
Service Requests
Skills

Technicians

Types

Employee by Department
Technician by Department

ViewTechSkillDept

SKILLNAME  DEPARTMENT_N,
Maintenance Te... | ENGINEERING
Data Entry PLANNING
Street Technician | PLANNING
Waste Water Op... | SEWER
Waste Water Op... | STREETS
Water Operator | WATER PRODU...

This form uses a view ER_VW_TEC_SKL_DEPT to display technicians along with their skills and the
departments they work for.

User Form -> Submit Service Request

45



Eile | User Form | Technician Form  Reports  Help

| SubmitServiceRequest |

This option uses the same windows form as File -> New -> Service Request

Technician Form -> Service Request

File View UserForm | Technician Form | Reports  Help

| Service Request |

The Technician Forms menu is used to allow Technicians to access the information needed for them

to do their job.

ServiceRequest

Select a Technician to Service a Raquest
[ EMPLOYEEID  FULL NAME  DEPARTMENT_N, SKI | Technician Assigned  Close Date
» Tom Morelo ENGINEERING | Mair, Sundsy . Noverber 28. 2010
9 Karen Loe Orzolek | PLANNING Datel| Sevics RequestiD (1] Glose Reques
3 Karen Lee Orzolek | PLANNING Strex
7 Scoft Weland | SEWER Was
1  Lcas Sige STREETS Was -
« | g (] | »
—
Select 2 Service Request
[ SERVICEID __ START_DATE _ END_DATE DESCRIPTION __ ASSET_ID A_TYPE
» [ o0 1/2/2010 WATERLEAK |8 Water Vaive
2 11072010 11172010 SEWERLEAK & Sewer Valve
3 27272010 2272010 WATERLEAK 2 Water Line
4 2122010 21372010 SEWERLEAK |3 Sewer Line
5 3372010 3672010 MAINTENANCE |7 Generator
3 3132010 3142010 MAINTENANCE 9 Fire Hydrant

(SelectRequest | [ Cexr |

This form will be used to assign a technician to a service request as well as closing out the request.
The form uses two different Data Grid Views in conjunction with database views to display

meaningful information in order to facilitate the needed actions.

46




Description of Code

The design of the graphical user interface was started early in the development process. This was
done to ensure the application had an intuitive look and feel to it. The application uses a Multiple
Documents Interface which uses a parent form and several child forms. To navigate within the
application a series of menu items are used on a tool strip. Each option on the tool strip is meant to
represent a series of functions. These include creating new objects, viewing data, and working with
the data.

The application was written using in C# under Visual Studio 2010. This is Microsoft’s latest release of
its popular Integrated Development Environment. In order to connect to the Oracle Database on
Helios, | installed Oracle’s development tools for Visual Studio, Oracle Data Access Components with
Oracle Developer Tools for Visual Studio 11.2.0.1.2. These tools allowed a seamless integration of
Oracle data components into the Visual Studio IDE.

In order to connect to the database a connection string is used. The connection string consists of
many parameters such as the hostname, port number, and username/password. The connection
string allows the application to gain access to the appropriate resources on the host.

A dataset was created to access the data components with in the database.

ER_DATASET

ER_DATASETxsd ¢ [IEEERSEETE

E, ERSUBMITS A
! EMPLOVEE_ID EMPLOVEE ID T SERVICEID
FULL_ NAME SERVICEID o START_DATE INSTALL_DATE
BIRTH_DATE 'R ER_SUBMITS_ATableAdapter @ END_DATE LAST_MAINTENANCE
CFFICE_PHONE - . DESCRIPTION
CELL PHONE -

W Fill GetData ()

|

&

= Fill, GetData ) EMPLOYEE_ID
1 SERVICE_ID

START DATE . E
ASSET_ID
3 : : TYPEID
ot . R e An D

L. ERSKILL '

| EMPLOVEEID " skLLD i L. ERATYPE
T, ER WORKS FOR e SKILL_NAME ! TYPEID
= ¥ DESCRIPTION &_TYPE
EMPLOYEE_ID EXPIRATION_DATE - -
'@ ER SKiLLTableAdapter  [%] DESCRIPTION

DEPARTMENT_ID CERTFICATE_NUMBER Tl
START_DATE o Fill GetData '@ ER_A TYPETableAdapter
W Fil GetData )

END_DATE

= Fill GetData ()

-

ooy

NT
DEPARTMENT_ID
DEPARTMENT_NAME
LOCATION

_‘39 Fill GetData ()

= Fill Ge:Data ()

The dataset contains table adapters for each of the tables that are accessed by the application. Table
adapters provide needed functionality such as filling the data grid views.

The application consists of many different forms that accomplish specific tasks. These forms include:

47



AddEmployee
AddDepartment
AddAsset
AddType

Addskill

Main
ServiceRequest
ServiceRequestReport
SubmitRequest
Splash
UpdateEmployee
UpdateTechnician
ViewAssets
ViewDepartments
ViewEmpDept
ViewEmployees
ViewServiceRequests
ViewsSkills
ViewTechnician
ViewTechSkillDept
ViewTypes
AboutUs

| tried to use friendly names and describe the purpose of each form as it was developed. A general
overview will be given of the main forms.

Main
This is the parent MDI form. From it you can gain access to the menu tool strip and all child forms.

SubmitRequest

This child form is used to submit a service request. It is a friendly interface that users can navigate. It
consists of several command buttons that have event handlers that are used to make appropriate
calls to the database.

AddEmployee

This child form is used to add an employee to the database. It provides a friendly interface is used to
provide a one stop form for adding an employee. Combo drop box is used to house the departments
which an employee can be a part of. Most of the forms that are used to “Add” objects have the same
look and feel. This consistency is ideal for staff to learn how to operate the application.

ServiceRequest

This child form is used by technician and managers. It allows a technician to be assigned to a service
request. It also provides all service requests in a data grid view. A technician can browse the
submitted requests and view all data pertaining to the request.

UpdateEmployee

This child form is used to modify any attribute of an employee. These attributes include phone
numbers, e-mail address, and which department they work for. | tried to use the same general
layout of the Add forms for consistency and ease of use.

ViewTechSkillDept

This child form provides information on the technicians. It uses a data grid view to display the
technician along with their skills and which department they work for. Just as the Add forms all

48



provide similar functionality. | wanted all the “View” forms to display the data in a meaningful way. |
want to provide a friendly interface that allows users to gain access to the information they need.

Major Steps in Design and Implementation

| set out to develop a friendly interface to a robust database. The features incorporated into the
application are needed in the day to day operations of the department for which it was developed. |
chose to use an MDI application because | did not want to clutter the desktop of the users. | wanted
to provide an application that was intuitive and does not require a lot of technical knowhow. The
users of the application will be focused on performing specific tasks so | wanted to ensure that they
are provided all the functionality to complete each process within one interface.

Microsoft’s Visual Studio 2010 is a robust IDE with many features built into it. The IDE auto generates
code and has a feature called intelli-sense. This allows you to quickly find the appropriate handlers
and methods.

| started developing this application first by creating a basic structure for how the interface was going
to be presented. | initially did not concern myself with how it would function. Staying focused with
the layout and the look and feel of the application.

Once | was comfortable with the basic a layout of the application | connected it to the database using
the connection string. The first forms | created were the View forms. | wanted to ensure that the
application was communicating with the database in an appropriate manner.

After verifying that the data was being represented correctly | began working on AddEmployee form.
| used this form as template for the way the rest of the forms were going to be laid out. This is done
to ensure that all forms maintained a consistency the users would be comfortable with. This process
continued with each of the Add forms and with the Update Forms.

The SubmitRequest and ServiceRequest forms were created to provide two different aspects of a
service request. The SubmitRequest is used to simplify submitting a service request. | did not want
users to have to navigate several form to complete this task. The same thought went behind the
ServiceRequest form.

Conclusion

This project was conceived out of a need to automate the day to day operations in the Public Works
Department at the City of Delano. | had been approached by the Department Head to assist them
and develop an application that will allow their staff to keep track of their daily activities. This project
has served as a very powerful mile stone. | will now begin to migrate this application to Microsoft
SQL Server and integrate it with ESRI ArcServer. It is my hope that | can provide a rich internet
application that allows its users to work smarter.

49



