

Every Meal Delivery

A Database Systems Project

Hector Velasco

Computer Science 342: Database Systems
Prof. H. Wang

11.28.2010

Table of Contents

Phase I: Fact Finding, Information Gathering and
 Conceptual Database Design 6

Part 1: Fact- Finding Techniques and Information Gathering 7

 1.1 Description of Fact-Finding Techniques 7
 1.2 Techniques Used 8
 1.3 Introduction to the Enterprise/Organization 8
 1.4 Structure of the Enterprise/Organization 8
 1.5 Itemized Descriptions of Major Objects 8
 1.6 Data Views and Operations for User Groups 9

Part 2: Conceptual Database Design 10

 2.1 Entity Set Descriptions 10
 2.2 Relationship Set Descriptions 18
 2.3 Relationship Entity Sets 21
 2.4 The Entity Relationship Diagram 22

Phase II: From E-R (Conceptual) Model
 to Relational (Logical) Model 23

Part 1: The E-R Model and the Relational Model 24

 1.1 Descriptions of the Relational and Entity Relationship Models 24
 1.2 Comparison of the Two Different Models 24
 1.3 Conversion from E-R Model to Relational Model 25

Part 2: E-R Database to Relational Database Schema 28

 2.1 Entity Relations 28
 2.2 Relationship Relations 34

Part 3: Relation Instances 37

 3.1 Entity Relation Instances 37
 3.2 Relationship Relation Instances 42

Part 4: Non-trivial Queries in Relational Algebra,
 Tuple Relational, and Domain Relational Calculus Form 46

 4.1 Queries in Relational Algebra 46
 4.2 Queries in Tuple Relational Calculus 49
 4.3 Queries in Domain Relational Calculus 52

Phase III: Logical and Physical Database Creation
 With the Oracle DBMS 55

Part 1: The SQL*Plus Command Utility 56

Part 2: Schema Objects 56

 2.1 Table 56
 2.2 Views 57
 2.3 Indexes 57
 2.4 Procedures 57
 2.5 Functions 57
 2.6 Database Links 57
 2.7 Clusters 57
 2.8 Triggers 58
 2.9 Dimensions 58
 2.10 Sequences 58
 2.11 Synonyms 58

Part 3: Relation Schema 59

Part 4: Queries in SQL 83

Part 5: Loading Record Data to the DB 89

 5.1 Descriptions of Data Loading Methods 89
 5.2 The Java DataLoader Program 89
 5.3 The C# Record Loader Program 89

Phase IV: The Oracle DBMS PL/SQL Component 91

Part 1: Common Features in Oracle PL/SQL and MS Trans-SQL 92

 1.1 PL/SQL, and MS Transact-SQL Components 92
 1.2 Purpose, and Benefits of Stored Subprograms 92

Part 2: Oracle PL/SQL Programs 93

 2.1 PL/SQL Code Block Overview 93
 2.2 Stored Procedures 97
 2.3 Stored Functions 99
 2.4 Stored Packages 101
 2.5 Triggers 103

Part 3: Oracle PL/SQL Subprograms through Example 106

 3.1 Inserting Records with a Stored Procedure 106
 3.2 Deleting a Record with a Stored Procedure 106
 3.3 Returning the Average of the Specified Highest,
 or Lowest with a Stored Function 107
 3.4 A Data Manipulation Language Trigger 108

Phase V: Graphical User Interface Design
 and Implementation 109

Part 1: Daily Users, and Activities 110

 1.1 Dispatcher Role 110
 1.2 Delivery Driver Role 111
 1.3 Manager Role 111

Part 2: Relations, and Subprograms 112

 2.1 The Customer Entry Process 112
 2.2 The Order Setup Process 113

Part 3: Screenshots of the Application 116

 3.1 Application Style and Main Menu 116
 3.2 The New Customer Forms 119
 3.3 The Order Setup Forms 125

Part 4: Describing the Code 133

 4.1 Major Step in Designing a User Interface 133
 4.2 Major Class Descriptions 133
 4.3 Major Features of the GUI 140
 4.4 Learning New Tools 140

Part 5: Application Design and Implementation 141

Conclusion 143

Phase I

Fact-Finding
Information Gathering

and
Conceptual Database Design

Part 1: Fact- Finding Techniques and Information Gathering 7

Part 2: Conceptual Database Design 10

Phase I Part 1 | Page 7

Part 1: Fact-Finding Techniques, and
Information Gathering

1.1 Description of Fact-Finding Techniques

Fact-finding techniques include but are not limited to five common methods. These
methods include:

• Examining documentation of the business model being studied.
- Businesses commonly carry with them many forms of documentation

including forms, reports, and various other files. This information is invaluable
to anyone researching the current business structure.

• Interviewing people who run the business.
- Gathering information from people who work within the business first-

hand is also extremely helpful. An individual’s perspective on how the job
runs may give clues on how to better organize the database to suit the business’s
needs.

• Observing the Enterprise in Operation through objective analysis.

- Either personally participating, or watching from a third hand
perspective, may help in developing a model translated from real time activity
within the business. Be aware, however, the observer’s presence may affect
how business is regularly run.

• Research the application and problem.

- Good research may enable one insight on how others have solved similar
problems. As a source for reference it may be good to look up information
found inside computer trade journals, reference books, and the Internet.

• Questionnaires through use of surveys can also be made.

 - Questions can be asked of target audiences. Through responds to
questions made one can assess the needs of the organization. There are two
forms of Questionnaires: Free-format, and Fixed-format. Free-format allows
the users more options in responding to questions posed, where as fixed-format
offers an initial set number of available choices as answers.

Phase I Part 1 | Page 8

1.2 Techniques Used

The business model being used is devised from scratch. Many of the techniques used
deal mostly with research, though there are similar models already available. The
business model for this database is not completely unheard of. Even though there are
other businesses that offer similar services, this one is much more unique in scope. In the
future however, if a more representative example of a real-world model applies, then any
and all of the already mentioned fact-finding methods may apply.

1.3 Introduction to the Enterprise/Organization

Every Meal is a food delivery business able to be operated from any location near fast
food restaurant locations. After customers register with the possibility of premium
membership status, they can choose to order from an online menu listing items from
many popular food dining locations such as Taco Bell, McDonald’s, Starbucks, Panda
Express, and other similar venues. After completing an order from a combination of any
of the available restaurants, the customer’s order is then delivered to any location of
choice. Customers who pay for a premium membership qualify for cheaper delivery
rates.

1.4 Structure of the Enterprise/Organization

For this business model employees handle all customer orders, and deliveries.
Employees are dispatchers, and delivery drivers. Though there is a manager supervising
everything that goes on, she/he can assume either the role of dispatcher or delivery driver
at any moment. The role of dispatcher will involve not only setting up the customer’s
order, but also selling the customer a premium membership offering cheaper delivery
costs should the customer like to purchase one. After a dispatcher enters the order, and
assigns it to a driver, a driver goes to all required food locations, purchases the requested
customer items, and delivers the completed order to the any one of the customer’s
addresses. At any moment the driver will also carry along a mobile device to keep
him/herself updated on orders that need to be completed.

1.5 Itemized Descriptions of Major Objects

At any time, depending on the schedule, any employee can be either a driver or a
dispatcher, but never both at the same time. If an employee works as a driver, the
delivery mileage for the employee will be noted, but should an employee work as a
dispatcher, he/she will serve to take incoming orders.

Customers who call in will be registered into the system by the dispatcher if the customer
is new, or wanting to apply for a premium membership. The date, membership status,
and price of premium membership status are saved as a registration relation between the
customers, and dispatchers. All customer objects will have not only full customer name

Phase I Part 1 | Page 9

information, but also current membership status. Because the customer may have
multiple addresses, all addresses for customer objects will also be saved.

Every order will be placed by a customer, entered into the system by a dispatcher, and
delivered by a driver. Each order will contain a date, delivery status (complete, or in
progress), a delivery fee, customer delivery destination, and customer member status.
Delivery drivers will also have a relation log not only for the time in which they receive
the order, but in which they deliver the order as well.

Orders will include any number of items offered by franchises of popular restaurants.
This project will only involve the option of having orders with some items from
franchises of four popular restaurants (Carl’s Jr, Starbucks Coffee Company, Taco Bell,
and Panda Express), but it can be expanded to include any number of restaurant objects
having any number of franchise objects offering any number of item objects available for
inclusion in orders.

Restaurants will only carry a name, but they will have franchise objects with individual
address, phone, and easy reference location number. These franchise objects will offer
any number of items at different prices. Some item objects will even be lower group cost
combo items referring back to individual items.

1.6 Data Views and Operations for User Groups

Views available will differ for each person depending on the type of person category.
Employees, for example, will have two views available depending on the position: one
for a driver employee, and one for a dispatcher. Even though the manager can at any
time take the role of either driver or dispatcher, he/she will also have access to full
statistical views on every employee, customer, item purchases, etc. The manager will
also be able to add, or edit the menu items list, and the restaurants from which they come.
Customers will only have access to view available items for order from a web page menu.

Drivers will be able to view a personal listing of all orders delivered, and orders yet to be
delivered with statistics on how many miles were run for any day. They’ll also be able
mark off orders as they’re completed.

Dispatcher view will deal mainly with order setup. It will allow dispatchers to enter new
customers and customer orders with customer locations, to assign orders to drivers, and
to designate to drivers from which franchises the items are to be bought. Each dispatcher
will have access to a personal account view of every customer order he/she has ever
entered into the system.

Phase I Part 2 | Page 10

Part 2: Conceptual Database Design
Conceptual Modeling

Conceptual modeling is the next step in the database construction process. In this step we
formulate what is known as the conceptual data model, which is independent of all
implementation details of the final database. In later sections there will be more physical
considerations in implementing the project. An entity relationship, or ER model, will also be
panned out. The ER model is a non-technical graphical representation of the database
without any ambiguities.

2.1 Entity Set Descriptions

Entity: Employee
 Description:

The employee entity is used as a generalized superclass for two employee
subcategories: driver, and dispatcher. All employees, including the manager, can
be objects of this class of entity. Only the employee’s full name, setup as a
composite attribute necessary for basic identification purposes, is included in this
entity.

 Candidate Keys: EmployeeID
 Primary Key: EmployeeID
 Strong/Weak Entity: Strong
 Fields to be indexed: EmployeeID

Attributes and Details
Name EmployeeID Name eFirst eMidInitial eLast

Description Employee ID
number

Employee
name

Employee’s
first name

Employee's
middle initial

Employee's last
name

Domain/Type Unsigned
Integer String String String String

Value Range 0 … 232 Any Any A…Z Any
Default
Value None None None None None

Nullable? No No No Yes No
Unique? Yes No No No No
Single or
multiple
value

Single Single Single Single Single

Simple or
composite Simple Composite Simple Simple Simple

Phase I Part 2 | Page 11

Entity: MileageLog
 Description:

The MileageLog entity is a mileage log for delivery drivers. Its primary function
is to hold the start, and end driving times as well as the start, and end car mileage
for the sake of calculating the miles covered by a driver during the day.

 Candidate Keys: SDate
 Primary Key: SDate
 Strong/Weak Entity: Weak
 Fields to be indexed: SDate

Attributes and Details
Name SDate EDate StartMileage EndMileage

Description Driving start date,
and time

Driving end date,
and time

Car mileage at
start of day

Car mileage at
end of day

Domain/Type TIMESTAMP TIMESTAMP Unsigned Integer Unsigned Integer
Value Range Date/Time Date/Time 0 … 232 0 … 232
Default Value None None None None
Nullable? No Yes No Yes
Unique? Yes Yes No No
Single or
multiple
value

Single Single Single Single

Simple or
composite Simple Simple Simple Simple

Entity: LogTable
 Description:
 This is a log that keeps track of when customer information is either updated, or

deleted.
 Candidate Keys: LogID
 Primary Key: LogID
 Strong/Weak Entity: Weak
 Fields to be indexed: LogID

Attributes and Details
Name ItemID OldVal NewVal
Description Log ID number Old Customer Record New Customer Record
Domain/Type Unsigned Integer String String
Value Range 0 … 232 Any Any
Default Value None None None
Nullable? No No Yes
Unique? Yes No No
Single or multiple
value Single Single Single

Simple or
composite Simple Composite Composite

Phase I Part 2 | Page 12

Entity: Customer
 Description:

The entity Customer holds all basic customer information as well as the
customer’s current membership status. The customer’s full name is setup as a
composite attribute necessary for basic identification purposes.

 Candidate Keys: CustomerID
 Primary Key: CustomerID
 Strong/Weak Entity: Strong
 Fields to be indexed: CustomerID

Attributes and Details
Name CustomerID Name cFirst cMidInitial cLast Phone MemberStatus

Description Customer ID
number

Custom
er name

Customer
first name

Customer
middle initial

Customer
last name Phone number Premium Status

Flag

Domain/Type Unsigned
Integer String String String String Unsigned

Integer
Unsigned
Integer

Value Range 0 … 232 Any Any A…Z Any 0 to
9999999999 0, 1, or 2

Default Value None None None None None None 0
Nullable? No No No Yes No No No
Unique? Yes No No No No No No
Single or
multiple
value

Single Single Single Single Single Single Single

Simple or
composite Simple Compos

ite Simple Simple Simple Simple Single

Phase I Part 2 | Page 13

Entity: CstmrAddress
 Description:

The CstmrAddress entity is a customer address book. It serves as a way of
allowing the customer to have more than one address to which orders can be
delivered. With it a customer can have any number of addresses.

 Candidate Keys: AddressID
 Primary Key: AddressID
 Strong/Weak Entity: Weak
 Fields to be indexed: AddressID

Attributes and Details
Name AddressID Street Apt City Zip

Description Address ID
number

Number with
/street name

Apartment
number City name Zip code

Domain/Type Unsigned
Integer String String String Unsigned

Integer
Value Range 0 … 232 Any Any A…Z 0 - 99999
Default
Value None None None None None

Nullable? No No Yes No No
Unique? Yes No No No No
Single or
multiple
value

Single Single Single Single Single

Simple or
composite Simple Simple Simple Simple Simple

Phase I Part 2 | Page 14

Entity: Order
 Description:

The order entity holds the basic information important for each order. Each order
contains:

o The date on which the dispatcher entered the order
o The current status of the order showing if the order’s been delivered, or if

it’s still to be delivered
o The delivery charge (not counting the cost of items ordered)
o The destination address referenced from the customer’s address book
o A copy of the customer’s membership status at the time of the order

 Candidate Keys: OrderNumber
 Primary Key: OrderNumber
 Strong/Weak Entity: Weak
 Fields to be indexed: OrderNumber

Attributes and Details
Name OrderNumber oDate OrderStatus DeliveryCharge Destination oMemberStatus

Description Order ID
number

Order entry
date

Order’s
current status Delivery cost Customer

Address
Membership
status log

Domain/
Type

Unsigned
Integer TIMESTAMP Integer Float Unsigned

Integer Boolean

Value
Range 0 … 232 Date/Time 0-2 > 0.00 0 … 232 0 or 1

Default
Value None None 0 None None 0

Nullable? No No No Yes No No
Unique? Yes No No No No No
Single or
multiple
value

Single Single Single Single Single Single

Simple or
composite Simple Simple Simple Simple Simple Single

Phase I Part 2 | Page 15

Entity: Restaurant
 Description:

Restaurant is an entity name holder for a general restaurant name, be it the name
of a corporate chain of franchises, or a single name for a restaurant belonging to a
single owner. It’s a weak entity, because it requires at least one franchise entity
object to exist.

 Candidate Keys: RstID
 Primary Key: RstID
 Strong/Weak Entity: Weak
 Fields to be indexed: RstID

Attributes and Details
Name RstID rName
Description Restaurant ID

Number Restaurant Name

Domain/Type Unsigned Integer String
Value Range 0 … 232 Any
Default Value None None
Nullable? No No
Unique? Yes No
Single or multiple value Single Single
Simple or composite Simple Simple

Phase I Part 2 | Page 16

Entity: Franchise
 Description:

Franchise is an entity that denotes a single location of a restaurant chain. It
contains a simple numbered reference location tag to quickly denote the restaurant
location within that specific restaurant chain (ex. Numbers 1 through 5 for the five
Taco Bells in the area). Address, and phone number for the franchise location is
also contained in this entity.

 Candidate Keys: FID
 Primary Key: FID
 Strong/Weak Entity: Weak
 Fields to be indexed: FID

Attributes and Details
Name FID Address fStreet fCity fZip fPhone

Description Franchise
ID number

Franchise
address

Number with
/street name City name Zip code Phone

number

Domain/Type Unsigned
Integer String String String Unsigned

Integer
Unsigned
Integer

Value Range 0 … 232 Any Any A…Z 0 - 99999 0 to
9999999999

Default Value None None None None None None
Nullable? No No No No No No
Unique? Yes Yes No No No No
Single or
multiple value Single Single Single Single Single Single

Simple or
composite Simple Composite Simple Simple Simple Simple

Phase I Part 2 | Page 17

Entity: Item
 Description:
 Items which can be ordered are contained within the Item entity class. This class

contains the name of the item, and the item’s price.
 Candidate Keys: ItemID
 Primary Key: ItemID
 Strong/Weak Entity: Weak
 Fields to be indexed: ItemID

Attributes and Details
Name ItemID iName Price
Description Item ID number Item Name Item price
Domain/Type Unsigned Integer String Float
Value Range 0 … 232 Any > 0.00
Default Value None None None
Nullable? No No Yes
Unique? Yes No No
Single or
multiple value Single Single Single

Simple or
composite Simple Simple Simple

Entity: Combo
 Description:
 Combo items are types of Items composed of other items. This class contains no

descriptive attributes.
 Candidate Keys: Combo_ID
 Primary Key: Combo_ID
 Strong/Weak Entity: Weak
 Fields to be indexed: Combo_ID

Attributes and Details
Name Combo_ID
Description Combo ID number
Domain/Type Unsigned Integer
Value Range 0 … 232
Default Value None
Nullable? No
Unique? Yes
Single or
multiple value Single

Simple or
composite Simple

Phase I Part 2 | Page 18

2.2 Relationship Set Descriptions

Relationship: Registers
 Description:
 Registers is the relationship between the dispatcher, and customer entity types.

It’s a binary relationship noting that each dispatcher employee can register one or
more customers, and that each customer deals with multiple dispatchers with
member status changes made over time. It has two descriptive fields: Date and
SellMembership. The registration date, or member status update date is saved in
the Date field. SellMembership is an indicator for whether the customer chose to
pay for a premium membership upon first entry into the system or update to
his/her account.

 Entity Sets Involved: Employee, and Customer
 Mapping Cardinality: Many to Many
 Participation Constraint: Optional

Descriptive Fields
Name rDate SellMembership
Description Registration date Membership sale status
Domain/Type TIMESTAMP Integer
Value Range Date/Time 0-2
Default Value None 0
Nullable? No No
Unique? No No
Single or
multiple value Single Single

Simple or
composite Simple Simple

Relationship: Logs
 Description:
 Logs is the relationship between the customer, or more specifically the customer’s

information, and the log tracker keeping track of what changes are made to a
Customer’s records.

 Entity Sets Involved: LogTable, and Customer
 Mapping Cardinality: Many to One
 Participation Constraint: Optional

No Descriptive Fields

Phase I Part 2 | Page 19

Relationship: Places
 Description:
 Places is a binary relationship between the customer, and the order made. It

denotes the fact that any one customer can place any number of orders.
 Entity Sets Involved: Customer, and Order
 Mapping Cardinality: One to Many
 Participation Constraint: Mandatory

No Descriptive Fields

Relationship: Enters
 Description:
 Enters is a binary relationship between the dispatcher employee, and the order

setup. One dispatcher can setup any number of orders.
 Entity Sets Involved: Employee, and Order
 Mapping Cardinality: One to Many
 Participation Constraint: Mandatory

No Descriptive Fields

Relationship: Delivers
 Description:
 Delivers is the binary relationship between a delivery driver, and the order being

delivered. At any time one driver may deliver any number of orders. The
relationship has two time-based descriptive fields. DOReceiptTime is the time
the driver receives the order, and DeliveryTime is the time the driver delivers the
order.

 Entity Sets Involved: Employee, and Order
 Mapping Cardinality: One to Many
 Participation Constraint: Optional

Descriptive Fields
Name DOReceiptTime DeliveryTime

Description Driver order
receive time

Driver order
delivery time

Domain/Type TIMESTAMP TIMESTAMP
Value Range Date/Time Date/Time
Default Value None None
Nullable? No Yes
Unique? No No
Single or
multiple value Single Single

Simple or
composite Simple Simple

Phase I Part 2 | Page 20

Relationship: Includes
 Description:
 Includes is a ternary relation between entities Franchise, either of 2 potential

kinds of the same Item entity, and Order. Included combo items contain at least
two other items, so they are included differently. Sometimes a customer order
may only involve purchasing a premium membership item instead of food. This
relation also includes two descriptive fields: Quantity and Price for when an order
does involve food items. The number of a certain kind of item purchased is saved
in the Quantity field, and a copy of the individual item price at the time the order
was made is saved in the Price field.

 Entity Sets Involved: Item, Franchise and Order
 Mapping Cardinality: Many to Many
 Participation Constraint: Optional

Descriptive Fields
Name Quantity oPrice

Description Number of items
of a single type

Item price at
order time

Domain/Type Unsigned Integer Float
Value Range 0 … 232 > 0.00
Default Value None None
Nullable? No Yes
Unique? No No
Single or
multiple value Single Single

Simple or
composite Simple Simple

Relationship: Contains
 Description:
 Contains is the many to many (2 or more) relationship between a combo item, and

at least two or more subitems composing the combo.
 Entity Sets Involved: Combo, Item
 Mapping Cardinality: Many to Many
 Participation Constraint: Optional

No Descriptive Fields

Relationship: Offers
 Description:
 Offers is a binary relationship between a franchise, and the items available for

sale at the franchise.
 Entity Sets Involved: Franchise, and Item
 Mapping Cardinality: Many to Many
 Participation Constraint: Mandatory

No Descriptive Fields

Phase I Part 2 | Page 21

2.3 Relationship Entity Sets

Aggregation Relationships

Relationship: Customer has CstmrAddress
 Entity Sets Involved: Customer and CstmrAddress
 Mapping Cardinality: One to Many
 Description:

This relation represents a customer having any number of addresses.

Relationship: Order has CstmrAddress
 Entity Sets Involved: Order and CstmrAddress
 Mapping Cardinality: Many to One
 Description:
 This relation represents a delivery destination location for any number of orders.

Relationship: Employee has MileageLog
 Entity Sets Involved: Employee and MileageLog
 Mapping Cardinality: One to Many
 Description:

This relation represents an employee driver having many daily mileage logs.

Relationship: Restaurant has Franchise
 Entity Sets Involved: Restaurant and Franchise
 Mapping Cardinality: One to Many
 Description:

This relation represents a restaurant company having any number of franchises.

Relationship: Includes has Combo
 Relationship\Entity Involved: Includes and Combo
 Mapping Cardinality: Zero to Many
 Description:

This relation represents combos being included in orders sometimes.

Phase I Part 2 | Page 22

2.4 The Entity-Relationship Diagram

Phase II

From E-R (Conceptual) Model
to

Relational (Logical) Model

Part 1: The E-R Model and the Relational Model 24

Part 2: E-R Database to Relational Database Schema 28

Part 3: Relation Instances 37

Part 4: Non-trivial Queries in Relational Algebra, Tuple Relational,
 and Domain Relational Calculus Form 46

Phase II Part 1 | Page 24

Part 1: The E-R Model, and
the Relational Model

1.1 Descriptions of the Relational and Entity Relationship Models

The relational model is a mathematical concept of a relation. In physical terms the
relational model is represented as a table. It was originally proposed by E.F. Codd in his
1970 seminal paper ‘A relational model of data for large shared data banks’. Although
set-oriented models had been presented previously, Codd’s model is principally also set
theory, and predicate logic. It allows a high degree of data independence, and provides
substantial grounds for dealing with data semantics, consistency, and redundancy
problems, which enables the expansion of set-oriented data manipulation languages.

At the time however, the relational model was insufficiently clear. To compensate, the
authoritative reference for the entity-relationship (E-R) model was presented in 1976 in
American computer scientist Dr. Peter Pin-Shan Chen’s paper titled “The Entity-
Relationship Model—Toward a Unified View of Data”, a now widely accepted technique
for database methodology. The E-R model presented in the paper is a non-technical top-
down visual approach to database modeling free of ambiguities. Important entity data is
identified and relationships between entities are clearly represented in the model.

1.2 Comparison of the Two Different Models

There are a few differences between the relational and E-R models. For one, the E-R
model is a graphic diagrammatic representation of the conceptual database, where as the
relational model is a textual representation which uses tables to represent its data. In the
E-R model entities are represented graphically, with attributes listed very clear for each
entity. Since the E-R model’s purpose is to remove all ambiguities, it is kept visual for
easy understanding. The E-R model uses a top-down approach for database design that
identifies entities, and relationships between data. Attribute information to hold about the
entities and relationships with any constraints on the entities, relationships, and attributes
is represented in the model. The benefit of having such a model is that it allows both the
designer and client to have an intuitive representation of the nature of the data, and how it
is used by the enterprise.

This is where the relational model differs. Relational database design extends from the
E-R model to the more detailed relational model. In the relational model, database
relations are represented as tables, with relation attributes represented as columns in the
tables. Each record in a relation is called a tuple, and each tuple is a row in the table of
the represented relation. The relational model may make each entity, and relation
between each entity into a table, and have the attributes for each clearly labeled within
the table. However, the relationships between any of these tables aren’t as clear to see as
they are in the E-R model.

Phase II Part 1 | Page 25

1.3 Conversion from E-R Model to Relational Model

To create a useful database the original conceptual database model must be converted to a
physical form which can used by a database management system so an application can be
made to use the data for whatever purpose an enterprise may have in store. To do this the
visual E-R model is translated to a relational model before being physically coded.
Generally, converting the E-R model to a relational model involves making each entity in
the E-R model a relational table with columns in the table representing each attribute of
the entity converted. However, there are various possible translation methods used
within this general technique to handle converting various entity types, and relations.

1.3.1

Entity Type, and Attribute Conversion Issues

Strong Entities
In strong entity types a relation is made composed of attributes with composite
attributes broken into simpler component attributes. This includes whatever
attributes are designated as primary key in the relation.

Weak Entities

Weak entity types also require making a relation composed of attributes with
composite attributes broken into simpler component attributes. However, one
attribute in the relation must refer to a primary key from another relation on which
the weak entity depends. This key is to be the foreign key attribute which also
serves as primary key for the relation, perhaps even combined with another partial
key attribute, if any.

Multi-valued Attributes

For multi-valued attributes in any entity types a new relation is made composed of
the attribute, or component attributes (in case of multi-valued composite
attributes) along with a foreign reference to the entity to which the multi-valued
attribute belongs. This foreign key attribute acts as primary key for the relation.

1.3.2

Relationship Conversion Issues

The following lists the types of possible relationships available between entity
relations with ways to translate each relationship type into the relational model.

1:1 Relationship Types

1. Foreign Key Approach: take the primary key attribute from one entity,
and add it as a foreign key attribute in the entity to which the relationship
is held.

2. Merged Relation Approach: if the both entities have total participation in
the relationship with one another, it may be best to merge all the attributes
together into one relation.

Phase II Part 1 | Page 26

3. Cross-reference, or Relationship Relation Approach: commonly
referred to as a relationship relation, this method involves creating an
entirely separate relation from the other two entity relations to hold the
foreign key attributes referencing each entity relation. Together, the
foreign key attributes combine to form a primary key.

1:N Relationship Types

To translate 1:N relationships, it is necessary to take the foreign key approach,
whereby the primary keys from the entity on the 1 side of the relationship is
placed as a foreign key attribute to the N side entity relation. If too few tuples
participate in the N side entity relation, it may be a better idea to setup a
relationship relation between the two entities, thus avoiding the use of excessive
NULLs.

M:N Relationship Types

M:N relationships are formed through use of the relationship relation method. If
there are descriptive attributes in the relationship between the entities, the
attributes are added as extra simple attributes of the relationship relation between
the two entity relations.

Relationships Involving N Entity Types

To translate this kind of relationship a relation is made composed of N foreign
key attributes from the primary key attributes from the N entities. Any
descriptive attributes part of the N-ary relationship are also included.

Recursive Relationship Types

In order to translate recursive relationships either foreign key or relationship
relation methods can be used with the condition that the entity refer back to itself.
In the case of the foreign key method, the extra foreign key attribute is added to
the same entity relation containing the primary key attribute used as a foreign key.
Using the relationship relation method would entail using a separate relation
containing both primary, and foreign fields from the same entity.

Relationships Involving Categories (Union Types)

This situation involves multiple superclass entities all to one subclass entity.
Translating this situation requires having a foreign key field in a relation for each
superclass referring to the primary key field in a relation for the subclass entity.

 ‘HasA’ Relationship Types

‘HasA’ relationships can be translated using the same methods used to convert
1:N relationships.

Phase II Part 1 | Page 27

‘IsA’ Superclass/Subclass Relationship Types

1. Multiple relations – Superclass and subclasses. Use the primary key
attribute in a relation for the superclass entity as a primary key attribute in
a relation for each subclass entity. This option works for all specialization
types (total or partial, disjoint or overlapping).

2. Multiple relations – Subclass relations only. Create a relation for each

subclass that includes not only its own attributes, but also those of the
superclass. The primary key from the superclass entity which is included
in the superclass entity’s attributes included with the subclass entity’s
attributes is the relation’s primary key. This option only works for cases
where every entity in the superclass belongs to at least one of the
subclasses.

3. Single Relation with one type attribute. Make a single relation

containing the attributes from the superclass, and every subclass together
with the primary key from the superclass as the primary key for the
relation. Then add an extra discriminating attribute used to label each
tuple in the relation according to the subclass in which it belongs. This
option is aimed at cases where the subclasses are disjoint, and it has the
potential to generate many NULL values.

4. Single Relation with multiple type attributes. Make a single relation
containing the attributes from the superclass, and every subclass using the
primary key from the superclass as the relation’s primary key. Then add a
set of multiple extra Boolean type discriminating attributes used to
indicate the subclass to which each tuple belongs. This method works
both for overlapping, and disjoint subclass specialization.

1.3.3

Constraints and DBMS Constraint Enforcement

Integrity constraints ensure that data entered into the database is accurate. They
do this by setting rules over what can be entered into a record’s attribute fields.
There are two integrity rules that apply to all instances of a database. These rules
are entity integrity, and referential integrity. Entity integrity constraints apply to
primary keys in that a standard is set whereby no primary key may contain a null
value. Unique and primary keys are constrained as well. When a foreign key
exists in a relation, the foreign key value must match the primary key value of
some tuple in its home relation. Otherwise, the foreign key must be wholly null.
This is what’s referred to as referential integrity. Other forms of constraint may
also be enforced depending on the DBMS being run, and the business rules
specified by the owners of the database system.

Phase II Part 2 | Page 28

Part 2: E-R Database to
Relational Database Schema

2.1 Entity Relations

 Relatio
Attributes and Domain Details

n: Employee (EmployeeID, eFirst, eMidInitial, eLast)

EmployeeID unsigned integer (0 to 232 – 1), unique, not NULL

eFirst character string, only numbers, and letters, beginning with a character,
not unique, not NULL

eMidInitial single letter character, not unique

eLast character string, only numbers, and letters, beginning with a character,
not unique, not NULL

Relation

Attributes and Domain Details

: MileageLog (EmployeeID, SDate, EDate, StartMileage, EndMileage)

EmployeeID unsigned integer (0 to 232 – 1), unique, not NULL

SDate TIMESTAMP, unique, not NULL

EDate TIMESTAMP, unique when not NULL

StartMileage unsigned integer (0 to 232 – 1), not unique, not NULL

EndMileage unsigned integer (0 to 232 – 1), not unique

Constraints

-Primary Key- EmpoyeeID acts as the primary key which is unique, and not NULL.

Constraints

-Primary Key- SDate, and EDate combine together to make a unique non-NULL primary key.

-Foreign Key- The primary key EmployeeID from the relation Employee acts a foreign key in this
relation.

Phase II Part 2 | Page 29

Relation

Attributes and Domain Details

: LogTable (LogID, OldVal, NewVal)

LogID unsigned integer (0 to 232 – 1), unique, not NULL

OldVal character string, numbers, letters,not unique, not NULL

NewVal character string, numbers, letters,not unique

Relation
 MemberStatus)

: Customer (CustomerID, cFirst, cMidInitial, cLast, Phone,

Attributes and Domain Details

CustomerID unsigned integer (0 to 232 – 1), unique, not NULL

cFirst character string, only numbers, and letters, beginning with a
character, not unique, not NULL

cMidInitial single letter character, not unique

cLast character string, only numbers, and letters, beginning with a
character, not unique, not NULL

Phone unsigned ten digit integer, not unique, not NULL

MemberStatus unsigned Boolean, not unique, not NULL

Constraints

-Primary Key- LogID acts as the primary key which is unique, and not NULL.

Constraints

-Primary Key- CustomerID acts as the primary key which is unique, and not
NULL.

Phase II Part 2 | Page 30

Relation

Attributes and Domain Details

: CstmrAddress (AddressID, Street, Apt, City, Zip, CustomerID)

AddressID unsigned integer (0 to 232 – 1), unique, not NULL

Street character string, only numbers, and letters, beginning with a number,
not unique, not NULL

Apt character string, only numbers, and letters at most 5 digits long, not
unique

City character string, only letters, not unique, not NULL

Zip unsigned five digit integer, not unique, not NULL

CustomerID unsigned integer (0 to 232 – 1), unique, not NULL

Constraints

-Primary Key- AddressID acts as the primary key which is unique, and not NULL.

-Foreign Key- The primary key CustomerID from the relation Customer acts a
foreign key in this relation.

Phase II Part 2 | Page 31

Relation
 oMemberStatus, Destination, EmployeeID, CustomerID)

: Order (OrderNumber, oDate, OrderStatus, DeliveryCharge,

Attributes and Domain Details

OrderNumber unsigned integer (0 to 232 – 1), unique, not NULL

oDate TIMESTAMP, not unique, not NULL

OrderStatus unsigned integers 0, 1, or 2, not unique, not NULL

DeliveryCharge float greater than zero, not unique

Destination unsigned integer (0 to 232 – 1), unique, not NULL

oMemberStatus unsigned Boolean, not unique, not NULL

EmployeeID unsigned integer (0 to 232 – 1), unique, not NULL

CustomerID unsigned integer (0 to 232 – 1), unique, not NULL

Constraints

-Primary Key- OrderNumber acts as the primary key which is unique, and not
NULL.

-Foreign Key-

The primary keys AddressID from the relation CstmrAddress,
EmployeeID from the relation Employee, and CustomerID from the
relation Customer act as foreign keys in this relation. EmployeeID
and CustomerID keep the same names for foreign keys in this
relation. AddressID is the foreign key Destination in this relation.

-Business Rule-
For each order the value of MemberStatus is copied from
MemberStatus in the relation Customer, but it is not a foreign key in
this relation.

Phase II Part 2 | Page 32

Relation

Attributes and Domain Details

: Restaurant (RstID, rName)

RstID unsigned integer (0 to 232 – 1), unique, not NULL

rName character string, only numbers, letters, and blank spaces, beginning with a
character, not unique, not NULL

Relation

Attributes and Domain Details

: Franchise (FID, fStreet, fCity, fZip, fPhone, RstID)

FID unsigned integer (0 to 232 – 1), unique, not NULL

fStreet character string, only numbers, and letters, beginning with a number, not
unique, not NULL

fCity character string, only letters, not unique, not NULL

fZip unsigned five digit integer, not unique, not NULL

fPhone unsigned ten digit integer, not unique, not NULL

RstID unsigned integer (0 to 232 – 1), unique, not NULL

Constraints

-Primary Key- RstID acts as the primary key which is unique, and not NULL.

Constraints

-Primary Key- FID acts as the primary key which is unique, and not NULL.

-Foreign Key- The primary key RstID from relation Restaurant acts as a foreign
key in this relation by the same name.

Phase II Part 2 | Page 33

Relation

Attributes and Domain Details

: Item (ItemID, iName, Price)

ItemID unsigned integer (0 to 232 – 1), unique, not NULL

iName character string, numbers, letters, and dash ‘-‘ beginning with a
character, not unique, not NULL

Price float greater than zero, not unique

Relation

Attributes and Domain Details

: Combo (ComboID, Item_CR, OrderNum)

ComboID unsigned integer (0 to 232 – 1), unique, not NULL

Item_CR unsigned integer (0 to 232 – 1), unique, not NULL

OrderNum unsigned integer (0 to 232 – 1), unique, not NULL

Constraints

-Primary Key- ItemID acts as the primary key which is unique, and not NULL.

Constraints

-Primary Key- ComboID acts as the primary key which is unique, and not NULL.

-Foreign Key-
The foreign keys OrderNumber, and ItemId from relation Includes
are included in this entity, also as foreign keys where OrderNum
refers to OrderNumber, and Item_CR refers to ItemID.

Phase II Part 2 | Page 34

2.2 Relationship Relations

Relation

Attributes and Domain Details

: Registers (EmployeeID, CustomerID, rDate, SellMembership)

EmployeeID unsigned integer (0 to 232 – 1), unique, not NULL

CustomerID unsigned integer (0 to 232 – 1), unique, not NULL

rDate TIMESTAMP, not unique, not NULL

SellMembership unsigned integers 0, 1, or 2, not unique, not NULL

Constraints

-Primary Key-
EmployeeID from relation Employee, CustomerID from relation
Customer, and TIMESTAMP Date from this relation combine
together to make a primary key for this relation.

-Foreign Key-

The primary keys EmployeeID from the relation Employee and
CustomerID from the relation Customer act as foreign keys in this
relation. EmployeeID and CustomerID keep the same names for
foreign keys in this relation.

-Business Rule- Should the customer want to change membership status, the date of
the change is recorded.

Phase II Part 2 | Page 35

Relation
 DeliveryTime)

: Delivers (EmployeeID, OrderNumber, DOReceiptTime,

Attributes and Domain Details

EmployeeID unsigned integer (0 to 232 – 1), unique, not NULL

OrderNumber unsigned integer (0 to 232 – 1), unique, not NULL

DOReceiptTime TIMESTAMP, not unique, not NULL

DeliveryTime TIMESTAMP, not unique

Relation

Attributes and Domain Details

: Offers (FID, ItemID)

FID unsigned integer (0 to 232 – 1), unique, not NULL

ItemID unsigned integer (0 to 232 – 1), unique, not NULL

Constraints

-Primary Key-
EmployeeID from relation Employee, and OrderNumber from
relation Order combine together to make a primary key for this
relation.

-Foreign Key-

The primary keys EmployeeID from the relation Employee and
OrderNumber from relation Order act as foreign keys in this
relation. EmployeeID and OrderNumber keep the same names for
foreign keys in this relation.

Constraints

-Primary Key- FID from relation Franchise, and ItemID from relation Item
combine together to make a primary key for this relation.

-Foreign Key-
The primary keys FID from the relation Franchise and ItemID from
relation Item act as foreign keys in this relation. FID and ItemID
keep the same names for foreign keys in this relation.

Phase II Part 2 | Page 36

Relation

Attributes and Domain Details

: Includes (OrderNumber, ItemID, FID, Quantity, oPrice)

OrderNumber unsigned integer (0 to 232 – 1), unique, not NULL

ItemID unsigned integer (0 to 232 – 1), not unique, not NULL

FID unsigned integer (0 to 232 – 1), unique, not NULL

Quantity unsigned integer at most 5 digits long, not unique, not NULL

oPrice float greater than zero, not unique

Relation

Attributes and Domain Details

: Contains (Container, CmboNum, ItemID)

Container unsigned integer (0 to 232 – 1), unique, not NULL

CmboNum unsigned integer (0 to 232 – 1), unique, not NULL

ItemID unsigned integer (0 to 232 – 1), unique, not NULL

Constraints

-Primary Key- OrderNumber from relation Order and ItemID from relation Item
combine to make the primary key for this relation.

-Foreign Key-

The primary keys OrderNumber from the relation Order, ItemID
from the relation Item, and FID from relation Franchise act as
foreign keys in this relation. OrderNumber, ItemID, and FID keep
the same names for foreign keys in this relation.

-Business Rule-
All items from the same restaurant chain will be delivered from one
of the franchises belonging in the chain. Price is a copy of Price
from relation Item at the time the order is made.

Constraints

-Primary Key- Container is the primary key for this relation.

-Foreign Key-
The primary key ItemID from the relation Item acts as a foreign key
in this relation. Foreign key CmboNum is a foreign key from entity
Combo referring to Combo_ID.

Phase II Part 3 | Page 37

Part 3: Relation Instances
3.1 Entity Relation Instances

Relation
EmployeeID

: Employee (EmployeeID, eFirst, eMidInitial, eLast)

eFirst eMidInitial eLast
1 Stanley L Marsh
2 Brazuk Pierce
3 Marsha Bentley
4 Fred S Armstrong
5 Marisol M Stensos
6 Larry Guytez
7 Peter P Patrone
8 Curtis B Whicks
9 Wei H Kai

10 Tiffany Cooper
11 Allison Jester

Relation

EmployeeID

: MileageLog (EmployeeID, SDate, EDate, StartMileage, EndMileage)

SDate EDate StartMileage EndMileage
2 10-OCT-06

10.05.42.437000
10-OCT-06
12.30.25.245960 128,050 128,065

2 10-OCT-06
13.05.50.498241

10-OCT-06
17.10.10.097899 128,067 128,098

2 10-OCT-07
12.08.13.128752

10-OCT-07
17.04.55.549876 129,005 129,018

5 10-OCT-04
10.03.05.050000

10-OCT-04
15.00.59.587769 95,745 95,761

6 10-OCT-01
07.01.20.197564

10-OCT-01
12.05.32.318425 145,876 145,905

6 10-OCT-01
13.02.45.448949

10-OCT-01
15.59.58.579147 145,914 145,941

8 10-OCT-01
07.05.37.368718

10-OCT-01
12.00.45.448147 70,754 70,773

8 10-OCT-05
06.55.45.447845

10-OCT-05
11.58.18.178127 70,810 70,843

11 10-OCT-02
06.58.15.148742

10-OCT-02
12.10.05.047482 160,424 160,443

11 10-OCT-02
12.45.13.126341

10-OCT-02
16.01.41.405612 160,445 160,467

11 10-OCT-07
12.05.04.035911

10-OCT-07
17.00.40.397381 160,530 160,563

Phase II Part 3 | Page 38

Relation

LogID

: LogTable (LogID, OldVal, NewVal)
OldVal NewVal

1 15 Pete K Mandelov 8052145789 2 15 Jeremy F Buckley 1457124547 0
2 15 Jeremy F Buckley 457124 0 15 Kimcheck N Santi 4555621155 2
3 15 Kimcheck N Santi 4555621155 2
4 13 Mendle H Barddrin 5452453521 2 13 Fran H Barddrin 5452453521 2
5 13 Fran H Barddrin 5452453521 2
6 16 Kyle F Parsecks 5423527895 1 16 Kyle M Pendleton 5423545895 1
7 16 Kyle M Pendleton 5423545895 1
8 18 Sammy O Bammy 8461543621 2 18 Sammy N Kresnevitch 4512300212 0
9 18 Sammy N Kresnevitch 4512300212 0

10 43 Rod N Bison 7874541265 1 43 Red N Cheem 7874541455 0
11 55 Can T Pryle 8574925154 2 55 Blanka B Aaahk 2135468457 1
12 43 Red N Cheem 7874541455 0
13 55 Blanka B Aaahk 2135468457 1 71 Mayor Hagar 7485968525 2
14 71 Mayor Hagar 7485968525 2
15 31 Seargent f Jack 5454478415 2

Relation
 MemberStatus)

: Customer (CustomerID, cFirst, cMidInitial, cLast, Phone,

CustomerID cFirst cMidInitial cLast Phone MemberStatus
1 Polly G Fredericks 6613314574 0
2 Rachel Larson 6615893212 0
3 Henry K Ricks 6617589212 1
4 Saul M Steinbeck 6612059354 1
5 Daniel Simpson 8053652241 1
6 Matt Groening 6618614124 0
7 Karen F Chu 8057584790 1
8 Ryan L Scott 8057583787 0
9 Jeff Green 6615894512 1

10 Manmeet Chunta 6613584124 0
11 Greg A Ford 8059683641 0

Phase II Part 3 | Page 39

Relation

AddressID

: CstmrAddress (AddressID, Street, Apt, City, Zip, CustomerID)
Street Apt City Zip CustomerID

1 11421 Old Town Rd A Bakersfield 93312 1
2 118 Harvest Creek Rd Bakersfield 93306 2
3 Gate 3, Elk Hill Rd Taft 93268 2
4 423 Beyers St Arvin 93203 3
5 12321 Dorsey Ct 3C Bakersfield 93305 4
6 1775 Balvanera Ave Lamont 93241 5
7 2321 Hialeah Park Ln 319 Bakersfield 93305 6
8 22314 Verdelho Ave Bakersfield 93311 7
9 10017 Great Country Dr Bakersfield 93306 7

10 905 Mayacamas Dr Taft 93268 8
11 3421 Allene Way G Bakersfield 93302 9
12 5843 Red River Dr Lamont 93241 10
13 342 Treasure Island St Bakersfield 93383 5
14 44321 Abbott Dr 21 Bakersfield 93309 8
15 253 Alki Ct Bakersfield 93306 3

Relation
 oMemberStatus, Destination, EmployeeID, CustomerID)

: Order (OrderNumber, oDate, OrderStatus, DeliveryCharge,

OrderNumber oDate OrderStatus DeliveryCharge oMemberStatus Destination EmployeeID CustomerID

1 10-SEP-30
07.05.41.407000 0 10.00 0 12 1 10

2 10-SEP-30
07.10.45.448241 2 10.00 0 7 7 6

3 10-SEP-30
08.08.13.128752 1 14.00 1 15 3 3

4 10-SEP-30
09.15.05.050000 2 20.00 0 10 8 8

5 10-SEP-30
09.45.20.197564 2 10.00 0 1 4 2

6 10-SEP-30
12.02.45.448949 0 7.00 1 1 9 1

7 10-OCT-01
07.04.37.368718 1 7.00 1 8 10 7

8 10-OCT-01
08.15.45.447845 1 10.00 0 5 1 4

9 10-OCT-01
09.05.15.148742 2 10.00 0 14 5 8

10 10-OCT-01
11.10.13.126341 2 21.00 1 11 3 9

11 10-OCT-01
14.05.04.035911 1 14.00 1 9 10 7

Phase II Part 3 | Page 40

Relation

RstID

: Restaurant (RstID, rName)
rName

1 Carls Jr
2 Starbucks Coffee
3 Taco Bell
4 Panda Express
5 McDonalds
6 Wendys
7 Jack in the Box
8 In and Out
9 Burger King

10 Del Taco
11 Pollo Loco

Relation

FID

: Franchise (FID, fStreet, fCity, fZip, fPhone, RstID)
fStreet fCity fZip fPhone RstID

1 9500 Brimhall Rd Ste A Bakersfield 93312 6615874859 1
2 9801 Hageman Rd Bakersfield 93312 6615875199 2
3 9640 Hageman Rd. Bakersfield 93312 6612134574 3
4 9200 Rosedale Highway 300 Bakersfield 93312 6615872316 4
5 4520 Coffee Road Bakersfield 93312 6615879085 1
6 9200 Rosedale Hwy Bakersfield 93312 6615873661 2
7 5121 Olive Drive Bakersfield 93308 6613937718 3
8 5120 Stockdale Hwy Space A Bakersfield 93309 6613232033 4
9 9000 Ming Ave Ste Q Bakersfield 93311 6616652396 1

10 4420 Coffee Road Unit B Bakersfield 93308 6615873661 2
11 3799 Rosedale Hwy Bakersfield 93308 6613253862 3
12 5041 Gosford Rd F1 Bakersfield 93313 6616640391 4
13 5520 Stockdale Hwy Bakersfield 93383 6613229857 1
14 13133 Rosedale Hwy Bakersfield 93314 6618292651 2
15 3300 Buena Vista Rd Bakersfield 93311 6616638131 3

Phase II Part 3 | Page 41

Relation

ItemID

: Item (ItemID, iName, Price)
iName Price

1 Fries-Small 1.49
2 Fries-Medium 1.79
3 Fries-Large 1.89
4 Fries-CrissCut 1.99
5 Fries-Chili Cheese 2.99
6 Onion Rings 1.99
7 Fried Zucchini 1.99
8 Side Salad 1.79
9 Fish & Chips 4.99

10 Coffee Channel Islands Roasting Co 1.29
11 DASANI Water 1.49
12 Milk 1.09
13 Orange Juice 1.39
14 Shake-Oreo Cookie 2.99
15 Shake-Chocolate 2.99

Relation

ComboID

: Combo (ComboID, Item_CR, OrderNum)
Item_CR OrderNum

1 90 1
2 243 2
3 243 2
4 243 2
5 72 3
6 74 3
7 78 4
8 291 5
9 83 6
10 290 6
11 290 6
12 290 6
13 289 9
14 289 9
15 285 11

Phase II Part 3 | Page 42

3.2 Relationship Relation Instances

Relation
EmployeeID

: Registers (EmployeeID, CustomerID, rDate, SellMembership)
CustomerID rDate SellMembership

11 1 10-SEP-30 12.02.45.448949 0
3 2 10-SEP-30 09.45.20.197564 0
3 3 10-SEP-30 08.08.13.128752 0

11 4 10-OCT-01 08.15.45.447845 1
3 5 10-SEP-30 07.02.22.216201 0
5 6 10-SEP-30 07.10.45.448241 0
3 7 10-OCT-01 07.04.37.368718 0

11 8 10-SEP-30 09.15.05.050000 0
11 9 10-OCT-01 11.10.13.126341 1
7 10 10-SEP-30 07.05.41.407000 0
9 11 10-OCT-01 14.21.10.095610 0

10 12 10-OCT-01 15.22.37.365721 1
9 13 10-OCT-01 15.24.03.033121 0

10 14 10-OCT-01 15.27.00.000001 0
10 15 10-OCT-01 16.29.05.407000 0
11 16 10-OCT-01 16.35.31.311011 0
9 17 10-OCT-01 16.41.39.387421 0
3 18 10-OCT-01 15.22.37.365721 0
8 3 10-SEP-30 07.05.41.407000 1
3 7 10-OCT-01 14.05.04.035911 1
5 13 10-OCT-02 07.22.11.110001 1
5 19 10-OCT-02 07.35.32.315421 1
1 20 10-OCT-02 07.38.15.150005 0
1 21 10-OCT-02 07.55.57.567501 0
4 22 10-OCT-02 08.02.23.229127 0
1 23 10-OCT-02 08.32.03.031231 0
4 10 10-OCT-02 08.41.54.538124 1

10 24 10-OCT-02 10.00.01.006157 0
10 2 10-OCT-02 10.11.00.599131 1
3 15 10-OCT-02 10.43.36.360121 1
7 25 10-OCT-02 10.50.14.140022 1
7 26 10-OCT-02 14.17.24.237253 0
7 27 10-OCT-02 18.01.43.430505 0
7 28 10-OCT-02 18.03.06.055241 0
4 29 10-OCT-03 07.20.52.514443 0
1 30 10-OCT-03 07.39.31.310202 1
3 31 10-OCT-03 07.57.43.424290 0
7 18 10-OCT-03 08.30.45.447845 1
4 32 10-OCT-03 09.57.13.126341 0

10 33 10-OCT-03 10.11.05.407000 1
9 34 10-OCT-03 10.13.31.312011 0
3 35 10-OCT-03 10.51.13.128752 0
7 36 10-OCT-03 11.02.37.368718 0
9 37 10-OCT-03 11.09.30.300029 0
4 22 10-OCT-03 11.49.31.310008 1
6 5 10-OCT-03 11.55.25.248242 1
3 38 10-OCT-03 13.40.24.241212 0
9 39 10-OCT-03 14.33.01.010101 0

10 40 10-OCT-03 15.01.46.463636 1
10 41 10-OCT-03 15.19.59.580001 0
3 42 10-OCT-03 15.38.14.143215 1
6 43 10-OCT-03 15.47.33.325214 0
7 16 10-OCT-04 07.33.47.467512 1
1 3 10-OCT-04 08.02.51.510515 1
2 44 10-OCT-04 09.11.55.548625 0
8 45 10-OCT-04 10.33.39.386512 0
7 46 10-OCT-04 11.17.03.029898 0
1 47 10-OCT-04 11.38.01.010101 0
2 48 10-OCT-04 12.13.12.119999 1

11 49 10-OCT-04 13.04.35.347757 0
9 50 10-OCT-04 13.06.36.361231 0
4 37 10-OCT-04 15.45.00.597531 1
5 51 10-OCT-04 18.10.11.110120 0

Phase II Part 3 | Page 43

Relation
 DeliveryTime)

: Delivers (EmployeeID, OrderNumber, DOReceiptTime,

EmployeeID OrderNumber DOReceiptTime DeliveryTime
11 1 10-SEP-30 12.02.45.448949 10-SEP-30 13.40.12.120101
2 2 10-SEP-30 09.45.20.197564 10-SEP-30 10.57.09.085729
5 3 10-SEP-30 08.08.13.128752 10-SEP-30 09.00.57.564134

11 4 10-OCT-01 08.15.45.447845 10-OCT-01 08.50.10.099456
6 5 10-SEP-30 07.02.22.216201 10-SEP-30 07.30.21.211201
8 6 10-SEP-30 07.10.45.448241 10-SEP-30 08.20.08.075751
6 7 10-OCT-01 07.04.37.368718 10-OCT-01 08.05.12.124253

11 8 10-SEP-30 09.15.05.050000 10-SEP-30 09.45.00.000005
11 9 10-OCT-01 11.10.13.126341 10-OCT-01 11.30.06.057865
2 10 10-SEP-30 07.05.41.407000 10-SEP-30 07.32.01.009000
9 11 10-OCT-01 14.21.10.095610 10-OCT-01 15.10.03.033410

10 12 10-OCT-01 15.22.37.365721 10-OCT-01 15.16.20.195721
9 13 10-OCT-01 15.24.03.033121 10-OCT-01 16.20.01.010121

10 14 10-OCT-01 15.27.00.000001 10-OCT-01 16.35.50.495007
10 15 10-OCT-01 16.29.05.047000 10-OCT-01 17.05.04.040005
11 16 10-OCT-01 16.35.31.311011 10-OCT-01 17.10.02.024334
8 17 10-OCT-01 16.41.39.387421 10-OCT-01 16.59.58.575713
6 18 10-OCT-01 15.22.37.365721 10-OCT-01 16.15.14.137312
5 19 10-SEP-30 07.05.41.407000 10-SEP-30 07.57.01.005029
2 20 10-OCT-01 14.05.04.035911 10-OCT-01 14.45.21.208217
5 21 10-OCT-02 07.22.11.110001 10-OCT-02 08.08.19.185721
5 22 10-OCT-02 07.35.32.315421 10-OCT-02 08.25.47.470576
1 23 10-OCT-02 07.38.15.150005 10-OCT-02 08.10.26.262003
1 24 10-OCT-02 07.55.57.567501 10-OCT-02 08.21.51.505555
4 25 10-OCT-02 08.02.23.229127 10-OCT-02 08.44.17.170122
1 26 10-OCT-02 08.32.03.031231 10-OCT-02 09.10.14.139452

11 27 10-OCT-02 08.41.54.538124 10-OCT-02 09.21.41.406147
6 28 10-OCT-02 10.00.01.006157 10-OCT-02 11.03.04.040482
8 29 10-OCT-02 10.11.00.599131 10-OCT-02 10.58.00.002148
6 30 10-OCT-02 10.43.36.360121 10-OCT-02 11.26.21.210431

11 31 10-OCT-02 10.50.14.140022 10-OCT-02 11.54.08.079978
11 32 10-OCT-02 14.17.24.237253 10-OCT-02 14.57.06.057274
2 33 10-OCT-02 18.01.43.430505 10-OCT-02 19.00.31.308040
9 34 10-OCT-02 18.03.06.055241 10-OCT-02 18.49.20.199483

11 35 10-OCT-03 07.20.52.514443 10-OCT-03 08.10.32.318487
6 36 10-OCT-03 07.39.31.310202 10-OCT-03 08.24.12.118274
8 37 10-OCT-03 07.57.43.424290 10-OCT-03 08.44.32.320012
6 38 10-OCT-03 08.30.45.447845 10-OCT-03 09.11.12.121314

11 39 10-OCT-03 09.57.13.126341 10-OCT-03 10.33.09.090001
11 40 10-OCT-03 10.11.05.407000 10-OCT-03 10.48.24.238467
2 41 10-OCT-03 10.13.31.312011 10-OCT-03 11.04.09.087029
9 42 10-OCT-03 10.51.13.128752 10-OCT-03 11.44.25.251349

11 43 10-OCT-03 11.02.37.368718 10-OCT-03 11.56.45.453215
9 44 10-OCT-03 11.09.30.300029 10-OCT-03 12.04.16.150650
4 45 10-OCT-03 11.49.31.310008 10-OCT-03 12.32.24.241111
6 46 10-OCT-03 11.55.25.248242 10-OCT-03 12.57.13.126720
3 47 10-OCT-03 13.40.24.241212 10-OCT-03 14.06.18.178211
7 48 10-OCT-03 14.33.01.010101 10-OCT-03 15.38.37.370593
7 49 10-OCT-03 15.01.46.463636 10-OCT-03 15.56.23.228214
4 50 10-OCT-03 15.19.59.580001 10-OCT-03 16.04.08.083512
1 51 10-OCT-03 15.38.14.143215 10-OCT-03 16.14.30.298201
3 52 10-OCT-03 15.47.33.325214 10-OCT-03 16.17.21.212121
7 53 10-OCT-04 07.33.47.467512 10-OCT-04 08.18.02.017842
4 54 10-OCT-04 08.02.51.510515 10-OCT-04 08.52.13.130647

10 55 10-OCT-04 09.11.55.548625 10-OCT-04 10.01.31.309750
9 56 10-OCT-04 10.33.39.386512 10-OCT-04 10.57.01.010000
3 57 10-OCT-04 11.17.03.029898 10-OCT-04 11.41.10.097304
7 58 10-OCT-04 11.38.01.010101 10-OCT-04 12.14.23.227520
9 59 10-OCT-04 12.13.12.119999 10-OCT-04 13.01.11.110912
4 60 10-OCT-04 13.04.35.347757 10-OCT-04 13.54.05.048721
6 61 10-OCT-04 13.06.36.361231 10-OCT-04 13.40.30.301867
3 62 10-OCT-04 15.45.00.597531 10-OCT-04 16.16.59.587261
9 63 10-OCT-04 18.10.11.110120 10-OCT-04 18.47.03.028171

Phase II Part 3 | Page 44

Relation
FID

: Offers (FID,ItemID)
ItemID

11 1
3 2
3 3

11 4
3 5
5 6
3 7

11 8
11 9
7 10
9 11

10 12
9 13

10 14
10 15
11 16
9 17
3 18
8 3
3 7
5 13
5 19
1 20
1 21
4 22
1 23
4 10

10 24
10 2
3 15
7 25
7 26
7 27
7 28
4 29
1 30
3 31
7 18
4 32

10 33
9 34
3 35
7 36
9 37
4 22
6 5
3 38
9 39

10 40
10 41
3 42
6 43
7 16
1 3
2 44
8 45
7 46
1 47
2 48

11 49
9 50
4 37
5 51

Relation

OrderNumber

: Contains (Container,
CmboNum, ItemID)

ComboID ItemID
1 1 47
2 2 150
3 3 158
4 4 142
5 5 39
6 6 33
7 7 51
8 8 271
9 8 278

10 8 277
11 8 268
12 8 270
13 9 30
14 10 271
15 10 276
16 10 280
17 10 270
18 11 273
19 11 275
20 11 279
21 11 268
22 12 272
23 12 274
24 12 281
25 12 269
26 13 271
27 13 277
28 13 270
29 14 283
30 14 271
31 14 268
32 15 281
33 16 278
34 16 277
35 16 271
36 16 270
37 16 268
38 17 271
39 17 269
40 18 281
41 18 280
42 18 268
43 19 271
44 19 270
45 20 271
46 20 270
47 21 272
48 21 267
49 22 276
50 22 268
51 23 279
52 23 270
53 24 277
54 24 269
55 25 282
56 25 267
57 26 281
58 26 269
59 27 283
60 27 281
61 27 275
62 27 268
63 27 270

Phase II Part 3 | Page 45

Relation

OrderNumber

: Includes (OrderNumber, ItemID, FID, Quantity, oPrice)
ItemID FID Quantity oPrice

11 1 4 1 2.49
3 2 1 2 3.99
3 3 3 1 2.99

11 4 7 1 4.99
3 5 4 2 6.49
5 6 10 1 5.49
3 7 9 2 4.79

11 8 3 3 4.39
11 9 7 1 1.99
7 10 9 4 2.49
9 11 4 1 3.99

10 12 6 2 2.99
9 13 3 1 4.99

10 14 9 1 6.49
10 15 10 1 5.49
11 16 10 1 4.79
9 17 3 2 4.39
3 18 6 4 1.99
8 3 7 4 2.49
3 7 1 1 3.99
5 13 2 1 2.99
5 19 8 1 4.99
1 20 7 1 6.49
1 21 1 1 5.49
4 22 2 1 4.79
1 23 11 2 4.39
4 10 9 2 1.99

10 24 4 1 2.49
10 2 5 2 1.49
3 15 4 1 1.79
7 25 1 1 1.99
7 26 3 1 1.39
7 27 11 2 1.69
7 28 3 2 1.89
4 29 3 1 2.49
1 30 11 2 3.99
3 31 3 1 2.99
7 18 5 2 4.99
4 32 3 2 6.49

10 33 11 2 5.49
9 34 11 1 4.79
3 35 7 1 4.39
7 36 9 1 1.99
9 37 10 1 1.49
4 22 9 1 1.79
6 5 10 1 1.99
3 38 10 1 1.39
9 39 11 3 1.69

10 40 9 5 1.89
10 41 3 1 2.49
3 42 8 4 3.99
6 43 3 1 2.99
7 16 5 4 4.99
1 3 5 5 6.49
2 44 1 2 5.49
8 45 1 2 4.79
7 46 4 1 4.39
1 47 1 1 1.99
2 48 4 1 1.49

11 49 10 1 1.79
9 50 10 4 1.99
4 37 3 1 1.39
5 51 7 1 1.69

Phase II Part 4 | Page 46

Part 4: Non-trivial Queries in
 Relational Algebra, Tuple Relational, and
 Domain Relational Calculus Form
In this part of the project thirty queries will be expressed in relational algebra, tuple relational
calculus, and domain relational calculus, ten for each formal language . Each query will be
stated prior to being expressed in each section’s respective format.

4.1 Queries in Relational Algebra

Special operators:

Query 1: List all restaurants which offer combo meals priced $3.99 or less.

 C I
 I.RstID, I.rName(C.ComboID = I.ItemID I.Price ≤ 3.99 ((Contains) (Restaurant Franchise Offers Item))

Query 2: List customers who’ve placed at least two orders priced greater than $20 total.

 C1 (cID, oID, dCharge, iSum) CustomerID, OrderNumber, DeliveryCharge SUM oPrice (Includes Order)

 C2 (cID, oID, dCharge, iSum) CustomerID, OrderNumber, DeliveryCharge SUM oPrice (Includes Order)

 Customer Customer.CustomerID = C1.cID(C1.cID = C2.cID C1.oID ≠ C2.oID (C1 C2))
 (C1.dCharge+C1.iSum) > 20
 (C2.dCharge+C2.iSum) > 20

Query 3: List franchises from which more than ten customers have ordered.

FC (FID, cCount) FID COUNT CustomerID (Franchise Includes Order)

Franchise Franchise.FID = FC.FID(cCount > 10 (FC))

Phase II Part 4 | Page 47

Query 4: List customers who average the smallest number of items per order.

oAVG (OrderNumber, aIQ) OrderNumber AVG Quantity (Includes)

coAVG oAVG.OrderNumber, Order.CustomerID, oAVG.aIQ (Order oAVG)

ciAVG (CustomerID, cIA) CustomerID AVG Quantity (coAVG)

 C1 C2

 ciAVG.CustomerID (ciAVG ̶ C1.CustomerID, C1.cIA (C1.cIA > C2.cIA (ciAVG ciAVG)) Customer

Query 5: List customers who’ve been members between 5/1/2010, and 6/25/2010.

tdRange rDate > ‘10-MAY-01 00.00.00.000000’ rDate < ‘10-JUN-25 00.00.00.000000’ (Registers)
 (SellMembership = 1 SellMembership = 2)

 C1 C2
tdRange2 C1.EmployeeID, C1.CustomerID, C1.rDate,(C1.rDate ≤ ‘10-MAY-01 00.00.00.000000’ (Registers Registers))

 C1.SellMembership C1.SellMembership = 2
 ((C2.rDate > ’10-MAY-01 00.00.00.000000’
 C2.rDate ≤ C1.rDate)
 C2.SellMembership ≠ 1)
 C1.CustomerID = C2.CustomerID

Customer Customer.CustomerID = cFin.CustomerID(tdRange tdRange2)

Query 6: List customers who’ve never placed an order from a Taco Bell in the 93308 zip code
 area.

cTB CustomerID(rName = ‘Taco Bell’ fZip = 93308 (Restaurant Franchise Includes Order))

Customer ̶ (Customer cTB)

Phase II Part 4 | Page 48

Query 7: List franchises with the second least expensive combos.

(ItemID, subItem) (Contains)

Combo Item ComboID (Contains)

 C1 C2

ABL C1.Price (C1.Price > C2.Price (Combo Combo))

 A1 A2

AB2L A2.Price (A1.Price > A2.Price (ABL ABL))

Franchise Offers Combo (ABL ̶ AB2L)

Query 8: List employees who delivered items from each franchise location in the 93312 zip
 code area on 7/4/2010.

ID4d Includes EmployeeID (DeliveryTime < ‘10-JUL-05 00.00.00.000000’ (Delivers))
 DeliveryTime ≥ ‘10-JUL-04 00.00.00.000000’

Employee EmployeeID (ID4d FID (fZip = 93312 (Franchise)))

Query 9: List employees who’ve not sold memberships, or made deliveries to any customers.

eD Employee EmployeeID (DeliveryTime ≠ NULL (Delivers))

eR Employee EmployeeID (SellMembership = 2 (Registers))

Employee ̶ (eD eR)

Query 10: List employees for whom it’s taken more than 1.5 hours to deliver an order.

Employee EmployeeID ((DeliveryTime ̶ DOReceiptTime) Hours > 1.5 DeliveryTime ≠ NULL (Delivers))

Phase II Part 4 | Page 49

4.2 Queries in Tuple Relational Calculus

Special operators: ∧ (AND) ∨ (OR)
 ¬ (Negation) → (Implication)
 ∃ (Existential Quantifier) ∀ (Universal Quantifier)

Query 1: List all restaurants which offer combo meals priced $3.99 or less.

{ r | Restaurant (r) ∧ (∃f)(Franchise (f) ∧ f.RstID = r.RstID ∧
 (∃i)(∃c)(Contains (c) ∧ Item (i) ∧ c.ComboID = i.ItemID ∧
 i.Price ≤ 3.99 ∧ (∃o)(Offers (o) ∧ o.FID = f.FID ∧
 o.ItemID = i.ItemID)
)
)
}

Query 2: List customers who’ve placed at least two orders with a delivery charge of more than
 twenty dollars.

{ c | Customer (c) ∧ (∃o1)(Order (o1) ∧ o1.DeliveryCharge > 20.00 ∧
 o1.CustomerID = c.CustomerID ∧
 (∃o2)(Order (o2) ∧ o2.DeliveryCharge > 20.00 ∧
 o2.OrderNumber ≠ o1.OrderNumber ∧
 o2.CustomerID = c.CustomerID
)
)
}

Query 3: List restaurants from which every customer has ordered.

{ r | Restaurant (r) ∧ (∀c)(Customer (c) →
 (∃o)(Order (o) ∧ c.CustomerID = o.CustomerID ∧
 (∃iN)(Includes (iN) ∧ iN.OrderNumber = o.OrderNumber ∧
 (∃f)(Franchise (f) ∧ f.FID = iN.FID ∧ f.RstID = r.RstID
)
)
)
)
}

Phase II Part 4 | Page 50

Query 4: List customers who were registered by Peter Patrone.

{ c | Customer (c) ∧ (∃e)(Employee (e) ∧ e.eFirst = ‘Peter’ ∧ e.eLast = ‘Patrone’ ∧
 (∃r)(Registers (r) ∧ r.EmployeeID = e.EmployeeID ∧
 r.CustomerID = c.CustomerID
)
)
}

Query 5: List customers who’ve been members between 5/1/2010, and 6/25/2010.

{ c | Customer (c) ∧ (∃r)(Registers (r) ∧ r.rDate > ‘5/1/2010’ ∧ r.rDate < ‘6/25/2010’ ∧
 r.CustomerID = c.CustomerID ∧
 (r.SellMembership = 1 ∨ r.SellMembership = 2)
) ∨
 (∃r2)(Registers (r2) ∧ r2.rDate ≤ ‘5/1/2010’ ∧
 r2.CustomerID = c.CustomerID ∧ r2.SellMembership = 2 ∧
 (∃r3)(Registers (r3) ∧ r3.rDate ≤ ‘5/1/2010’ ∧ r2.rDate < r3.rDate ∧
 r3.CustomerID = c.CustomerID → r3.SellMembership ≠ 1
)
)
}

Query 6: List customers who’ve never placed an order from a Taco Bell in the 93308 zip code
 area.

{ c | Customer (c) ∧ ¬(∃c2)(Customer (c2) ∧
 (∃o)(Order (o) ∧ o.CustomerID = c2.CustomerID ∧
 (∃i)(Includes (i) ∧ i.OrderNumber = o.OrderNumber ∧
 (∃f)(Franchise (f) ∧ f.fZip = 93308 ∧ f.FID = i.FID ∧
 (∃r)(Restaurant (r) ∧ r.RstID = f.RstID ∧
 r.rName = ‘Taco Bell’ ∧
 c.CustomerID = c2.CustomerID
)
)
)
)
)
}

Phase II Part 4 | Page 51

Query 7: List franchises with the second least expensive combos.

{ f | Franchise (f) ∧ (∃c)(Contains (c) ∧
 (∃i)(Item (i) ∧ c.ComboID = i.ItemID ∧
 (∃c2)(Contains (c2) ∧
 (∃i2)(Item (i2) ∧ i2.ItemID = c2.ComboID ∧
 i2.Price < i.Price ∧
 ¬(∃c3)(Contains (c3) ∧
 (∃i3)(Item (i3) ∧ i3.ItemID = c2.ComboID ∧
 i3.Price < i.Price ∧ i3.Price ≠ i2.Price
)
) ∧
 (∃o)(Offers (o) ∧ o.ItemID = i.ItemID ∧ o.FID = f.FID
)
)
)
)
)
}

Query 8: List employees who delivered items from each franchise location in the 93312 zip
 code area on 7/4/2010.

{ e | Employee (e) ∧ (∀f)(Franchise (f) →
 (∃i)(Includes (i) ∧ i.FID = f.FID ∧ f.fZip = 93312 ∧
 (∃o)(Order (o) ∧ o.OrderNumber = i.OrderNumber ∧
 (∃d)(Delivers (d) ∧ d.OrderNumber = o.OrderNumber ∧
 d.EmployeeID = e.EmployeeID ∧
 d.DeliveryTime < ‘7/5/2010’ ∧
 d.DeliveryTime > ‘7/3/2010’
)
)
)
)
}

Phase II Part 4 | Page 52

Query 9: List employees who’ve not sold memberships, or made deliveries to any customers.

{ e | Employee (e) ∧ ¬((∃d)(Delivers (d) ∧ d.DeliveryTime ≠ NULL ∧
 d.EmployeeID = e.EmployeeID) ∨
 (∃r)(Registers (r) ∧ r.SellMembership = 2 ∧
 r.EmployeeID = e.EmployeeID)
)
}

Query 10: List employees for whom it’s taken more than 1.5 hours to deliver an order.

{ e | Employee (e) ∧ (∃d)(Delivers (d) ∧
 (d.DeliveryTime – d.DOReceiptTime) > 1.5 hours ∧
 d.DeliveryTime ≠ NULL ∧ d.EmployeeID = e.EmployeeID
)
}

4.3 Queries in Domain Relational Calculus

Special operators: ∧ (AND) ∨ (OR)
 ¬ (Negation) → (Implication)
 ∃ (Existential Quantifier) ∀ (Universal Quantifier)

Query 1: List all restaurants which offer combo meals priced $3.99 or less.

{ rI, rN | Restaurant (rI, rN) ∧ (∃f)(Franchise (f, _ , _ , _ , _ , rI) ∧
 (∃c)(Contains (c, _) ∧ Item (c, _, ≤ 3.99, _) ∧ Offers (f, c)
)
)
}

Query 2: List customers who’ve placed at least two orders with a delivery charge of more than
 twenty dollars.

{ c, v, w, x, y, z | Customer (c, v, w, x, y, z) ∧ (∃o)(Order (o, _ , _ , >20, _ , _ , _ , c) ∧
 (∃o2)(Order (o2, _ , _ , >20, _ , _ , _ , c) ∧
 o ≠ o2

)
)
}

Phase II Part 4 | Page 53

Query 3: List restaurants from which every customer has ordered.

{ r, n | Restaurant (r, n) ∧ (∀c)(Customer (c, _ , _ , _ , _ , _) →
 (∃o)(Order (o, _ , _ , _ , _ , _ , _ , c) ∧
 (∃f)(Includes (o, _ , f, _ , _) ∧ Franchise (f, _ , _ , _ , _ , r)
)
)
)
}

Query 4: List customers who were registered by Peter Patrone.

{ c, v, w, x, y, z | Customer (c, v , w , x , y , z) ∧
 (∃e)(Employee (e , ‘Peter’, _ , ‘Patrone’) ∧ (Registers (e , c, _ , _)

)
}

Query 5: List customers who were members anytime between 5/1/2010, and 6/25/2010.

{ c, v, w, x, y, z | Customer (c, v , w , x , y , z) ∧
 (Registers (_ , c, > ‘5/1/2010’ ∧ < ‘6/25/2010’ _ , 2 ∨ 1) ∨
 ((∃d1)(Registers (_ , c, d1, 2) ∧ (∃d2)(Registers (_ , c, d2, 1) ∧
 d1 ≤ ‘5/1/2010’ ∧ d2 < d1

)
)
)
)
}

Query 6: List customers who’ve never placed an order from a Taco Bell in the 93308 zip code
 area.

{ c, v, w, x, y, z | Customer (c, v, w, x, y, z) ∧ ¬(∃o)(Order (o, _ , _ , _ , _ , _ , _ , c) ∧
 (∃f)(Includes (o, _ , f, _ , _) ∧
 (∃r)(Franchise (f, _ , _ , 93312, r) ∧
 Restaurant (r, ‘Taco Bell’)
)
)
)
}

Phase II Part 4 | Page 54

Query 7: List franchises with the second least expensive combos.

{ f, v, w, x, y, z | Franchise (f, v, w, x, y, z) ∧ (∃c) (∃p)(Contains (c, _) ∧ Item (c, _ , p, _) ∧
 (∃p1)(Item (_ , _ , p1, _) ∧ p1 < p ∧
 ¬(∃p2)(Item (_ , _ , p2, _) ∧
 p2 < p ∧ p2 ≠ p1
)
)
)
}

Query 8: List employees who delivered items from each franchise location in the 93312 zip
 code area on 7/4/2010.

{ e, x, y, z | Employee (e, x, y, z) ∧ (∀f)(Franchise (f, _ , _ , 93312, _ , _) →
 (∃o)(Includes (o, _ , f, _ , _) ∧
 Delivers (e, o, _ , >’7/3/2010’ ∧ <’7/5/2010’)
)
)
}

Query 9: List employees who’ve not sold memberships, or made deliveries to any customers.

{ e, x, y, z | Employee (e, x, y, z) ∧ ¬(∃e1)((Delivers (e1, _ , _ , ≠ NULL) ∨
 Registers (e1, _ , _ , 2)) ∧ e = e1

)
}

Query 10: List employees for whom it’s taken more than 1.5 hours to deliver an order.

{ e, x, y, z | Employee (e, x, y, z) ∧ (∃s1)(∃s2)(Delivers (e, _ , s1, s2) ∧ s2 ≠ NULL ∧
 (s1 – s2) > 1.5 hrs

)
}

Phase III

Logical and Physical Database
Creation

With the Oracle DBMS

Part 1: The SQL*Plus Command Utility 56

Part 2: Schema Objects_____________________ 56

Part 3: Relation Schema 59

Part 4: Queries in SQL 83

Part 5: Loading Record Data to the DB 89

Phase III Parts 1 & 2 | Page 56

Part 1: The SQL*Plus Command Utility
 SQL*Plus is a command line interface tool used to access data stored in an Oracle
database. The application originates from a prior Oracle utility called UFI, short for “User
friendly utility.” Because UFI was not as robust as many programmers felt it needed to be, new
features were added to the UFI program to the point where it was made quite advanced, and
Oracle decided to change the name to SQL*Plus.

 The great thing about this application is that it enables users to do all the things
necessary to create a full-featured Database in Oracle 10g. Not only does it run SQL, and
PL/SQL commands, but also operating system commands which allow users the ability to
format, perform calculations on, store, and print from query results. With it, one can examine
table objects, and definitions, and output query results to a text file for later review. Even though
today there are more graphically involved user interfaces that allow people to perform similar
functions, SQL*Plus still serves an important need for people interested in quick database
access, maintenance, and manipulation.

Part 2: Schema Objects
A schema object is a collection of logical structures of data. Such objects are stored logically in
tablespaces of the database, where the data of each object is physically stored, contained in
datafiles which can span multiple physical locations.

Common schema objects in Oracle include tables, views, indexes, procedures, functions,
database links, clusters, triggers, dimensions, sequences, and synonyms. The following is a
description of each:

2.1 Table
A form of table has already been presented in this project through the relation, however, not all
tables can be a form of relation. Like relations tables have columns, and rows used to
manipulate, and organize data. However, unlike relations SQL tables can have nonunique
repeating row values. Otherwise, for the most part tables are like relations in that they contain
columns which act much like attributes, and records are stored in rows much like tuples in a
relation.

Phase III Part 2 | Page 57

2.2 Views
Views are essentially virtual tables. Like tables, views display data logically arranged in terms
of rows, and columns, but views don’t actually store information like tables. In fact, the only
thing stored in a view is a query used to organize together information from actual tables to form
a table-like structure that only shows what other tables have already stored. Views provide a
great benefit in that they are more secure than tables, because they are read only. They can also
display aggregate function results useful in performing day-to-day database operations.

2.3 Indexes
An index is a copy of part of a table. It’s used to improve data lookup speed by not having to
bring up the entire contents of a table to retrieve wanted information. In being small, they also
take up significantly less space than a table. This allows them to be stored in main memory
giving reason the significant improvement in lookup time. Still, even though they take up less
space, they’re still more space than the table alone. Also , because it’s not just the table that
information is written to (the index is written to as well), longer write times are required.
Indexes are definitely a tradeoff considered by most people.

2.4 Procedures
Procedures are subroutines accessed by relational database applications. They’re useful, because
they help setup control mechanisms through which many statements for actions to be performed
on the database can be made. There are many useful function-type features built into stored
procedures. Not only are stored procedures good to use for data validation, but also for limiting
user control access to the database for safety reasons.

 2.5 Functions
Functions are pretty much the same as stored procedures except that functions be used like any
other SQL expression, whereas stored procedures must be instantiated using the CALL
statement. Functions also commonly use a return statement to return values.

2.6 Database Links
Database links are schema objects that enable one to access objects in another database. With a
database link schema object one can even connect with database that isn’t necessarily an Oracle
database either. Once a database link is established all local database operations can be
employed just as well on the other link database. All standard options with SQL in terms of
insertions, deletions, update, etc. can be performed.

2.7 Clusters
Clusters are an optional method of data organization used in contextual optimizations that
require having commonly accessed sets of table data to be stored contiguously.

Phase III Part 2 | Page 58

2.8 Triggers
Triggers are code programmed to set off and run a procedure the moment a specified event
happens. Mostly triggers are used to ensure data integrity so that if say one were to insert
something in one relation, the trigger would go off alerting that business constraints require that
other relation fields somewhere else must also be modified.

2.9 Dimensions
Dimensions are objects that help to categorize the properties of a business, and it’s methods so as
to answer important question people in their business may have regarding their own methods of
running the business. An example given by Oracle on what a dimension would be good for is a
retail chain management building a data warehouse to analyze sales trends of products across all
of their stores. This is setup through hierarchies in columns of a table representing different
levels of an organization.

2.10 Sequences
An easy way to setup autoincrementing of values for specified attributes as records are entered is
through sequences. These are mostly used in primary key fields due to the requirement for such
fields to be unique.

2.11 Synonyms
Synonyms are aliases used to reference tables, and table attributes for the sake of allowing users
a simpler way to reference the object to which the synonym refers. It also makes it more
difficult for malicious programs to attack the named object.

Phase III Part 3 | Page 59

Part 3: Relation Schema
The main schema objects used in this project are table relations, though there is some indexing,
mostly through use of indexing of primary keys. This section is essentially a snapshot of the data
residing in the database.

HV_EMPLOYEE

Relation Schema Instances

CS342 SQL> DESC HV_EMPLOYEE

 Name Null? Type
 ----------------- -------- ------------
 EMPLOYEEID NOT NULL NUMBER(8)
 EFIRST NOT NULL VARCHAR2(20)
 EMIDINITIAL CHAR(1)
 ELAST NOT NULL VARCHAR2(40)

CS342 SQL> SELECT * FROM HV_EMPLOYEE;

EMPLOYEEID EFIRST E ELAST
---------- -------------------- - --
 1 Stanley L Marsh
 2 Brazuk Pierce
 3 Marsha Bentley
 4 Fred S Armstrong
 5 Marisol M Stensos
 6 Larry Guytez
 7 Peter P Patrone
 8 Curtis B Whicks
 9 Wei H Kai
 10 Tiffany Cooper
 11 Allison Jester

11 rows selected.

HV_MILEAGELOG

CS342 SQL> DESC HV_MILEAGELOG
 Name Null? Type
 ----------------------- -------- ----------------
 EMPLOYEEID NOT NULL NUMBER(8)
 SDATE NOT NULL TIMESTAMP(0)
 EDATE TIMESTAMP(0)
 STARTMILEAGE NOT NULL NUMBER(6)
 ENDMILEAGE NUMBER(6)

CS342 SQL> SELECT * FROM HV_MILEAGELOG;

EMPLOYEEID SDATE EDATE STARTMILEAGE ENDMILEAGE
---------- ------------------------- ------------------------- ------------ ----------
 2 02-JUL-10 07.50.00 AM 02-JUL-10 02.10.00 PM 94032 94073
 4 02-JUL-10 09.35.00 AM 02-JUL-10 05.52.00 PM 119003 119041
 6 03-JUL-10 07.13.00 AM 03-JUL-10 05.21.00 PM 56213 56233
 4 03-JUL-10 09.09.00 AM 03-JUL-10 01.54.00 PM 119053 119118
 8 03-JUL-10 05.48.00 PM 03-JUL-10 08.31.00 PM 81423 81463
 1 04-JUL-10 08.21.00 AM 04-JUL-10 01.15.00 PM 76324 76397
 10 04-JUL-10 01.04.00 PM 04-JUL-10 06.45.00 PM 155221 155318
 9 04-JUL-10 04.33.00 PM 04-JUL-10 07.18.00 PM 121351 121396
 11 05-JUL-10 07.07.00 AM 147214
 9 05-JUL-10 10.15.00 AM 121384
 7 05-JUL-10 11.10.00 AM 61352

11 rows selected.

Phase III Part 3 | Page 60

HV_CUSTOMER

CS342 SQL> DESC HV_CUSTOMER
 Name Null? Type
 ----------------- -------- ------------
 CUSTOMERID NOT NULL NUMBER(8)
 CFIRST NOT NULL VARCHAR2(20)
 CMIDINITIAL CHAR(1)
 CLAST NOT NULL VARCHAR2(40)
 PHONE NOT NULL NUMBER(10)
 MEMBERSTATUS NOT NULL NUMBER(1)

CS342 SQL> SELECT * FROM HV_CUSTOMER;

CUSTOMERID CFIRST C CLAST PHONE MEMBERSTATUS
---------- -------- - ------------ ---------- ------------
 1 Polly G Fredericks 6613314574 0
 2 Rachel Larson 6615893212 0
 3 Henry K Ricks 6617589212 1
 4 Saul M Steinbeck 6612059354 1
 5 Daniel Simpson 8053652241 1
 6 Matt Groening 6618614124 0
 7 Karen F Chu 8057584790 1
 8 Ryan L Scott 8057583787 0
 9 Jeff Green 6615894512 1
 10 Manmeet Chunta 6613584124 0
 11 Greg A Ford 8059683641 0

11 rows selected.

HV_CSTMRADDRESS

CS342 SQL> DESC HV_CSTMRADDRESS
 Name Null? Type
 ----------------- -------- ------------
 ADDRESSID NOT NULL NUMBER(8)
 STREET NOT NULL VARCHAR2(60)
 APT VARCHAR2(10)
 CITY NOT NULL VARCHAR2(20)
 ZIP NOT NULL NUMBER(5)
 CUSTOMERID NOT NULL NUMBER(8)

CS342 SQL> SELECT * FROM HV_CSTMRADDRESS;

 ADDRESSID STREET APT CITY ZIP CUSTOMERID
---------- ------------------------- ---------- ----------- ---------- ----------
 1 11421 Old Town Rd A Bakersfield 93312 1
 2 118 Harvest Creek Rd Bakersfield 93311 2
 3 Elk Hill Rd Gate 3 Taft 93268 2
 4 253 Alki Ct Bakersfield 93314 3
 5 12321 Dorsey Ct 3C Bakersfield 93311 4
 6 1775 Balvanera Ave Lamont 93241 5
 7 2321 Hialeah Park Ln 319 Bakersfield 93309 6
 8 22314 Verdelho Ave Bakersfield 93312 7
 9 10017 Great Country Dr Bakersfield 93306 8
 10 905 Mayacamas Dr Taft 93268 8
 11 3421 Allene Way G Bakersfield 93383 9
 12 5843 Red River Dr Lamont 93241 4
 13 342 Treasure Island St Bakersfield 93308 10
 14 44321 Abbott Dr 21 Bakersfield 93308 5
 15 423 Beyers St Lamont 93241 3
 16 784 Tanner Michael Dr Bakersfield 93312 11
 17 321 Skye Dr B Bakersfield 93309 4
 18 562 Linda Vista Dr Bakersfield 93308 8
 19 119 Ray St Bakersfield 93313 2

19 rows selected.

Phase III Part 3 | Page 61

HV_ORDER
CS342 SQL> DESC HV_ORDER
 Name Null? Type
 ----------------- -------- ------------
 ORDERNUMBER NOT NULL NUMBER(8)
 ODATE NOT NULL TIMESTAMP(0)
 ORDERSTATUS NOT NULL NUMBER(1)
 DELIVERYCHARGE NUMBER(38,2)
 OMEMBERSTATUS NOT NULL NUMBER(1)
 DESTINATION NOT NULL NUMBER(8)
 EMPLOYEEID NOT NULL NUMBER(8)
 CUSTOMERID NOT NULL NUMBER(8)

HV_RESTAURANT
CS342 SQL> DESC HV_RESTAURANT;
 Name Null? Type
 ----------------- -------- ------------
 RSTID NOT NULL NUMBER(8)
 RNAME NOT NULL VARCHAR2(30)

CS342 SQL> SELECT * FROM HV_RESTAURANT;
 RSTID RNAME
---------- ------------------------------
 1 Every Meal Delivery
 2 Carls Jr
 3 Starbucks Coffee
 4 Taco Bell
 5 Panda Express
 6 McDonalds
 7 Wendys
 8 Jack in the Box
 9 In and Out
 10 Burger King
 11 Del Taco
 12 Pollo Loco

12 rows selected.

Phase III Part 3 | Page 62

HV_FRANCHISE

CS342 SQL> DESC HV_FRANCHISE
 Name Null? Type
 ----------------- -------- ------------
 FID NOT NULL NUMBER(8)
 FSTREET NOT NULL VARCHAR2(60)
 FCITY NOT NULL VARCHAR2(20)
 FZIP NOT NULL NUMBER(5)
 FPHONE NOT NULL NUMBER(10)
 RSTID NOT NULL NUMBER(8)

CS342 SQL> SELECT * FROM HV_FRANCHISE;

 FID FSTREET FCITY FZIP FPHONE RSTID
---------- ----------------------------------- -------------- ---------- ---------- ----------
 1 9001 Stockdale Hwy Bakersfield 93311 6616542782 1
 2 9500 Brimhall Rd Ste A Bakersfield 93312 6615874859 2
 3 9801 Hageman Rd Bakersfield 93312 6615875199 3
 4 9640 Hageman Rd. Bakersfield 93312 6612134574 4
 5 9200 Rosedale Highway 300 Bakersfield 93312 6615872316 5
 6 4520 Coffee Road Bakersfield 93312 6615879085 2
 7 9200 Rosedale Hwy Bakersfield 93312 6615873661 3
 8 5121 Olive Drive Bakersfield 93308 6613937718 4
 9 5120 Stockdale Hwy Space A Bakersfield 93309 6613232033 5
 10 9000 Ming Ave Ste Q Bakersfield 93311 6616652396 2
 11 4420 Coffee Road Unit B Bakersfield 93308 6615873661 3
 12 3799 Rosedale Hwy Bakersfield 93308 6613253862 4
 13 5041 Gosford Rd F1 Bakersfield 93313 6616640391 5
 14 5520 Stockdale Hwy Bakersfield 93383 6613229857 2
 15 13133 Rosedale Hwy Bakersfield 93314 6618292651 3
 16 3300 Buena Vista Rd Bakersfield 93311 6616638131 4
 17 1400 Brundage Lane Space 101 Bakersfield 93304 6616380748 5
 18 3501 Panama Ln Bakersfield 93313 6618338414 2
 19 420A Weedpatch highway Bakersfield 93307 6613636961 3
 20 1117 Kern Street Taft 93268 6617631177 4

20 rows selected.

HV_ITEM

CS342 SQL> DESC HV_ITEM
 Name Null? Type
 ----------------- -------- ------------
 ITEMID NOT NULL NUMBER(8)
 INAME NOT NULL VARCHAR2(60)
 PRICE NUMBER(38,2)

CS342 SQL> SELECT * FROM HV_ITEM;

 ITEMID INAME PRICE
---------- -- ----------
 1 Membership 20
 2 Fries-Small 1.49
 3 Fries-Medium 1.79
 4 Fries-Large 1.89
 5 Fries-CrissCut 1.99
 6 Fries-Chili Cheese 2.99
 7 Onion Rings 1.99
 8 Fried Zucchini 1.99
 9 Side Salad 1.79
 10 Fish & Chips 4.99
 11 Coffee Channel Islands Roasting Co 1.29
 12 DASANI Water 1.49
 13 Milk 1.09
 14 Orange Juice 1.39
 15 Shake-Oreo Cookie 2.99
 16 Shake-Chocolate 2.99
 17 Shake-Vanilla 2.99

Phase III Part 3 | Page 63

 ITEMID INAME PRICE
---------- -- ----------
 18 Shake-Strawberry 2.99
 19 Chocolate Chip Cookie .99
 20 Strawberry Cheesecake 1.89
 21 Chocolate Cake 1.69
 22 Chicken Strips-3 Piece 3.19
 23 Chicken Strips-5 Piece 4.79
 24 Salad-Original 4.79
 25 Salad-Hawaiian Grilled Chicken 4.99
 26 Salad-Cranberry Apple Walnut 4.99
 27 Salad-Southwest 4.99
 28 Soda-Small-Coca Cola Classic 1.39
 29 Soda-Medium-Coca Cola Classic 1.69
 30 Soda-Large-Coca Cola Classic 1.89
 31 Soda-Small-Diet Coke 1.39
 32 Soda-Medium-Diet Coke 1.69
 33 Soda-Large-Diet Coke 1.89
 34 Soda-Small-Barqs Root Beer 1.39
 35 Soda-Medium-Barqs Root Beer 1.69
 36 Soda-Large-Barqs Root Beer 1.89
 37 Soda-Small-Dr Pepper 1.39
 38 Soda-Medium-Dr Pepper 1.69
 39 Soda-Large-Dr Pepper 1.89
 40 Soda-Small-Sprite 1.39
 41 Soda-Medium-Sprite 1.69
 42 Soda-Large-Sprite 1.89
 43 Soda-Small-Minute Maid Orange 1.39
 44 Soda-Medium-Minute Maid Orange 1.69
 45 Soda-Large-Minute Maid Orange 1.89
 46 Soda-Small-Rasberry Nestea 1.39
 47 Soda-Medium-Rasberry Nestea 1.69
 48 Soda-Large-Rasberry Nestea 1.89
 49 Soda-Small-Iced Tea 1.39
 50 Soda-Medium-Iced Tea 1.69
 51 Soda-Large-Iced Tea 1.89
 52 Burger-Famous Star with Cheese 2.49
 53 Burger-Super Star with Cheese 3.99
 54 Burger-Western Bacon Cheeseburger 2.99
 55 Burger-Double Western Bacon Cheeseburger 4.09
 56 Burger-Teriyaki Burger 2.69
 57 Burger-Jalapeno Burger 2.99
 58 Burger-Philly CheeseSteak Burger 3.49
 59 Burger-The Big Carl 2.69
 60 Burger-Original Six Dollar 3.99
 61 Burger-Guacamole Bacon Six Dollar 4.99
 62 Burger-Western Bacon Six Dollar 4.99
 63 Burger-Portobello Mushroom Six Dollar 4.89
 64 Burger-Jalapeno Six Dollar 4.69
 65 Burger-Low Carb Six Dollar 3.99
 66 Burger-Teriyaki Chicken Sandwich 3.89
 67 Burger-Charbroiled Chicken Club 4.39
 68 Burger-Charbroiled Santa Fe Chicken 4.19
 69 Burger-Charbroiled BBQ Chicken 3.99
 70 Burger-Bacon Swiss Crispy Chicken 4.49
 71 Burger-Carls Catch Fish Sandwich 3.79
 72 Combo-Famous Star with Cheese 4.99
 73 Combo-Super Star with Cheese 6.49
 74 Combo-Western Bacon Cheeseburger 5.49
 75 Combo-Double Western Bacon Cheeseburger 6.59
 76 Combo-Teriyaki Burger 5.19
 77 Combo-Jalapeno Burger 5.49
 78 Combo-Philly CheeseSteak Burger 5.99
 79 Combo-The Big Carl 4.99
 80 Combo-Original Six Dollar 6.49
 81 Combo-Guacamole Bacon 7.49
 82 Combo-Western Bacon Six Dollar 7.49
 83 Combo-Portobello Mushroom Six Dollar 7.39
 84 Combo-Jalapeno Six Dollar 7.19
 85 Combo-Low Carb Six Dollar 6.49
 86 Combo-Teriyaki Chicken Sandwich 6.39

Phase III Part 3 | Page 64

 ITEMID INAME PRICE
---------- -- ----------
 87 Combo-Charbroiled Chicken Club 6.89
 88 Combo-Charbroiled Santa Fe Chicken 6.69
 89 Combo-Charbroiled BBQ Chicken 6.49
 90 Combo-Bacon Swiss Crispy Chicken 6.99
 91 Combo-Carls Catch Fish Sandwich 6.29
 92 Pumpkin Spice Latte-Grande 4.15
 93 Pumpkin Spice Latte-Venti 4.65
 94 White Chocolate Mocha-Grande 3.95
 95 White Chocolate Mocha-Venti 4.45
 96 Caramel Macchiato-Grande 3.85
 97 Caramel Macchiato-Venti 4.25
 98 Caffe Latte-Grande 3.35
 99 Caffe Latte-Venti 3.6
 100 Toffee Mocha-Grande 4.15
 101 Toffee Mocha-Venti 4.65
 102 Skinny Vanilla Latte-Grande 3.75
 103 Skinny Vanilla Latte-Venti 4
 104 Chai Tea Latte-Grande 3.55
 105 Chai Tea Latte-Venti 3.95
 106 Pike Place Roast-Grande 1.85
 107 Pike Place Roast-Venti 2
 108 Frapuccino-Strawberries N Creme-Grande 3.95
 109 Frapuccino-Strawberries N Creme-Venti 4.6
 110 Frapuccino-Caramel-Grande 3.95
 111 Frapuccino-Caramel-Venti 4.6
 112 Frapuccino-Mocha-Grande 3.95
 113 Frapuccino-Mocha-Venti 4.6
 114 Tea-Shaken Iced Passion Tea Lemonade-Grande 2.8
 115 Tea-Shaken Iced Passion Tea Lemonade-Venti 3.15
 116 Tea-Shaken Iced Black Tea-Grande 1.95
 117 Tea-Shaken Iced Black Tea-Venti 2.3
 118 Tea-Iced Chai Tea Latte-Grande 3.55
 119 Tea-Iced Chai Tea Latte-Venti 3.95
 120 Iced-Coffee w Milk-Grande 2.35
 121 Iced-Coffee w Milk-Venti 2.65
 122 Iced-Coffee-Grande 2.35
 123 Iced-Coffee-Venti 2.65
 124 Iced-Caffe Latte-Grande 3.35
 125 Iced-Caffe Latte-Venti 3.6
 126 Iced-Caramel Macchiato-Grande 3.85
 127 Iced-Caramel Macchiato-Venti 4.25
 128 Starbucks Perfect Oatmeal 2.45
 129 Banana Walnut Bread 1.95
 130 Artisan Ham Breakfast Sandwich 3.25
 131 Reduced Fat Cinnamon Swirl Coffee Cake 1.95
 132 Turkey and Swiss Sandwich 5.75
 133 Roasted Tomato & Mozzarella Panini 5.45
 134 Protein Plate 4.95
 135 Petite Vanilla Bean Scone 2.25
 136 Soda-Small-Pepsi 1.19
 137 Soda-Medium-Pepsi 1.39
 138 Soda-Large-Pepsi 1.59
 139 Soda-XLarge-Pepsi 1.79
 140 Soda-Small-Diet Pepsi 1.19
 141 Soda-Medium-Diet Pepsi 1.39
 142 Soda-Large-Diet Pepsi 1.59
 143 Soda-XLarge-Diet Pepsi 1.79
 144 Soda-Small-Sierra Mist 1.19
 145 Soda-Medium-Sierra Mist 1.39
 146 Soda-Large-Sierra Mist 1.59
 147 Soda-XLarge-Sierra Mist 1.79
 148 Soda-Small-Mountain Dew 1.19
 149 Soda-Medium-Mountain Dew 1.39
 150 Soda-Large-Mountain Dew 1.59
 151 Soda-XLarge-Mountain Dew 1.79
 152 Soda-Small-Mountain Dew Baja Blast 1.19
 153 Soda-Medium-Mountain Dew Baja Blast 1.39
 154 Soda-Large-Mountain Dew Baja Blast 1.59
 155 Soda-XLarge-Mountain Dew Baja Blast 1.79

Phase III Part 3 | Page 65

 ITEMID INAME PRICE
---------- -- ----------
 156 Soda-Small-MUG Rootbeer 1.19
 157 Soda-Medium-MUG Rootbeer 1.39
 158 Soda-Large-MUG Rootbeer 1.59
 159 Soda-XLarge-MUG Rootbeer 1.79
 160 Soda-Small-Lemonade 1.19
 161 Soda-Medium-Lemonade 1.39
 162 Soda-Large-Lemonade 1.59
 163 Soda-XLarge-Lemonade 1.79
 164 Soda-Small-Brisk Rasberry Tea 1.19
 165 Soda-Medium-Brisk Rasberry Tea 1.39
 166 Soda-Large-Brisk Rasberry Tea 1.59
 167 Soda-XLarge-Brisk Rasberry Tea 1.79
 168 Soda-Small-Dr Pepper 1.19
 169 Soda-Medium-Dr Pepper 1.39
 170 Soda-Large-Dr Pepper 1.59
 171 Soda-XLarge-Dr Pepper 1.79
 172 Soda-Small-Fruit Punch 1.19
 173 Soda-Medium-Fruit Punch 1.39
 174 Soda-Large-Fruit Punch 1.59
 175 Soda-XLarge-Fruit Punch 1.79
 176 Strawberry Frutista Freeze 1.99
 177 Mango Strawberry Frutista Freeze 1.99
 178 Cheesy Nachos .89
 179 Crunchy Taco .89
 180 Cinnamon Twists .89
 181 Cheese Rollup .89
 182 Crispy Potato Soft Taco .89
 183 Soft Taco .99
 184 Bean Burrito .99
 185 Beefy 5 Layer Burrito .99
 186 Chicken Burrito .99
 187 Caramel Apple Empanada .99
 188 Chicken FlatBread Sandwich .99
 189 Pintos and Cheese or Rice .99
 190 Cheesy Fiesta Potatoes 1.19
 191 Nachos BellGrande 2.99
 192 Nachos Supreme 1.99
 193 Nachos .99
 194 Volcano Nachos 3.49
 195 Mexican Pizza 2.89
 196 MexiMelt 1.69
 197 Chicken Quesadilla 2.59
 198 Steak Quesadilla 2.59
 199 Cheese Quesadilla 1.89
 200 Tostada 1.29
 201 Chicken Grilled Taquitos 1.99
 202 Steak Grilled Taquitos 1.99
 203 Crunchwrap Supreme 2.39
 204 Chipotle Steak Taco Salad 4.99
 205 Chicken Ranch Taco Salad 4.99
 206 Fiesta Taco Salad 4.39
 207 Baja Chalupa 1.89
 208 Supreme Chalupa 1.89
 209 Nacho Cheese Chalupa 1.89
 210 Baja Gordita 1.89
 211 Supreme Gordita 1.89
 212 Nacho Cheese Gordita 1.89
 213 Chicken Baja Chalupa 2.59
 214 Chicken Supreme Chalupa 2.59
 215 Steak Baja Chalupa 2.59
 216 Steak Supreme Chalupa 2.59
 217 Chicken Ranchero Taco 1.89
 218 Grilled Steak Taco 1.89
 219 Double Decker Taco 1.29
 220 Double Decker Taco Supreme 1.69
 221 Crunchy Taco Supreme 1.29
 222 Soft Taco Supreme 1.29
 223 Volcano Taco 1.19
 224 Chicken Soft Taco 1.29

Phase III Part 3 | Page 66

 ITEMID INAME PRICE
---------- -- ----------
 225 Grilled Stuft Burrito 2.39
 226 Chicken Grilled Stuft Burrito 3.39
 227 Steak Grilled Stuft Burrito 3.39
 228 Burrito Supreme 2.29
 229 Chicken Burrito Supreme 2.99
 230 Steak Burrito Supreme 2.99
 231 7 Layer Burrito 1.99
 232 Enchirito 1.99
 233 Volcano Burrito 2.99
 234 Half Pound Nacho Crunch Burrito 1.99
 235 Half Pound Cheesy Potato Burrito 1.99
 236 Half Pound Beef Combo Burrito 1.99
 237 Half Pound Cheesy Bean and Rice Burrito 1.49
 238 Cheesy Double Beef Burrito 1.49
 239 Combo 1-Burrito Supreme 4.49
 240 Combo 2-Grilled Stuft Beef Burrito 4.39
 241 Combo 2-Grilled Stuft Chicken Burrito 5.59
 242 Combo 2-Grilled Stuft Steak Burrito 5.59
 243 Combo 3- 3 Crunchy Tacos Supreme 4.59
 244 Combo 3-3 Soft Tacos Supreme 4.59
 245 Combo 4-Mexican Pizza & 2 Crunchy Tacos Supreme 5.89
 246 Combo 5-Nachos BellGrande & Crunchy Taco Supreme 4.99
 247 Combo 6-2 Beef Chalupas (Supreme or Baja) & Crunchy Taco 5.39
 248 Combo 6-2 Chicken or Steak Chalupas & Crunchy Taco 6.49
 249 Combo 7-Chicken or Steak Quesadilla 4.49
 250 Combo 8-3 Crunchy or Soft Tacos 3.99
 251 Combo 9-Crunchwrap Supreme & Crunchy Taco 4.29
 252 Small-Sierra Mist 1.4
 253 Medium-Sierra Mist 1.65
 254 Large-Sierra Mist 1.85
 255 Small-Pepsi 1.4
 256 Medium-Pepsi 1.65
 257 Large-Pepsi 1.85
 258 Small-Mountain Dew 1.4
 259 Medium-Mountain Dew 1.65
 260 Large-Mountain Dew 1.85
 261 Small-Diet Pepsi 1.4
 262 Medium-Diet Pepsi 1.65
 263 Large-Diet Pepsi 1.85
 264 Small-Dr Pepper 1.4
 265 Medium-Dr Pepper 1.65
 266 Large-Dr Pepper 1.85
 267 side-Mixed Veggies 0
 268 side-Fried Rice 0
 269 side-Steamed Rice 0
 270 side-Chow Mein 0
 271 entree-Orange Chicken 0
 272 entree-Kung Pao Chicken 0
 273 entree-Crispy Shrimp 0
 274 entree-Beijing Beef 0
 275 entree-String Bean Chicken Breast 0
 276 entree-Sweet and Sour Pork 0
 277 entree-Mandarin Chicken 0
 278 entree-Broccoli Beef 0
 279 entree-Chicken Egg Roll 0
 280 entree-2 Veggie Spring Rolls 0
 281 entree-Honey Walnut Shrimp 0
 282 entree-Mushroom Chicken 0
 283 entree-SweetFire Chicken Breast 0
 284 Combo-Single Entree 3
 285 Combo-Large Entree 9
 286 Combo-Single Side 2
 287 Combo-Large Side 3
 288 Combo-Panda Bowl 4.99
 289 Combo-Two Entree Plate 5.99
 290 Combo-Three Entree Plate 7.24
 291 Combo-Panda Feast 29

291 rows selected.

Phase III Part 3 | Page 67

HV_REGISTERS
CS342 SQL> DESC HV_REGISTERS;
 Name Null? Type
 ----------------- -------- ------------
 EMPLOYEEID NOT NULL NUMBER(8)
 CUSTOMERID NOT NULL NUMBER(8)
 RDATE NOT NULL TIMESTAMP(0)
 SELLMEMBERSHIP NOT NULL NUMBER(1)

CS342 SQL> SELECT * FROM HV_REGISTERS;
EMPLOYEEID CUSTOMERID RDATE SELLMEMBERSHIP
---------- ---------- --------------------------- --------------
 1 1 02-JUL-10 07.50.00 AM 0
 3 2 02-JUL-10 09.30.00 AM 0
 1 3 02-JUL-10 10.45.00 AM 2
 1 4 02-JUL-10 01.20.00 PM 2
 1 5 02-JUL-10 02.24.00 PM 2
 3 6 02-JUL-10 04.09.00 PM 0
 7 7 03-JUL-10 07.05.00 AM 2
 5 8 03-JUL-10 08.58.00 AM 0
 7 9 03-JUL-10 03.11.00 PM 2
 2 10 03-JUL-10 07.13.00 PM 2
 11 11 04-JUL-10 10.05.00 AM 0
 11 2 04-JUL-10 02.50.00 PM 2
 9 11 05-JUL-10 07.07.00 AM 2

HV_DELIVERS
CS342 SQL> DESC HV_DELIVERS
 Name Null? Type
 ----------------- -------- ------------
 EMPLOYEEID NOT NULL NUMBER(8)
 ORDERNUMBER NOT NULL NUMBER(8)
 DORECEIPTTIME NOT NULL TIMESTAMP(0)
 DELIVERYTIME TIMESTAMP(0)

CS342 SQL> SELECT * FROM HV_DELIVERS;
EMPLOYEEID ORDERNUMBER DORECEIPTTIME DELIVERYTIME
---------- ----------- --------------------------- ---------------------------
 2 1 02-JUL-10 07.58.00 AM 02-JUL-10 09.01.00 AM
 4 2 02-JUL-10 09.38.00 AM 02-JUL-10 10.15.00 AM
 2 3 02-JUL-10 10.48.00 AM 02-JUL-10 11.50.00 AM
 2 4 02-JUL-10 01.22.00 PM 02-JUL-10 02.10.00 PM
 4 5 02-JUL-10 02.25.00 PM 02-JUL-10 03.52.00 PM
 4 6 02-JUL-10 04.10.00 PM 02-JUL-10 05.40.00 PM
 6 7 03-JUL-10 07.08.00 AM 03-JUL-10 08.01.00 AM
 4 8 03-JUL-10 09.01.00 AM 03-JUL-10 09.49.00 AM
 4 9 03-JUL-10 11.22.00 AM 03-JUL-10 01.15.00 PM
 6 10 03-JUL-10 03.14.00 PM 03-JUL-10 05.13.00 PM
 8 11 03-JUL-10 05.47.00 PM 03-JUL-10 06.58.00 PM
 8 12 03-JUL-10 07.14.00 PM 03-JUL-10 08.05.00 PM
 1 13 04-JUL-10 08.16.00 AM 04-JUL-10 09.05.00 AM
 1 14 04-JUL-10 08.48.00 AM 04-JUL-10 11.02.00 AM
 9 15 04-JUL-10 10.08.00 AM 04-JUL-10 11.58.00 AM
 1 16 04-JUL-10 12.11.00 PM 04-JUL-10 01.05.00 PM
 10 17 04-JUL-10 01.04.00 PM 04-JUL-10 01.55.00 PM
 10 18 04-JUL-10 02.57.00 PM 04-JUL-10 03.49.00 PM
 9 19 04-JUL-10 04.30.00 PM 04-JUL-10 05.13.00 PM
 9 20 04-JUL-10 05.12.00 PM 04-JUL-10 07.00.00 PM
 10 21 04-JUL-10 06.40.00 PM
 11 22 05-JUL-10 07.04.00 AM 05-JUL-10 08.01.00 AM
 11 23 05-JUL-10 08.21.00 AM 05-JUL-10 09.15.00 AM
 9 24 05-JUL-10 10.12.00 AM 05-JUL-10 11.35.00 AM
 7 25 05-JUL-10 11.07.00 AM
 11 26 05-JUL-10 11.09.00 AM 05-JUL-10 11.40.00 AM
 7 27 05-JUL-10 11.21.00 AM
 11 28 05-JUL-10 11.27.00 AM
 7 29 05-JUL-10 11.36.00 AM
 9 30 05-JUL-10 11.41.00 AM

30 rows selected.

Phase III Part 3 | Page 68

HV_OFFERS

CS342 SQL> DESC HV_OFFERS
 Name Null? Type
 ----------------- -------- ------------
 FID NOT NULL NUMBER(8)
 ITEMID NOT NULL NUMBER(8)

CS342 SQL> SELECT * FROM HV_OFFERS;

 FID ITEMID
---------- ----------
 1 1
 2 2
 2 3
 2 4
 2 5
 2 6
 2 7
 2 8
 2 9
 2 10
 2 11
 2 12
 2 13
 2 14
 2 15
 2 16
 2 17
 2 18
 2 19
 2 20
 2 21
 2 22
 2 23
 2 24
 2 25
 2 26
 2 27
 2 28
 2 29
 2 30
 2 31
 2 32
 2 33
 2 34
 2 35
 2 36
 2 37
 2 38
 2 39
 2 40
 2 41
 2 42
 2 43
 2 44
 2 45
 2 46
 2 47
 2 48
 2 49
 2 50
 2 51
 2 52
 2 53
 2 54
 2 55
 2 56
 2 57
 2 58

(HV_OFFERS Instance Continued Here …)

 FID ITEMID
---------- ----------
 2 59
 2 60
 2 61
 2 62
 2 63
 2 64
 2 65
 2 66
 2 67
 2 68
 2 69
 2 70
 2 71
 2 72
 2 73
 2 74
 2 75
 2 76
 2 77
 2 78
 2 79
 2 80
 2 81
 2 82
 2 83
 2 84
 2 85
 2 86
 2 87
 2 88
 2 89
 2 90
 2 91
 3 92
 3 93
 3 94
 3 95
 3 96
 3 97
 3 98
 3 99
 3 100
 3 101
 3 102
 3 103
 3 104
 3 105
 3 106
 3 107
 3 108
 3 109
 3 110
 3 111
 3 112
 3 113
 3 114
 3 115
 3 116

Phase III Part 3 | Page 69

 FID ITEMID
---------- ----------
 3 117
 3 118
 3 119
 3 120
 3 121
 3 122
 3 123
 3 124
 3 125
 3 126
 3 127
 3 128
 3 129
 3 130
 3 131
 3 132
 3 133
 3 134
 3 135
 4 136
 4 137
 4 138
 4 139
 4 140
 4 141
 4 142
 4 143
 4 144
 4 145
 4 146
 4 147
 4 148
 4 149
 4 150
 4 151
 4 152
 4 153
 4 154
 4 155
 4 156
 4 157
 4 158
 4 159
 4 160
 4 161
 4 162
 4 163
 4 164
 4 165
 4 166
 4 167
 4 168
 4 169
 4 170
 4 171
 4 172
 4 173
 4 174
 4 175
 4 176
 4 177
 4 178
 4 179
 4 180
 4 181
 4 182
 4 183
 4 184
 4 185

 FID ITEMID
---------- ----------
 4 186
 4 187
 4 188
 4 189
 4 190
 4 191
 4 192
 4 193
 4 194
 4 195
 4 196
 4 197
 4 198
 4 199
 4 200
 4 201
 4 202
 4 203
 4 204
 4 205
 4 206
 4 207
 4 208
 4 209
 4 210
 4 211
 4 212
 4 213
 4 214
 4 215
 4 216
 4 217
 4 218
 4 219
 4 220
 4 221
 4 222
 4 223
 4 224
 4 225
 4 226
 4 227
 4 228
 4 229
 4 230
 4 231
 4 232
 4 233
 4 234
 4 235
 4 236
 4 237
 4 238
 4 239
 4 240
 4 241
 4 242
 4 243
 4 244
 4 245
 4 246
 4 247
 4 248
 4 249
 4 250
 4 251
 5 252
 5 253
 5 254

Phase III Part 3 | Page 70

 FID ITEMID
---------- ----------
 5 255
 5 256
 5 257
 5 258
 5 259
 5 260
 5 261
 5 262
 5 263
 5 264
 5 265
 5 266
 5 267
 5 268
 5 269
 5 270
 5 271
 5 272
 5 273
 5 274
 5 275
 5 276
 5 277
 5 278
 5 279
 5 280
 5 281
 5 282
 5 283
 5 284
 5 285
 5 286
 5 287
 5 288
 5 289
 5 290
 5 291
 6 2
 6 3
 6 4
 6 5
 6 6
 6 7
 6 8
 6 9
 6 10
 6 11
 6 12
 6 13
 6 14
 6 15
 6 16
 6 17
 6 18
 6 19
 6 20
 6 21
 6 22
 6 23
 6 24
 6 25
 6 26
 6 27
 6 28
 6 29
 6 30
 6 31
 6 32
 6 33

 FID ITEMID
---------- ----------
 6 34
 6 35
 6 36
 6 37
 6 38
 6 39
 6 40
 6 41
 6 42
 6 43
 6 44
 6 45
 6 46
 6 47
 6 48
 6 49
 6 50
 6 51
 6 52
 6 53
 6 54
 6 55
 6 56
 6 57
 6 58
 6 59
 6 60
 6 61
 6 62
 6 63
 6 64
 6 65
 6 66
 6 67
 6 68
 6 69
 6 70
 6 71
 6 72
 6 73
 6 74
 6 75
 6 76
 6 77
 6 78
 6 79
 6 80
 6 81
 6 82
 6 83
 6 84
 6 85
 6 86
 6 87
 6 88
 6 89
 6 90
 6 91
 7 92
 7 93
 7 94
 7 95
 7 96
 7 97
 7 98
 7 99
 7 100
 7 101
 7 102

Phase III Part 3 | Page 71

 FID ITEMID
---------- ----------
 7 103
 7 104
 7 105
 7 106
 7 107
 7 108
 7 109
 7 110
 7 111
 7 112
 7 113
 7 114
 7 115
 7 116
 7 117
 7 118
 7 119
 7 120
 7 121
 7 122
 7 123
 7 124
 7 125
 7 126
 7 127
 7 128
 7 129
 7 130
 7 131
 7 132
 7 133
 7 134
 7 135
 8 136
 8 137
 8 138
 8 139
 8 140
 8 141
 8 142
 8 143
 8 144
 8 145
 8 146
 8 147
 8 148
 8 149
 8 150
 8 151
 8 152
 8 153
 8 154
 8 155
 8 156
 8 157
 8 158
 8 159
 8 160
 8 161
 8 162
 8 163
 8 164
 8 165
 8 166
 8 167
 8 168
 8 169
 8 170
 8 171

 FID ITEMID
---------- ----------
 8 172
 8 173
 8 174
 8 175
 8 176
 8 177
 8 178
 8 179
 8 180
 8 181
 8 182
 8 183
 8 184
 8 185
 8 186
 8 187
 8 188
 8 189
 8 190
 8 191
 8 192
 8 193
 8 194
 8 195
 8 196
 8 197
 8 198
 8 199
 8 200
 8 201
 8 202
 8 203
 8 204
 8 205
 8 206
 8 207
 8 208
 8 209
 8 210
 8 211
 8 212
 8 213
 8 214
 8 215
 8 216
 8 217
 8 218
 8 219
 8 220
 8 221
 8 222
 8 223
 8 224
 8 225
 8 226
 8 227
 8 228
 8 229
 8 230
 8 231
 8 232
 8 233
 8 234
 8 235
 8 236
 8 237
 8 238
 8 239
 8 240

Phase III Part 3 | Page 72

 FID ITEMID
---------- ----------
 8 241
 8 242
 8 243
 8 244
 8 245
 8 246
 8 247
 8 248
 8 249
 8 250
 8 251
 9 252
 9 253
 9 254
 9 255
 9 256
 9 257
 9 258
 9 259
 9 260
 9 261
 9 262
 9 263
 9 264
 9 265
 9 266
 9 267
 9 268
 9 269
 9 270
 9 271
 9 272
 9 273
 9 274
 9 275
 9 276
 9 277
 9 278
 9 279
 9 280
 9 281
 9 282
 9 283
 9 284
 9 285
 9 286
 9 287
 9 288
 9 289
 9 290
 9 291
 10 2
 10 3
 10 4
 10 5
 10 6
 10 7
 10 8
 10 9
 10 10
 10 11
 10 12
 10 13
 10 14
 10 15
 10 16
 10 17
 10 18
 10 19

 FID ITEMID
---------- ----------
 10 20
 10 21
 10 22
 10 23
 10 24
 10 25
 10 26
 10 27
 10 28
 10 29
 10 30
 10 31
 10 32
 10 33
 10 34
 10 35
 10 36
 10 37
 10 38
 10 39
 10 40
 10 41
 10 42
 10 43
 10 44
 10 45
 10 46
 10 47
 10 48
 10 49
 10 50
 10 51
 10 52
 10 53
 10 54
 10 55
 10 56
 10 57
 10 58
 10 59
 10 60
 10 61
 10 62
 10 63
 10 64
 10 65
 10 66
 10 67
 10 68
 10 69
 10 70
 10 71
 10 72
 10 73
 10 74
 10 75
 10 76
 10 77
 10 78
 10 79
 10 80
 10 81
 10 82
 10 83
 10 84
 10 85
 10 86
 10 87
 10 88

Phase III Part 3 | Page 73

 FID ITEMID
---------- ----------
 10 89
 10 90
 10 91
 11 92
 11 93
 11 94
 11 95
 11 96
 11 97
 11 98
 11 99
 11 100
 11 101
 11 102
 11 103
 11 104
 11 105
 11 106
 11 107
 11 108
 11 109
 11 110
 11 111
 11 112
 11 113
 11 114
 11 115
 11 116
 11 117
 11 118
 11 119
 11 120
 11 121
 11 122
 11 123
 11 124
 11 125
 11 126
 11 127
 11 128
 11 129
 11 130
 11 131
 11 132
 11 133
 11 134
 11 135
 12 136
 12 137
 12 138
 12 139
 12 140
 12 141
 12 142
 12 143
 12 144
 12 145
 12 146
 12 147
 12 148
 12 149
 12 150
 12 151
 12 152
 12 153
 12 154
 12 155
 12 156
 12 157

 FID ITEMID
---------- ----------
 12 158
 12 159
 12 160
 12 161
 12 162
 12 163
 12 164
 12 165
 12 166
 12 167
 12 168
 12 169
 12 170
 12 171
 12 172
 12 173
 12 174
 12 175
 12 176
 12 177
 12 178
 12 179
 12 180
 12 181
 12 182
 12 183
 12 184
 12 185
 12 186
 12 187
 12 188
 12 189
 12 190
 12 191
 12 192
 12 193
 12 194
 12 195
 12 196
 12 197
 12 198
 12 199
 12 200
 12 201
 12 202
 12 203
 12 204
 12 205
 12 206
 12 207
 12 208
 12 209
 12 210
 12 211
 12 212
 12 213
 12 214
 12 215
 12 216
 12 217
 12 218
 12 219
 12 220
 12 221
 12 222
 12 223
 12 224
 12 225
 12 226

Phase III Part 3 | Page 74

 FID ITEMID
---------- ----------
 12 227
 12 228
 12 229
 12 230
 12 231
 12 232
 12 233
 12 234
 12 235
 12 236
 12 237
 12 238
 12 239
 12 240
 12 241
 12 242
 12 243
 12 244
 12 245
 12 246
 12 247
 12 248
 12 249
 12 250
 12 251
 13 252
 13 253
 13 254
 13 255
 13 256
 13 257
 13 258
 13 259
 13 260
 13 261
 13 262
 13 263
 13 264
 13 265
 13 266
 13 267
 13 268
 13 269
 13 270
 13 271
 13 272
 13 273
 13 274
 13 275
 13 276
 13 277
 13 278
 13 279
 13 280
 13 281
 13 282
 13 283
 13 284
 13 285
 13 286
 13 287
 13 288
 13 289
 13 290
 13 291
 14 2
 14 3
 14 4
 14 5

 FID ITEMID
---------- ----------
 14 6
 14 7
 14 8
 14 9
 14 10
 14 11
 14 12
 14 13
 14 14
 14 15
 14 16
 14 17
 14 18
 14 19
 14 20
 14 21
 14 22
 14 23
 14 24
 14 25
 14 26
 14 27
 14 28
 14 29
 14 30
 14 31
 14 32
 14 33
 14 34
 14 35
 14 36
 14 37
 14 38
 14 39
 14 40
 14 41
 14 42
 14 43
 14 44
 14 45
 14 46
 14 47
 14 48
 14 49
 14 50
 14 51
 14 52
 14 53
 14 54
 14 55
 14 56
 14 57
 14 58
 14 59
 14 60
 14 61
 14 62
 14 63
 14 64
 14 65
 14 66
 14 67
 14 68
 14 69
 14 70
 14 71
 14 72
 14 73
 14 74

Phase III Part 3 | Page 75

 FID ITEMID
---------- ----------
 14 75
 14 76
 14 77
 14 78
 14 79
 14 80
 14 81
 14 82
 14 83
 14 84
 14 85
 14 86
 14 87
 14 88
 14 89
 14 90
 14 91
 15 92
 15 93
 15 94
 15 95
 15 96
 15 97
 15 98
 15 99
 15 100
 15 101
 15 102
 15 103
 15 104
 15 105
 15 106
 15 107
 15 108
 15 109
 15 110
 15 111
 15 112
 15 113
 15 114
 15 115
 15 116
 15 117
 15 118
 15 119
 15 120
 15 121
 15 122
 15 123
 15 124
 15 125
 15 126
 15 127
 15 128
 15 129
 15 130
 15 131
 15 132
 15 133
 15 134
 15 135
 16 136
 16 137
 16 138
 16 139
 16 140
 16 141
 16 142
 16 143

 FID ITEMID
---------- ----------
 16 144
 16 145
 16 146
 16 147
 16 148
 16 149
 16 150
 16 151
 16 152
 16 153
 16 154
 16 155
 16 156
 16 157
 16 158
 16 159
 16 160
 16 161
 16 162
 16 163
 16 164
 16 165
 16 166
 16 167
 16 168
 16 169
 16 170
 16 171
 16 172
 16 173
 16 174
 16 175
 16 176
 16 177
 16 178
 16 179
 16 180
 16 181
 16 182
 16 183
 16 184
 16 185
 16 186
 16 187
 16 188
 16 189
 16 190
 16 191
 16 192
 16 193
 16 194
 16 195
 16 196
 16 197
 16 198
 16 199
 16 200
 16 201
 16 202
 16 203
 16 204
 16 205
 16 206
 16 207
 16 208
 16 209
 16 210
 16 211
 16 212

Phase III Part 3 | Page 76

 FID ITEMID
---------- ----------
 16 213
 16 214
 16 215
 16 216
 16 217
 16 218
 16 219
 16 220
 16 221
 16 222
 16 223
 16 224
 16 225
 16 226
 16 227
 16 228
 16 229
 16 230
 16 231
 16 232
 16 233
 16 234
 16 235
 16 236
 16 237
 16 238
 16 239
 16 240
 16 241
 16 242
 16 243
 16 244
 16 245
 16 246
 16 247
 16 248
 16 249
 16 250
 16 251
 17 252
 17 253
 17 254
 17 255
 17 256
 17 257
 17 258
 17 259
 17 260
 17 261
 17 262
 17 263
 17 264
 17 265
 17 266
 17 267
 17 268
 17 269
 17 270
 17 271
 17 272
 17 273
 17 274
 17 275
 17 276
 17 277
 17 278
 17 279
 17 280
 17 281

 FID ITEMID
---------- ----------
 17 282
 17 283
 17 284
 17 285
 17 286
 17 287
 17 288
 17 289
 17 290
 17 291
 18 2
 18 3
 18 4
 18 5
 18 6
 18 7
 18 8
 18 9
 18 10
 18 11
 18 12
 18 13
 18 14
 18 15
 18 16
 18 17
 18 18
 18 19
 18 20
 18 21
 18 22
 18 23
 18 24
 18 25
 18 26
 18 27
 18 28
 18 29
 18 30
 18 31
 18 32
 18 33
 18 34
 18 35
 18 36
 18 37
 18 38
 18 39
 18 40
 18 41
 18 42
 18 43
 18 44
 18 45
 18 46
 18 47
 18 48
 18 49
 18 50
 18 51
 18 52
 18 53
 18 54
 18 55
 18 56
 18 57
 18 58
 18 59
 18 60

Phase III Part 3 | Page 77

 FID ITEMID
---------- ----------
 18 61
 18 62
 18 63
 18 64
 18 65
 18 66
 18 67
 18 68
 18 69
 18 70
 18 71
 18 72
 18 73
 18 74
 18 75
 18 76
 18 77
 18 78
 18 79
 18 80
 18 81
 18 82
 18 83
 18 84
 18 85
 18 86
 18 87
 18 88
 18 89
 18 90
 18 91
 19 92
 19 93
 19 94
 19 95
 19 96
 19 97
 19 98
 19 99
 19 100
 19 101
 19 102
 19 103
 19 104
 19 105
 19 106
 19 107
 19 108
 19 109
 19 110
 19 111
 19 112
 19 113
 19 114
 19 115
 19 116
 19 117
 19 118
 19 119
 19 120
 19 121
 19 122
 19 123
 19 124
 19 125
 19 126
 19 127
 19 128
 19 129

 FID ITEMID
---------- ----------
 19 130
 19 131
 19 132
 19 133
 19 134
 19 135
 20 136
 20 137
 20 138
 20 139
 20 140
 20 141
 20 142
 20 143
 20 144
 20 145
 20 146
 20 147
 20 148
 20 149
 20 150
 20 151
 20 152
 20 153
 20 154
 20 155
 20 156
 20 157
 20 158
 20 159
 20 160
 20 161
 20 162
 20 163
 20 164
 20 165
 20 166
 20 167
 20 168
 20 169
 20 170
 20 171
 20 172
 20 173
 20 174
 20 175
 20 176
 20 177
 20 178
 20 179
 20 180
 20 181
 20 182
 20 183
 20 184
 20 185
 20 186
 20 187
 20 188
 20 189
 20 190
 20 191
 20 192
 20 193
 20 194
 20 195
 20 196
 20 197
 20 198

Phase III Part 3 | Page 78

 FID ITEMID
---------- ----------
 20 199
 20 200
 20 201
 20 202
 20 203
 20 204
 20 205
 20 206
 20 207
 20 208
 20 209
 20 210
 20 211
 20 212
 20 213
 20 214
 20 215
 20 216
 20 217
 20 218
 20 219
 20 220
 20 221
 20 222
 20 223
 20 224
 20 225
 20 226
 20 227
 20 228
 20 229
 20 230
 20 231
 20 232
 20 233
 20 234
 20 235
 20 236
 20 237
 20 238
 20 239
 20 240
 20 241
 20 242
 20 243
 20 244
 20 245
 20 246
 20 247
 20 248
 20 249
 20 250
 20 251

1411 rows selected.

Phase III Part 3 | Page 79

HV_INCLUDES

CS342 SQL> DESC HV_INCLUDES
 Name Null? Type
 ----------------- -------- ------------
 ORDERNUMBER NOT NULL NUMBER(8)
 ITEMID NOT NULL NUMBER(8)
 FID NOT NULL NUMBER(8)
 QUANTITY NOT NULL NUMBER(8)
 OPRICE NOT NULL NUMBER(38,2)

CS342 SQL> SELECT * FROM HV_INCLUDES;

ORDERNUMBER ITEMID FID QUANTITY OPRICE
----------- ---------- ---------- ---------- ----------
 1 90 2 1 6.99
 1 7 2 1 1.99
 1 19 2 2 .99
 1 93 7 1 4.65
 2 243 16 3 4.59
 2 177 16 2 176
 3 1 1 1 20
 3 72 2 1 4.99
 3 74 2 1 5.49
 3 96 15 2 3.85
 4 1 1 1 20
 4 26 10 1 4.99
 4 50 10 1 1.69
 4 78 10 1 5.99
 5 1 1 1 20
 5 291 9 1 29
 6 83 14 1 7.39
 6 290 9 3 7.24
 7 1 1 1 20
 7 104 3 1 3.55
 7 100 3 1 4.15
 7 97 3 1 4.25
 7 96 3 1 3.85
 8 52 14 10 2.49
 9 289 13 2 5.99
 9 102 15 1 3.75
 9 95 15 1 4.45
 9 206 20 1 4.39
 10 1 1 1 20
 10 52 14 5 2.49
 10 3 14 5 1.79
 11 1 1 1 20
 11 291 9 1 29
 11 285 9 1 9
 12 1 1 1 20
 12 107 11 1 2
 12 105 11 1 3.95
 12 110 11 1 3.95
 12 128 11 1 2.45
 12 127 11 1 4.25
 13 1 1 1 20
 13 132 11 2 5.75
 13 114 11 1 2.8
 13 102 11 1 3.75
 14 1 1 1 20
 14 25 19 1 4.99
 14 31 19 1 1.39
 15 289 5 1 5.99
 15 288 5 1 4.99
 15 97 7 4 4.25
 16 288 9 8 4.99
 17 93 11 2 4.15
 17 100 11 1 4.15
 17 113 11 4 4.6
 17 129 11 5 1.29

Phase III Part 3 | Page 80

ORDERNUMBER ITEMID FID QUANTITY OPRICE
----------- ---------- ---------- ---------- ----------
 18 1 1 1 20
 18 291 13 1 29
 19 69 6 1 3.99
 19 60 6 1 3.99
 19 108 3 4 3.95
 19 125 3 2 3.6
 20 85 2 1 6.49
 20 290 5 1 7.24
 20 288 5 1 4.99
 20 123 3 1 2.65
 20 201 4 6 1.99
 22 1 1 1 20
 22 99 7 1 3.6
 22 107 7 3 2
 23 93 19 1 4.65
 23 100 19 2 4.15
 24 188 20 5 .99
 24 183 20 7 .99
 24 179 20 50 .89
 24 184 20 4 .99
 24 193 20 10 .99
 25 111 11 1 11
 25 248 8 1 6.49
 26 289 9 2 5.99
 27 246 12 1 4.99
 27 242 12 1 5.59
 27 249 12 1 4.49
 28 88 2 1 6.69
 28 84 2 1 7.19
 28 289 5 2 5.99
 29 23 14 1 4.79
 30 29 13 1 29
 30 251 20 1 4.29

88 rows selected.

HV_COMBO

CS342 SQL> DESC HV_COMBO
 Name Null? Type
 ----------------- -------- ------------
 COMBO_ID NOT NULL NUMBER(8)
 ITEM_CR NOT NULL NUMBER(8)
 ORDERNUM NOT NULL NUMBER(8)

CS342 SQL> SELECT * FROM HV_COMBO;

 COMBO_ID ITEM_CR ORDERNUM
---------- ---------- ----------
 1 90 1
 2 243 2
 3 243 2
 4 243 2
 5 72 3
 6 74 3
 7 78 4
 8 291 5
 9 83 6
 10 290 6
 11 290 6
 12 290 6
 13 289 9
 14 289 9
 15 285 11
 16 291 11
 17 288 15
 18 289 15
 19 288 16

Phase III Part 3 | Page 81

 COMBO_ID ITEM_CR ORDERNUM
---------- ---------- ----------
 20 288 16
 21 288 16
 22 288 16
 23 288 16
 24 288 16
 25 288 16
 26 288 16
 27 291 18
 28 85 20
 29 288 20
 30 290 20
 31 248 25
 32 289 26
 33 289 26
 34 242 27
 35 246 27
 36 249 27
 37 84 28
 38 88 28
 39 289 28
 40 289 28
 41 251 30

41 rows selected.

HV_CONTAINS

CS342 SQL> DESC HV_CONTAINS
 Name Null? Type
 ----------------- -------- ------------
 CONTAINER NOT NULL NUMBER(8)
 CMBONUM NOT NULL NUMBER(8)
 ITEMID NOT NULL NUMBER(8)

CS342 SQL> SELECT * FROM HV_CONTAINS;

 CONTAINER CMBONUM ITEMID
---------- ---------- ----------
 1 1 47
 2 2 150
 3 3 158
 4 4 142
 5 5 39
 6 6 33
 7 7 51
 8 8 271
 9 8 278
 10 8 277
 11 8 268
 12 8 270
 13 9 30
 14 10 271
 15 10 276
 16 10 280
 17 10 270
 18 11 273
 19 11 275
 20 11 279
 21 11 268
 22 12 272
 23 12 274
 24 12 281
 25 12 269
 26 13 271
 27 13 277
 28 13 270
 29 14 283
 30 14 271

Phase III Part 3 | Page 82

CONTAINER CMBONUM ITEMID
---------- ---------- ----------
 31 14 268
 32 15 281
 33 16 278
 34 16 277
 35 16 271
 36 16 270
 37 16 268
 38 17 271
 39 17 269
 40 18 281
 41 18 280
 42 18 268
 43 19 271
 44 19 270
 45 20 271
 46 20 270
 47 21 272
 48 21 267
 49 22 276
 50 22 268
 51 23 279
 52 23 270
 53 24 277
 54 24 269
 55 25 282
 56 25 267
 57 26 281
 58 26 269
 59 27 283
 60 27 281
 61 27 275
 62 27 268
 63 27 270
 64 28 42
 65 29 271
 66 29 270
 67 30 273
 68 30 275
 69 30 278
 70 30 269
 71 31 215
 72 31 214
 73 31 166
 74 32 278
 75 32 277
 76 32 268
 77 33 272
 78 33 271
 79 33 270
 80 34 142
 81 35 146
 82 36 197
 83 36 174
 84 37 42
 85 38 48
 86 39 271
 87 39 278
 88 39 267
 89 40 276
 90 40 279
 91 40 267
 92 41 150

92 rows selected.

Phase III Part 4 | Page 83

Part 4: Queries in SQL
In this part of phase III queries will be expressed using the SQL (structured query language)
tailored for the database relation instances shown in the previous phase. The result of the queries
will also be listed.

Query 1: List all restaurants which offer combo meals priced $4.99 or less.

select distinct r.rstid, r.rname
from hv_restaurant r inner join
 hv_franchise f on r.rstid = f.rstid inner join
 hv_offers o on f.fid = o.fid inner join
 hv_item i on o.itemid = i.itemid
where (i.price <= 4.99) and (i.iname like 'Combo%')
order by r.rstid

Result:

CS342 SQL> @Query1.sql

 RSTID RNAME
---------- ------------------------------
 2 Carls Jr
 4 Taco Bell
 5 Panda Express

Query 2: List customers who’ve placed at least two orders priced greater than $40 total.

select distinct c.customerid, c.cfirst,c.cmidinitial, c.clast

from hv_customer c,

 (select p.ordernumber, sum(p.deliverycharge+t.itemstotal) as ordertotal
 from hv_order p,
 (select o.ordernumber, sum(i.quantity * i.oprice) as itemstotal
 from hv_order o inner join hv_includes i
 on o.ordernumber = i.ordernumber
 group by o.ordernumber) t
 where (p.ordernumber = t.ordernumber) and ((p.deliverycharge+t.itemstotal) > 40)
 group by p.ordernumber) oone,

(select p.ordernumber, sum(p.deliverycharge+t.itemstotal) as ordertotal
 from hv_order p,
 (select o.ordernumber, sum(i.quantity * i.oprice) as itemstotal
 from hv_order o inner join hv_includes i
 on o.ordernumber = i.ordernumber
 group by o.ordernumber) t
 where (p.ordernumber = t.ordernumber) and ((p.deliverycharge+t.itemstotal) > 40)
 group by p.ordernumber) otwo,

hv_order link1, hv_order link2

where (link1.ordernumber = oone.ordernumber) and (link2.ordernumber = otwo.ordernumber) and
 (link1.ordernumber <> link2.ordernumber) and
 (link1.customerid = c.customerid) and (link2.customerid = c.customerid)

order by c.customerid;

Phase III Part 4 | Page 84

Result:

CS342 SQL> @Query2.sql

CUSTOMERID CFIRST C CLAST
---------- -------- - ------------
 2 Rachel Larson
 4 Saul M Steinbeck
 5 Daniel Simpson
 7 Karen F Chu
 8 Ryan L Scott

Query 3: List restaurants from which more than 7 different customers have ordered.

select r.*
from hv_restaurant r,
 (select rdc.rstid

 from(select distinct o.customerid, r.rstid
 from hv_restaurant r inner join
 hv_franchise f on r.rstid = f.rstid inner join
 hv_includes i on f.fid = i.fid inner join
 hv_order o on i.ordernumber = o.ordernumber
)rdc
 group by (rdc.rstid)
 having count (rdc.customerid)>7
)r8
where r.rstid = r8.rstid and r.rname <> 'Every Meal Delivery';

Result:

CS342 SQL> @Query3

 RSTID RNAME
---------- ------------------------------
 5 Panda Express
 3 Starbucks Coffee

Phase III Part 4 | Page 85

Query 4: List customers who average the smallest number of items per order.

select cs.*
from hv_customer cs

minus

select cb.*
from hv_customer cb,

(select distinct c.customerid, avg(do.total) as itemavg
 from hv_order c,
 (select distinct i.ordernumber, count(quantity) as total
 from hv_includes i
 group by i.ordernumber)do,
 hv_order link
 where (c.customerid = link.customerid) and (do.ordernumber = link.ordernumber)
 group by (c.customerid)) c1,

(select distinct c.customerid, avg(do.total) as itemavg
 from hv_order c,
 (select distinct i.ordernumber, count(quantity) as total
 from hv_includes i
 group by i.ordernumber)do,
 hv_order link
 where (c.customerid = link.customerid) and (do.ordernumber = link.ordernumber)
 group by (c.customerid))c2

where (c1.itemavg< c2.itemavg) and (c2.customerid = cb.customerid);

Result:

CS342 SQL> @Query4.sql

CUSTOMERID CFIRST C CLAST PHONE MEMBERSTATUS
---------- -------- - ------------ ---------- ------------
 6 Matt Groening 6618614124 0

Query 5: List customers who’ve been members between 7/3/2010, and 7/04/2010.

select c.*
from hv_customer c,
(
select td.* from
(select r.*
 from hv_registers r
 where (r.sellmembership = 1) or (r.sellmembership = 2)) td
inner join
(select r1.*
 from hv_registers r1, hv_registers r2
 where (r1.rdate <= (timestamp '2010-07-03 00:00:00')) and (r1.sellmembership = 2) and
 ((r2.rdate > (timestamp '2010-07-03 00:00:00') or r2.rdate <= r1.rdate) or
 r2.sellmembership <> 1) and (r1.customerid = r2.customerid)) td2
on (td.employeeid = td2.employeeid and
td.customerid = td2.customerid)
)td3
where td3.customerid = c.customerid;

Phase III Part 4 | Page 86

Result:

CS342 SQL> @Query5.sql

CUSTOMERID CFIRST C CLAST PHONE MEMBERSTATUS
---------- -------- - ------------ ---------- ------------
 3 Henry K Ricks 6617589212 1
 4 Saul M Steinbeck 6612059354 1
 5 Daniel Simpson 8053652241 1

Query 6: List customers who’ve never placed an order from a Taco Bell in the 93308 zip code area.

select n.*
from hv_customer n
where not exists (
 select o.customerid
 from hv_restaurant r inner join
 hv_franchise f on r.rstid = f.rstid inner join
 hv_includes i on f.fid = i.fid inner join
 hv_order o on i.ordernumber = o.ordernumber
 where (f.fzip = 93308) and (r.rname = 'taco bell') and (n.customerid = o.customerid)
);

Result:

CS342 SQL> @Query6.sql

CUSTOMERID CFIRST C CLAST PHONE MEMBERSTATUS
---------- --------- - ------------- ---------- ------------
 1 Polly G Fredericks 6613314574 0
 2 Rachel Larson 6615893212 0
 3 Henry K Ricks 6617589212 1
 4 Saul M Steinbeck 6612059354 1
 6 Matt Groening 6618614124 0
 7 Karen F Chu 8057584790 1
 8 Ryan L Scott 8057583787 0
 9 Jeff Green 6615894512 1
 11 Greg A Ford 8059683641 0

Query 7: List franchises with the second least expensive combos.

select f.*
from hv_franchise f inner join
 hv_offers m on f.fid = m.fid inner join
 hv_item i on m.itemid = i.itemid,
(select i.*
from hv_item i
where (i.iname like 'combo%') and exists (
 select i2.*
 from hv_item i2
 where (i2.iname like 'combo%') and
 (i2.price < i.price) and not exists (
 select i3.* from hv_item i3 where (i3.iname like 'combo%')
 and i3.price < i.price and i3.price <> i2.price
)
)
) cc
where i.itemid = cc.itemid;

Phase III Part 4 | Page 87

Result:

CS342 SQL> @Query7.sql

 FID FSTREET FCITY FZIP FPHONE RSTID
---------- ------------------------------ -------------- ---------- ---------- ----------
 5 9200 Rosedale Highway 300 Bakersfield 93312 6615872316 5
 5 9200 Rosedale Highway 300 Bakersfield 93312 6615872316 5
 9 5120 Stockdale Hwy Space A Bakersfield 93309 6613232033 5
 9 5120 Stockdale Hwy Space A Bakersfield 93309 6613232033 5
 13 5041 Gosford Rd F1 Bakersfield 93313 6616640391 5
 13 5041 Gosford Rd F1 Bakersfield 93313 6616640391 5
 17 1400 Brundage Lane Space 101 Bakersfield 93304 6616380748 5
 17 1400 Brundage Lane Space 101 Bakersfield 93304 6616380748 5

8 rows selected.

Query 8: List employees who delivered items from each franchise location in the 93312 zip
code area on 7/4/2010.

select d.employeeid
from hv_includes i inner join
 hv_franchise f on i.fid = f.fid inner join
 hv_order o on i.ordernumber = o.ordernumber inner join
 hv_delivers d on o.ordernumber = d.ordernumber
where (f.fzip = 93312) and (d.deliverytime > to_date('3-jul-2010', 'dd-mon-yyyy'))
 and (d.deliverytime < to_date('5-jul-2010', 'dd-mon-yyyy'))

Result:

CS342 SQL> @Query8

EMPLOYEEID

 9
 9
 9
 9
 6
 6
 6
 6
 9
 9
 9
 9
 9
 9
 9
 9

16 rows selected.

Phase III Part 4 | Page 88

Query 9: List employees who’ve not sold memberships, or made deliveries to any customers.

select e.*
from hv_registers r inner join
 hv_employee e on r.employeeid = e.employeeid inner join
 hv_delivers d on e.employeeid = d.employeeid
 where not exists (select e1.*
 from hv_employee e1
 where (e1.employeeid = r.employeeid and r.sellmembership = 2 or
 e1.employeeid = d.employeeid and d.deliverytime <> null)
 and e.employeeid = e1.employeeid);

Result:

CS342 SQL> @Query9.sql

EMPLOYEEID EFIRST E ELAST
---------- -------------------- - --
 1 Stanley L Marsh
 1 Stanley L Marsh
 1 Stanley L Marsh
 11 Allison Jester
 11 Allison Jester
 11 Allison Jester
 11 Allison Jester

7 rows selected.

Query 10: List employees for whom it’s taken more than 1.5 hours to deliver an order.

select e.*
 from hv_delivers e
 where e.deliverytime <> null and substr((e.deliverytime-e.doreceipttime),
 instr((e.deliverytime-e.doreceipttime),' ')+1,2) > 1.5;

 No Result

Command: Create a new table from an existing table using CREATE TABLE …. AS SELECT…

The following command creates a table from every Carl’s Jr. Location in the database.

Create Table HV_CJTEST
AS (SELECT F.FID, R.RNAME, F.FSTREET, F.FCITY, F.FZIP, F.FPHONE
FROM HV_FRANCHISE F INNER JOIN HV_RESTAURANT R ON F.RSTID = R.RSTID
WHERE (R.RNAME = 'Carls Jr'))

Result:

CS342 SQL> @Command1

Table created.

CS342 SQL> select * from HV_CJTEST;

 FID RNAME FSTREET FCITY FZIP FPHONE
---------- ------------ ------------------------- -------------- ---------- ----------
 2 Carls Jr 9500 Brimhall Rd Ste A Bakersfield 93312 6615874859
 6 Carls Jr 4520 Coffee Road Bakersfield 93312 6615879085
 10 Carls Jr 9000 Ming Ave Ste Q Bakersfield 93311 6616652396
 14 Carls Jr 5520 Stockdale Hwy Bakersfield 93383 6613229857
 18 Carls Jr 3501 Panama Ln Bakersfield 93313 6618338414

Phase III Part 5 | Page 89

Part 5: Loading Record Data to the DB
5.1 Descriptions of Data Loading Methods

Many options are available for one to load data into a database. The most common available
one for loading records into a schema through Oracle SQL*Plus is the insert statement.
The syntax for loading a new record into a relation is as follows:

INSERT INTO <table_name>VALUES(<comma_separated_value_list>);

though the insert statement can also be run tailored to the specific business needs of an
organization through use of extra statements passed along while inserting a record for the
sake of either security, or more simply data format. Because command record input can
get quite tedious, more efficient methods of data loading come back to program
applications tailored to complete such tasks.

5.2 The Java DataLoader Program

Though it’s possible to go on the web to buy expensive applications not necessarily
optimized to meet the needs of a person’s specific database tasks, sometimes the best
option is making data entry a custom endeavor. The Java DataLoader program is one
example of such a feat. The program takes text files setup in a specified format to note
the records it’s to enter. After setting up a file delimited with pipe characters between
records ready for entry into the database, a user can use java to run the program. One
thing to note though is that the type of the fields must also be specified to the program so
it knows how to organize the stream of information to send into Oracle. In its current
state the program is quite useful for the task it was made to perform, and it was even
recommended to students that it be built on for good practice, and functionality.

5.3 The C # Record Loader Program

Though building on a java program is an enticing proposition, I decided to go with
Microsoft C# to build a data loader. The main reason I did so was to start gaining
familiarity with programming C# forms for this project. Originally, I’d made the C #
application a simple one record insert console command line connection tester to
understand the process of setting up a data provider in a database application, but I found
the GUI to be the more ease of use option.

Much like the Java-based data loader application, the foundation of the program was
made to take in a delimited record file of some sort of form to stream into the database all
at once. I went ahead, and fashioned a template to work with files of comma separated
values type. I figured I could use Microsoft Excel to easily enter the relational data into

Phase III Part 5 | Page 90

tables, save them to .csv, then modify the files with a simple header to specify the
attribute types of the relations being streamed off into the database. The original console
database provider code I adapted to the windows form to enable data insertion. Other
than that, it was then a matter of application aesthetics. I also managed to put together a
separate similar application to show the file stream out to a Windows message box so I
could make sure no mistakes were made in the data entry process prior to the data export.
The following are a few simple screenshots of the record loader, and the string format
display application.

I’ll be using this similar technology in the implementation of this project.

Phase IV

The Oracle DBMS
PL/SQL Component

Part 1: Common Features in Oracle PL/SQL
 and MS Trans-SQL 92

Part 2: Oracle PL/SQL Programs 93

Part 3: Oracle PL/SQL Subprograms through Example 106

Phase IV Part 1 | Page 92

Part 1: Common Features in
 Oracle PL/SQL and MS Trans-SQL
Advanced database centered programming languages are commonly included with many modern
database management systems. They help database administrators manage a database with more
flexible options than those offered by simple query statements alone. Two languages from two of
the most popular DBMSs now offered are Microsoft Transact-SQL (T-SQL) from the Microsoft
SQL Server DBMS, and PL/SQL from the Oracle DBMS.

1.1 PL/SQL, and MS Transact-SQL Components

Both PL/SQL, and MS Transact-SQL have common features, and functionality each in its
own respective DBMS. Common DBMS system schema objects are offered in both
languages. Components such as indexes, tables, views, database links, built-in
procedures, built-in functions, triggers, packages, and synonyms are each able to be
implemented in each language, but each using different syntax to do so. Historically, the
Oracle DBMS tends to have offered advanced component features first, with MS SQL
server following along in years after. To this day, MS SQL server’s MS T-SQL still
doesn’t have the level of capability PL/SQL does, though it has come quite close. Such
schema objects as sequences for example aren’t available to MS T-SQL, but a similar
option can be setup through a custom user built-in function which uses properties built
into MS SQL server to simulate an Oracle sequence. Still, today both languages now
offer much of the same functionality.

1.2 Purpose and Benefits of Stored Subprograms

Languages such Oracle PL/SQL, and MS Transact-SQL support the ability to setup
stored subprograms for the sake of enabling a database administrator all the benefits that
come with imperative programming, but within the database environment. Going much
beyond the ability of simple queries, updates, or deletes, entire batch processes can be run
to perform a combination of multiple standard SQL commands. Stored subprograms
enable a common industry professional recommendation to never allow users direct
access to the database. Stored subprograms act as a protective layer between the user’s
input, and the table data in the database. Also, even though it’s possible to setup
programs using dynamic SQL at the user front end alone, there are great performance
benefits to be gained from using a program residing in the DBMS. Making programs at
the user front-end requires making lengthy connection calls to pull data from the database
to perform operations on the data, after which perhaps sending the information back.
Stored subprograms avoid the slow overhead in such a process by allowing all procedural
operations to be run on the server itself.

Phase IV Part 2 | Page 93

Part 2: Oracle PL/SQL Programs
PL/SQL code is grouped together into structures named as blocks. Even though a grouped
structure can be named, it can also be run on its own as what is called an anonymous block.
Given a name, such a block is appropriately called a named block.

2.1 PL/SQL Code Block Overview

A typical PL/SQL program exhibits the following structure:

declare
 <declarations section>
begin
 <executable commands>
exception
 <exception handling>
end;

Though not always, normally the structure of a PL/SQL program contains a Declarations,
Execution Commands, and Exceptions section. The Declarations section starts after the
declare keyword, and ends with the begin keyword, followed by the Executable
Commands section started after the begin keyword, ending with the exception or end
keyword should the program not have an exception. If the program does contain an
exceptions section, the section starts with the exception keyword, and ends with the end
keyword.

The declarations section is the section of code used primarily to define variables, and
cursors to be used in the program. Variable datatypes encompass everything from
standard scalar types such as integer, character, and timestamp to composite types such as
records, tables, and arrays, to large objects data (LOBs). Variables can have constant
values, or they can inherit their datatypes from query results.

The Executable Commands section of a program manipulates variables, and cursors setup
in the Declarations section. A program block’s work begins in the Executable
Commands section. It may contain execute commands for any cursors declared, or
common conditional logic control statements such as if, else, elsif, case switches, for
loops, and/or while loops.

2.1.1

Control Statements

Control statements in PL/SQL are used to implement standard conditional logic
operations found in most programming languages. The following are a few
general examples of such statements, and their formats.

Phase IV Part 2 | Page 94

if, else, elseif

 if <some condition>
 then <some command>
 elseif <some condition>
 then <some command>
 else <some command>
 end if;

Simple Loop

 loop --<--Simple Loop Starts Here

 <loop operations>
exit when <some condition>
end;

WHILE Loop

 while <some condition>
 loop

 <loop operations>
end loop;

FOR Loop

 for i in <Low Value> .. <High Value> --i is a variable

 <loop operations>
end loop;

CASE Statements

 case i --<--i is a variable

 when <some condition 1> then <some operation>
 when <some condition 2> then <some operation>
 when <some condition 3> then <some operation>
 .
 .
 .
 when <some condition n> then <some operation>
 else <some operation>
end case;

Phase IV Part 2 | Page 95

2.1.2

Cursors

Cursors are a datatype to which SQL select statements can be assigned, and
through which information can be manipulated. They’re setup in the Declarations
section, and initiated in the Executable Commands section of a program block.

Cursor Definition Syntax in a Program Declarations Section

declare

cursor <cursor name> is <SQL Query>;
…

For Example:

declare

cursor cname is select s_attr from sample_table;
…

Cursors come with four attributes which can referenced during the Executable
Commands section of the program in various contexts that allows checking
current cursor status. The four attributes are as follows:

 %FOUND A record can be fetched from the cursor.

 %NOTFOUND No more records can be fetched from the cursor.

 %ISOPEN The cursor has been opened.

 %ROWCOUNT The number of rows fetched from the cursor so far.

The following shows a sample cursor named e_cursor with its attribute being
used inside the Executable Commands section to setup the conditions for
continuing a while loop:

…
begin

 while e_cursor%FOUND
 loop
 …
 end loop;
…
end;

A common use for a cursor is to retrieve rows resulting from the cursor SQL
definition so that the data retrieved can be manipulated in some fashion during
program operation. This is mainly done through use of three cursor

Phase IV Part 2 | Page 96

implementation statements: open, fetch, and close. The following is sample
generic code demonstrating each cursor operation statement during use:

declare

 e_variable varchar2;

 cursor e_cursor is select s_attr from sample_table

 where s_attr2 = ‘match’;

begin

 open e_cursor;

 fetch e_cursor into e_variable;

 if c1%NOTFOUND then

 e_variable := ‘Not Found’;

 end if;

 close e_cursor;

end;

As demonstrated in the sample, the open command opens the cursor so the query
declared for the cursor is executed, and records to be returned are identified. The
query result records, however, aren’t actually returned until the fetch command is
used. In the case of this code block, the result is returned into the variable
e_variable. After going through the if statement, and the cursor data is no
longer needed, the close command is called to close the cursor.

2.1.3

Exception Handling

An optional Exception Handling section can be used to address system-related
exceptions (errors) encountered during Execution Commands section operations.
Upon encountering an error in the Execution Commands section, control of the
program is transferred to the operations setup in the Exception Handling section.
A sample Exception Handling section format is as follows:

declare
 … <declare setup here>
begin
 … <program execution commands run here>
exception

 raise_application_error(1234,’Custom error.’);

end;

Phase IV Part 2 | Page 97

2.2 Stored Procedures

Stored procedures are groups of SQL statements brought together to form logical units
aimed at performing specified tasks. They encapsulate operation, or query sets executed
on a database server. In layman’s terms a stored procedure is a simple program stored in
an Oracle server, but in its most complex state, a stored procedure can be formed with
any combined group of SQL, PL/SQL, and Java statements all in a named block of code
which enables one to move code used to enforce business rules from an application to a
database.

 phrases in [….] are optional
Stored Procedure Syntax

 vertical bars such as | represent dividers between available options

create [or replace] procedure [schema.] procedure_name
 ([argument_1 [in|out|in out] [nocopy] datatype],
 [argument_2 [in|out|in out] [nocopy] datatype],
 . ,
 [argument_n [in|out|in out] [nocopy] datatype])
 [authid {current_user | definer }]
 { is | as }
 { PL/SQL_Subprogram_Body | language }
 };

create [or replace] – if only the create keyword is used, the system creates a new

procedure, and will not re-create currently existing procedures going
by the same name. Including the replace keyword enables
replacing existing procedures should they exist while still keeping
the same previously granted object privileges on the same procedure.

procedure – standard keyword letting the system know a procedure is being defined

[schema.] – specifies the database schema that will contain the procedure If this phrase

is not included, the procedure is created for the current database
schema.

procedure_name – the custom name provided to identify, and call the procedure

(... , . . . , . . .) – all the arguments to be set for the procedure are contained in between

two paranthesis. Each argument is delimited by a comma.

argument_n – the custom name given to one of any n number of arguments setup for

the procedure.

Phase IV Part 2 | Page 98

[in|out|in out] – if in keyword alone is specified then a value must be given for
the specified argument when the procedure is called. If the out
keyword is specified then the procedure will pass a value back to its
calling environment after the procedure has completed its execution.
If the in out keyword is specified, then a value must be supplied
with the argument, and a value will be returned with the procedure
has completed its execution. Should none of these I/O keywords be
specified, the default effect is setup the same as if the in keyword
were used.

[nocopy] – instructs the database to pass the specified argument as fast as possible.

Though it’s not always guaranteed to do so, this clause can help
improve performance when transferring large values like records,
index-by tables, or a varray to an out or an in out parameter. in
parameter values are always passed as nocopy.

datatype – the type of the argument to be sent which can be of any datatype supported

by PL/SQL. Length, precision, or scale of the datatype are not
specified, because such properties are taken from the argument being
passed to the procedure.

authid current_user – creates the procedure with invoker rights, indicating that the

procedure runs with the privileges of current_user.

authid definer – creates the procedure with definer-rights, indicating that the

procedure runs with the privileges of the owner of the schema in
which the procedure is located. When no authid of any form is
specified authid definer becomes the default permission
setting.

{ is | as } – both is and as are synonyms. Either one is used once to initiate

the Declarations section of the procedure code block.

PL/SQL_Subprogram_Body – the procedure’s program body setup in PL/SQL.
 PL/SQL code blocks within procedures can include any data

manipulation language statements, however, they can’t include data
definition language statements (such as create table).

language – instead of having PL/SQL in the procedure code block, exclusively either

java, or c language code can be used, thus enabling the ability to
build a procedure employing the advanced features offered by each
of those programming languages.

Phase IV Part 2 | Page 99

2.3 Stored Functions

Stored procedures, and stored functions are similar in some of their structure, but not
completely. Stored procedures, and stored functions differ in how they operate. While a
procedure does not have a return value sent back to its caller, a function does. A function
can also be referenced directly in queries. There are also advanced handling properties
available to functions that procedures don’t have.

• phrases in [….] are optional
Stored Function Syntax

• vertical bars such as | represent dividers between available options
• ... N means preceding [….] can be set any N number of times

create [or replace] function [schema.] function_name
 ([argument_1 [in|out|in out] [nocopy] datatype],
 [argument_2 [in|out|in out] [nocopy] datatype],
 . ,
 [argument_n [in|out|in out] [nocopy] datatype])
 return datatype
 [authid {current_user | definer } |
 deterministic| parallel_enable
] ... N
{ { aggregate | pipelined } using [schema.] implementation_type
| [pipelined] { is | as }
 { PL/SQL_Subprogram_Body | language }
 };

create [or replace] – if only the create keyword is used, the system creates a new

function, and will not re-create currently existing functions going by
the same name. Including the replace keyword enables replacing
existing functions should they exist while still keeping the same
previously granted object privileges on the same function.

function – standard keyword letting the system know a function is being defined

[schema.] – specifies the database schema that will contain the function. If this phrase

is not included, the function is created for the current database
schema.

function_name – the custom name provided to identify, and call the function

(... , . . . , . . .) – all the arguments to be set for the function are contained in between two

paranthesis. Each argument is delimited by a comma.

Phase IV Part 2 | Page 100

argument_n – the custom name given to one of any n number of arguments setup for
the function.

[in|out|in out] – if in keyword alone is specified then a value must be given for

the specified argument when the function is called. If the out
keyword is specified then the function will set the argument value
back to its calling environment after the function has completed its
execution. If the in out keyword is specified, then a value must be
supplied with the argument. A value for the argument will set during
function execution, and returned when the function has completed its
execution. Should none of these I/O keywords be specified, the
default effect is setup the same as if the in keyword were used.

[nocopy] – instructs the database to pass the specified argument as fast as possible.

Though it’s not always guaranteed to do so, this clause can help
improve performance when transferring large values like records,
index-by tables, or a varray to an out or an in out parameter. in
parameter values are always passed as nocopy.

datatype – the type of the argument to be sent which can be of any datatype supported

by PL/SQL. Length, precision, or scale of the datatype are not
specified, because such properties are taken from the argument being
passed to the function.

return datatype – return statement specifying the datatype of the value being

returned which can be of any datatype supported by PL/SQL.
Length, precision, or scale are not specified, because such datatype
properties are set by the environment from which the function is
called. Boolean parameters, or returns are not allowed. Instead, it is
encouraged to use numbers 0, or 1, or strings specifying either ‘true’,
or ‘false’.

authid current_user – creates the function with invoker rights, indicating that the

function runs with the privileges of current_user.

authid definer – creates the function with definer-rights, indicating that the

function runs with the privileges of the owner of the schema in
which the function is located. When no authid of any form is
specified authid definer becomes the default permission
setting.

deterministic – a clause that tells the system to return the same result for the

specified function whenever the function is called with the same
argument values it was called with previously.

Phase IV Part 2 | Page 101

parallel_enable – an optimization setup letting the DBMS know the function can be
run from a parallel execution server of a parallel query operation.

aggregate using [schema.] – a specifier used to set the function up as an aggregate

function, used to evaluate a group of rows, and return one row. This
enables the function to be made usable with the SQL having, and
order by clauses. This specifier also enables the function to act as
an analytic function (one that works on a query result set). If
[schema.] is not specified, the database assumes the
implementation type is the definer’s own schema.

pipelined implementation_type – instructs the Oracle Database to iteratively return

the results of a table function. Table functions are queried with the
table keyword prior to the name of the function in the FROM part
of the query.

 Example:

 select * from table(function_name(...))

 The database then returns rows as they are produced by the function.

If implementation_type is not specified then single elements of the
function’s return collection are returned, instead of the entire
collection as a single value. If implementation_type is specified
then an interface for the start, fetch, and close operations can
be predefined (very useful for functions setup in external
programming languages such as C++, and Java).

{ is | as } – is and as are synonyms. Either one is used once to declare the

function body.

PL/SQL_Subprogram_Body – the function’s program body setup in PL/SQL.

language – just as within the built in procedure, instead of having PL/SQL in the

function code block, exclusively either java, or c language code can
be used, thus enabling the ability to build a function employing
advanced features offered by each of those programming languages.

2.4 Stored Packages

A stored package is a class-styled group of related procedures, stored functions, and
other program objects saved together as a single unit in a database. A single group of
variables defined within a package can be used by multiple procedures, or functions also
within the same package. Commands can also be setup to run within packages anytime
the package is called, despite any package function, or procedure members also run in
the same call.

Phase IV Part 2 | Page 102

• phrases in [….] are optional
Stored Package Syntax

• vertical bars such as | represent dividers between available options

create [or replace] package [schema.] package_name
[authid {definer | current_user}]
{ is | as }
package specification;

create [or replace] – same as before if only the create keyword is used, the

system creates a new package, and will not re-create currently
existing packages going by the same name. Including the replace
keyword enables replacing existing packages should they exist while
still keeping the same previously granted object privileges on the
same package.

package – standard keyword letting the system know a package is being defined

[schema.] – specifies the database schema that will contain the package. If this phrase

is not included, the package is created for the current database
schema.

package_name – the custom name provided to identify, and call the package

authid current_user – creates the package with invoker rights, indicating that the

package runs with the privileges of current_user.

authid definer – creates the package with definer-rights, indicating that the

package runs with the privileges of the owner of the schema in
which the package is located. When no authid of any form is
specified authid definer becomes the default permission
setting.

{ is | as } – is and as are also synonyms when used in packages. Either one is

used once to declare the body of the package.

package specification – also much like before, the function’s program body setup in

PL/SQL. Instead of having PL/SQL in the function code block,
exclusively either java, or c language code can be used, thus
enabling the ability to build a function employing advanced features
offered by each of those programming languages.

Phase IV Part 2 | Page 103

2.5 Triggers

A trigger is a definition for an action the database takes when some database-related
event occurs. Like procedures, triggers can be used to enforce complex business rules.
However, triggers are unique in that they also help to automatically audit changes to data,
and the execution of triggers happens automatically so the user need not be aware.
Triggering events can include inserts, updates, deletes, specific column updates,
data definition language commands, and other database related events such as shutdowns,
or logins. They’re a great supplement to referential integrity, though it’s always
recommended that declarative referential integrity be relied on first, and foremost.

In order to run operations on data before, and after the trigger event, two keywords are
used to reference data. These are the new, and old keywords, where old is used to
refer to data prior to the trigger event, and new is used to refer to data after the trigger
event. Syntax for these keywords differs depending on the context in which they’re used.

new, and old Keywords Used in a Conditional Statement

 . . .
 while (new.s_attr < old.s_attr)
 begin

 <loop operations>
 end;
 . . .

new, and old Keywords Used in an Insert Statement to Insert Old and New Values

 . . .

 insert into s_table (attr1, attr2) values

 (:old.s_attr1, :new.s_attr2);
 . . .

• phrases in [….] are optional
Trigger Syntax

• vertical bars such as | represent dividers between available options
create [or replace] trigger [schema.] trigger_name
{ before | after | instead of }
{ dml_event_clause
| { ddl_event [or ddl_event] ...
 | database_event [or database_event] ...
 }
 on { [schema.] schema | database }
}
[when (condition)]
{ pl/sql_block | call_procedure_statement };

Phase IV Part 2 | Page 104

create [or replace] – similarly, once again, if only the create keyword is used,
the system creates a new trigger, and will not re-create currently
existing triggers going by the same name. Including the replace
keyword enables replacing an existing trigger of the same name
without having to drop it first.

trigger – standard keyword letting the system know a trigger is being defined

[schema.] – specifies the database schema that will contain the trigger. If this phrase is

not included, the trigger is created for the current database schema.

trigger_name – the custom name provided to identify, and call the trigger

before – causes the database to fire the trigger before the database executes the event

causing the trigger to fire. If it’s a row trigger, the trigger fires right
before each row is changed. before triggers cannot be specified
on a view, or object view. The :old value cannot be written to,
only the :new value.

after – database fires the trigger after the trigger event is executed. In the case of

rows, the trigger is fired after each row event. after triggers also
cannot be specified on views, or object views. Both the :old and
:new values cannot be written to.

instead of – database fires the trigger instead of executing the trigger event. Such

events are valid for data manipulation language events on views, and
not valid for data definition language, or database events.

 instead of triggers take precedence over performing a data
manipulation language event on an inherently updatable view
containing the trigger. In such a view, but of hierarchical form,
subviews do not inherit the trigger. Unlike the other two types of
triggers instead of triggers only apply to views, never tables.
Such views also allow both :old and :new values to be read, but
not written to.

dml_event_clause – specifies the type of data manipulation language event on which

the trigger is to fire. The DML events include delete, insert,
and update. Any OR combination of the three events can be
specified for a trigger to fire. The update event can even be set to
trigger upon update of single columns in a relations, not just the
entire row.

Phase IV Part 2 | Page 105

ddl_event – specifies the data definition language events on which the trigger is to fire.
An OR combination of such events can be setup similar to DML
events. DDL events through a PL/SQL procedure cannot be setup
with triggers. Of course, DDL events include events such as create,
rename, drop, etc.

database_event – specifies the database states on which a trigger can be fired. OR

combinations of database states can also be specified. Common
database events for setting up triggers include logon, logoff, startup,
shutdown, suspend, etc.

on [schema.]schema – specifies the schema on which the trigger will be defined.

Users connected as schema specified are able to initiate the event
that sets off the trigger.

on database – specifies an entire database in which the trigger can be fired. Any

database user that initiates the triggering event can fire the trigger.

when (condition) – an SQL condition which must be satisfied for the trigger to fire.
 new and old are not preceded by a colon (:), because they’re not

considered bind variables when part of conditional statements.

pl/sql_block – this is the PL/SQL block of code executed to fire the trigger.

call_procedure_statement – an optional call to a stored procedure to be used instead

of inline trigger code as a PL/SQL block. Referencing columns of
tables on which the trigger is defined requires specification of :new
and :old.

Phase IV Part 3 | Page 106

Part 3: Oracle PL/SQL
 Subprograms through Example
Now that the ideas behind Oracle PL/SQL Subprograms have been covered, a few stored
program examples pertaining to the Every Meal Delivery project will be described.

3.1 Inserting Records with a Stored Procedure

The following is a stored procedure named HV_NewCustomer setup to insert a new
customer with all his/her basic information into the main customer table. The complete
set of attributes required to enter the information for a new customer is passed to the
procedure, each attribute being a separate argument. Upon receiving the information,
the procedure runs a simple insert command.

 procedure HV_NewCustomer (aCID in number, aFN in varchar2,
 aMI in char, aLN in varchar2,

 aPH in number, aMS in number) as
 begin
 insert into HV_Customer (CustomerID, cfirst,
 cMidInitial, cLast,
 Phone, MemberStatus)
 values (aCID, aFN, aMI, aLN, aPH, aMS);
 end;

3.2 Deleting a Record with a Stored Procedure

This procedure, named HV_DelCustomer is a simple way to delete a customer from the
customer relation by passing along the customer’s ID number, represented through the
primary key in the relation. After receiving the ID number, a command is run to delete
the row matching the ID specified in the HV_Customer relation.

procedure HV_DelCustomer (row in number)
as
begin

delete from HV_Customer where CustomerID = row;
end;

Phase IV Part 3 | Page 107

3.3 Returning the Average of the Specified Highest,
 or Lowest with a Stored Function

Stored function HV_CXAVG takes in two parameters: a number, and a character. The
purpose of this function is to grab either the highest, or lowest (highest or lowest
determined by the second argument sent) priced ncount (ncount being the first
argument sent in the function) number of combo items from the HV_Item relation. The
function then calculates the average price of the retrieved combo items, and returns the
calculated average as the function return argument. Should there be an input error,
either an exception is raised, or a string is printed informing the function caller of a
wrong character having been sent.

function "hv_cxavg" ("ncount" in number, "drection" in char)
return number authid current_user
 –-declaration section starts here
is

tally number; –-total combo number tracker
avrg number; –-average number variable to be returned by function
rnum number; –-records to be counted

cursor cnt is –-cursor to count the total number of combos available

 select count(i.itemid) from hv_item i
 where (iname like 'combo-%');

cursor mx is –-cursor to calculate the average of the highest priced combos
select avg(f.price)
from (select i.*

 from (select itemid, price
 from hv_item
 where (iname like 'Combo-%')
 order by price desc) i
 where rownum <= rnum) f;

cursor mn is –-cursor to calculate the average of the lowest priced combos
select avg(f.price)
from (select i.*
 from (select itemid, price
 from hv_item
 where (iname like 'Combo-%')
 order by price) i
where rownum <= rnum) f;

begin –-executable commands section starts here

open cnt;
 fetch cnt into tally; –-retrieve the total number of combos available
 close cnt;

 rnum := ncount;

 if rnum > tally –-if item request # is too high set the request to max
 then rnum := tally;
 end if;

 –-case statement gets lowest average if L/l was sent, highest average if H/h was sent
 case drection
 when 'l' then
 open mn;
 fetch mn into avrg;
 close mn;

Phase IV Part 3 | Page 108

 when 'L' then
 open mn;
 fetch mn into avrg;
 close mn;
 when 'h' then
 open mx;
 fetch mx into avrg;
 close mx;
 when 'H' then
 open mx;
 fetch mx into avrg;
 close mx;
–-message is printed if the wrong highest/lowest price range specifying character is sent
 else dbms_output.put_line ('highest or lowest incorrectly specified.');
 avrg := 0;
 end case;

 return avrg;

–-in case of program error, print an error message
exception
when others then
 raise_application_error (-1234,'Danger! There’s been an error.');

end;

3.4 A Data Manipulation Language Trigger

The following trigger titled HV_Customer_Trigger is performed before the delete or
update of a customer record in the HV_Customer relation. The trigger checks for
whether either a delete or update event is to be run on the HV_Customer relation. If it’s
an update event, the old record is concatenated together into one string, and the new
record is concatenated into another string. The two strings are then inserted into the
HV_LogTable relation as a new record. If it’s a delete event, only the old record is
concatenated, then stored as a new record in the HV_LogTable relation. The insert or
delete operation is then completed.

 trigger "hv_customer_trigger"

 before
 delete or update of "customerid", "cfirst", "cmidinitial",
 "clast", "phone", "memberstatus"
 on "hv_customer"
 for each row
 --declare

 begin -- executable part starts here
 if updating then
 insert into hv_logtable values (hv_ltsqnce.nextval, :old.customerid || ' ' ||
 :old.cfirst || ' ' || :old.cmidinitial || ' ' ||
 :old.clast || ' ' || :old.phone || ' ' ||
 :old.memberstatus,
 :new.customerid || ' ' || :new.cfirst || ' ' ||
 :new.cmidinitial || ' ' || :new.clast || ' ' ||
 :new.phone || ' ' || :new.memberstatus);
 end if;

 if deleting then
 insert into hv_logtable values (hv_ltsqnce.nextval, :old.customerid || ' ' ||
 :old.cfirst || ' ' || :old.cmidinitial || ' ' ||
 :old.clast || ' ' || :old.phone || ' ' ||
 :old.memberstatus, null);
 end if;
 null;

end;

Phase V

Graphical User Interface
Design

and
Implementation

Part 1: Daily Users, and Activities 110

Part 2: Relations, and Subprograms 112

Part 3: Screenshots of the Application 116

Part 4: Describing the Code 133

Part 5: Application Design and Implementation 141

Phase V Part 1 | Page 110

Part 1: Daily Users, and Activities
The business model on which this project is based involves one user entity of type employee, but
with three different roles: Delivery Driver, Dispatcher, and Manager. Though any employee can
play a part in any of these roles, not everyone will. Most employees embody the role of
Dispatcher, or Delivery Driver, though never at the same time. For example, on one day
employee Stan L. Marsh could be a dispatcher setting up customer orders he gets over the phone
for two hours; then go out as a delivery driver for the rest of the day. Anytime Stan is doing
something, it’s only as part of one role at any one time. The only role that can play multiple
roles at the same time is that of Manager, left to either one employee, or a small number of
employees for larger size meal delivery franchises.

1.1 Dispatcher Role

Dispatchers are employees in the delivery call center who receive calls from customers
over the phone. When a customer calls, an employee logged into the system with the
role of dispatcher requests the customer’s phone number to look up the customer’s
information for an order.

Should the customer not already be in the system, the dispatcher records the new
customer’s name, and phone, as well as any multiple number of addresses the customer
may have as destinations for deliveries. If the customer wants to purchase an Every
Meal Delivery membership, the dispatcher notes the purchase intent in the order to be
made. Customer information as well as the customer’s chosen location for delivery is
established by the dispatcher to the system as part of the order when the order is being
started.

After entering the customer information, the dispatcher then asks the customer the
restaurant from which the customer would like to order. The customer may list any
number of restaurants supported in the system, but each restaurant is entered one at a
time. An example of this would be the customer first naming Taco Bell as a location
from which the customer wants to order. The dispatcher then selects Taco Bell from the
list of restaurants available in the system. After which, the dispatcher selects the address
of the Taco Bell nearest to the customer’s delivery destination location. Having the
menu loaded into the system for the chosen franchise, the dispatcher selects the menu
items to add to the order as the customer requests them over the phone. When the
customer is done selecting the items for the specific restaurant, the dispatcher adds the
item list to the order. If the customer then requests more items from a different
restaurant, the order addition process is repeated for the other restaurant.

When the dispatcher is done adding the list of customer requested items, a current order
and delivery driver nearest to the delivery destination area is assigned to deliver the
order. The dispatcher sets the order as entered into the system, though the order isn’t
actually complete until it’s delivered.

Phase V Part 1 | Page 111

Beside the main function of setting up customers, and orders to be delivered, dispatchers
also have the ability to look up prior customer orders made, though they’re not allowed to
alter them.

1.2 Delivery Driver Role

At any time during the day the majority of employees logged in as dispatchers will be
able to switch the current role of dispatcher to that of driver should a request to do so be
made by the manager. This can also be done either through pre-scheduling for the week
by the manager, or at the beginning of the work day.

An employee assigned as delivery driver has to keep track of mileage used to deliver
orders, because gas is reimbursed by the delivery business. All delivery driver
employees use their own vehicles to make deliveries, and in order to keep track of
mileage, drivers log in the car’s initial total miles at the start of the day’s delivery
assignment, and the total miles at the end of the day’s delivery assignment. The system
then calculates each employee’s total miles run for the day.

Drivers en route carry with them a mobile device with a delivery system application
connected back to the main system. The program carried along with the driver lists the
driver’s delivery tasks to be completed, including the items to be ordered, the address
locations from where the items are to be purchased, as well as the customer’s delivery
destination address. As the driver picks up the orders, and delivers them, the driver
updates order statuses. After delivering an order the driver marks the order off as
complete. The program also lists other orders in real time which may be assigned by a
dispatcher while the driver is en route. Drivers go about completing as they get them in
orders queued in the mobile device application.

1.3 Manager Role

Managers are an employee type that can take on both the role of driver as well as
dispatcher. A manager has the ability to add/edit employees in the system, look up
action reports on every employee, and add/edit restaurants, franchises, and sales items in
the system. If the delivery business takes on a large enough size it may even be
necessary to have more than one manager employee.

Phase V Part 2 | Page 112

Part 2: Relations, and Subprograms
Even though the scope of this project encompasses functionality for three different entity types,
only a major part of the dispatcher role will be instituted. The components of adding a customer
as well as customer addresses along with setting up items in the order will employ stored
procedures involving relations in the database.

2.1 The Customer Entry Process

 Relations Involved

Relations involved in the customer entry process are HV_CUSTOMER, and
HV_CSTMRADDRESS. Entering a new customer requires entering not only the basic
customer information to be stored in the HV_CUSTOMER relation, but also any number of
addresses a customer may have to be stored in the HV_CSTMRADDRESS relation.

 Procedures Involved

HV_NewCustomer

procedure HV_NewCustomer (aFN in varchar2, aMI in char,

 aLN in varchar2, aPH in number,
 aMS in number, aReturn out number)

as
 cursor cSeq is

select HV_SQ_Customer.CurrVal from Dual;
 begin

insert into HV_Customer (CustomerID, cfirst, cMidInitial, cLast, Phone,
MemberStatus)

values (HV_SQ_Customer.NextVal, aFN, aMI, aLN, aPH, aMS);

 open cSeq; fetch cSeq into aReturn; commit; close cSeq;

END;

This procedure involves sending to it a new customer’s first name, middle initial, last
name, phone number, member status number, and a reference variable for a return value.
The main customer information passed to this procedure is stored in the HV_Customer
relation. What is really noteworthy in this procedure is that it uses a sequence object
named HV_SQ_Customer to automatically assign the new record a unique primary key. The
next unique primary key value is assigned in the insert statement through use of the
HV_SQ_Customer.NextVal statement which calls the sequence object’s next value function
to assign the next unique sequence value. Another important thing of note in this
procedure is that it uses a sequence specific SQL statement through a cursor to return the
new sequence value. The SQL statement is defined with the HV_SQ_Customer.CurrVal
sequence function used to return the current value of the sequence. Even though the

Phase V Part 2 | Page 113

cursor is defined to return the current sequence value prior to the next sequence value
assignment, the cursor isn’t called until after the next sequence number has already been
assigned. This way it is ensured that the new customer entry identification number will
be returned.

 HV_SP_ADDADDRESS

PROCEDURE "HV_SP_ADDADDRESS" (aST in varchar2, aAPT in varchar2,

 aCity in varchar2, aZip in number,
 aCID in number,
 aReturn out number)

is
cursor aSeq is
select HV_SQ_CSTADDRESS.CurrVal from Dual;

begin
insert into HV_CSTMRAddress (AddressID, Street, Apt, City, Zip,

 CustomerID)
values (HV_SQ_CSTADDRESS.NextVal, aST, aAPT, aCity, aZip, aCID);

 open aSeq; fetch aSeq into aReturn; commit; close aSeq;

END;

The information necessary to store a new customer’s address information is passed to this
procedure. This includes the street, optional apartment, city, zip code, and the customer
identification to which the new address is assigned. All this information is stored in the
HV_CSTMRADDRESS relation. This procedure uses the return value from the previous
procedure to assign the new customer a new address. Like the previous procedure this
one also uses a cursor to return the new unique address value.

2.2 The Order Setup Process

 Relations Involved

The order setup process involves use of the HV_CUSTOMER, HV_CSTMRADDRESS,
HV_RESTAURANT, HV_FRANCHISE, HV_OFFERS, and HV_ITEM relations. Setting up a
new order involves first choosing the customer, and the customer delivery address, then
choosing the restaurant, franchise location, and menu items related to the chosen
franchise location.

Phase V Part 2 | Page 114

Procedures Involved

HV_SP_GETCUSTOMERS

PROCEDURE "HV_SP_GETCUSTOMERS" ("RCLIST" OUT SYS_REFCURSOR)
AUTHID CURRENT_USER IS

BEGIN -- executable part starts here

 OPEN RCLIST FOR SELECT * FROM HV_CUSTOMER;

END;

This procedure is pretty straight forward in its function. It returns every record from the
HV_Customer relation through use of a simple query. There are a few of these type of
procedures used in the program. The thing to note about these kinds of stored procedures
is that the record set for the query result is returned through use of a SYS_REFCURSOR
type parameter argument. In this stored procedure the cursor return type is named
RCLIST, and it’s opened for return with the following syntax:

 OPEN RCLIST FOR <AN SQL QUERY>

HV_SP_GETUADDRESS

PROCEDURE "HV_SP_GETUADDRESS" ("ACID" IN NUMBER, "RALIST" OUT SYS_REFCURSOR)
AUTHID CURRENT_USER IS

BEGIN -- executable part starts here

OPEN RALIST FOR SELECT * FROM HV_CSTMRADDRESS
 WHERE HV_CSTMRADDRESS.CUSTOMERID = aCID;

END;

This procedure is much the same as the previous one, except that it’s passed an
HV_CUSTOMER record primary key in order to search the customer identification foreign
key column in the HV_CSTMRADDRESS relation for matches so address records pertaining
to the specified customer can be returned through use of a return SYS_REFCURSOR type
parameter argument.

HV_SP_GETRESTAURANT

PROCEDURE "HV_SP_GETRESTAURANT" ("RRLIST" OUT SYS_REFCURSOR)
AUTHID CURRENT_USER IS

BEGIN -- executable part starts here

OPEN RRLIST FOR SELECT * FROM HV_RESTAURANT;

END;

Phase V Part 2 | Page 115

HV_SP_GETRESTAURANT is pretty straight forward in that its setup to return every
restaurant record from the HV_RESTAURANT relation through use of an SQL query
combined with a SYS_REFCURSOR type parameter argument.

HV_SP_GETFADDRESS

PROCEDURE "HV_SP_GETFADDRESS" ("ARID" IN NUMBER, "RFALIST" OUT SYS_REFCURSOR)
AUTHID CURRENT_USER IS

BEGIN -- executable part starts here

OPEN RFALIST FOR SELECT * FROM HV_FRANCHISE
 WHERE HV_FRANCHISE.RSTID = aRID;

END;

HV_SP_GETFADDRESS functions very similar to stored procedure HV_SP_GETUADDRESS
in that it’s given a key from a different table to match in the foreign key column of
another table. In this case, the stored procedure is passed a restaurant identification
number. The procedure returns all records that have a matching restaurant number in the
foreign key column of the HV_FRANCHISE relation. Again, an SQL query combined with
a SYS_REFCURSOR type return parameter argument is used.

HV_SP_GETFI TEMS

PROCEDURE "HV_SP_GETFITEMS" ("AFID" IN NUMBER, "RILIST" OUT SYS_REFCURSOR)
AUTHID CURRENT_USER IS

BEGIN -- executable part starts here

OPEN RILIST FOR SELECT I.*

 FROM HV_FRANCHISE F INNER JOIN
 HV_OFFERS O ON F.FID = O.FID INNER JOIN
 HV_ITEM I ON O.ITEMID = I.ITEMID
 where f.fid = AFID;

END;

HV_SP_GETFITEMS incorporates much the same style of the previous stored procedures
except that it also includes a bit more involved SQL query used to join three relations:
HV_FRANCHISE, HV_OFFERS, and HV_ITEMS so the item list from the franchise specified
by the IN parameter attribute AFID can be returned in the SYS_REFCURSOR type OUT
return parameter argument RILIST.

Phase V Part 3 | Page 116

Part 3: Screenshots of the Application
The main goal of a graphical user interface is ease-of-use. A user must be able to perform tasks
required by the organization without having to sort through any sort of confusing interface. The
easier it is to understand how to use a program the more the user can focus on getting more done.
The basic idea is to make a graphical stable user interface which makes it easy to do more,
because it’s intuitive, while still enforcing business requirements.

This section shows screenshots of the basic dispatcher Every Meal Delivery system graphical
user interface front end application with descriptions of how it’s intentionally setup to guide the
user along the process of properly setting up customers, and orders for customers. Not all
screenshots will be set to 100% scale.

3.1 Application Style and Main Menu

The first thing to note about this application is that it uses a Multiple Document Interface
format, meaning it’s setup with a dedicated workspace to which forms related to the
application are restricted. This is useful because it ensures a theme is setup for the
application, making organization of business related tasks easier.

Basic Application Workspace

Phase V Part 3 | Page 117

The application has an extensive use of common menu bar options, listed as File, Edit,
View, Tools, Windows, and Help. Not all of these menu options are implemented,
however, ideally, such basic menu options are useful things to implement in a production
application. The same goes for the icon toolbar strip below the main menu bar.

The two things that are implemented in this application are the new customer, and new
order options. Both of these can be started either by clicking the new customer, or new
order icon in the toolbar (represented by the blue shirt bust, or the clipboard), or selecting
those options in the menu bar through File  New  Customer or File  New  Order.

Selecting Options either through the Toolbar or the Menu Bar

The icons in the toolbar are labeled with their function through use of ToolTip text. This
helps to clarify to the user the purpose of the icons. Menu bar options are also given the
same icon pictures as the toolbar for the sake of interface consistency.

An advantage of having a multiple document interface application is being able to have
the program help arrange the user’s workspace. The following shows three order forms
opened up for customer Rachel Larson who wants three separate orders to be delivered to
three separate locations.

Phase V Part 3 | Page 118

Three Order Documents in the Application Workspace

The application workspace can be corner selected and expanded to fit the order forms so
a dispatcher employee can more easily see them, or the menu bar windows organization
features can be used to help keep things organized.

Selecting Cascade from the Menu Bar

Phase V Part 3 | Page 119

Selecting Windows  Cascade for example will automatically organize the windows in
the workspace so they become easier to manage.

 Order Documents Arranged in Cascade Fashion

Selecting Windows from the main menu also allows users the option of bringing whatever
document desired to the front of the workspace. The pictures above have the New Order
1 document selected to the front.

The pictures above also show how the application numbers new document windows as
they’re initiated to help the dispatcher keep track.

3.2 The New Customer Forms

A major part of being a dispatcher employee is setting up new customers in the Every
Meal Delivery system as customers call in. To do this a dispatcher can bring up the new
customer form by clicking the new customer icon in the toolbar. Doing so brings up the
following form:

Phase V Part 3 | Page 120

Blank New Customer Entry Form

Whenever a dispatcher opens the above form, it becomes clear what is required from a
new customer in the system. A dispatcher asks a customer for a first name, middle
initial, last name, complete phone number, and asks the customer whether he/she would
like to purchase a membership for discount delivery rates. After filling in the required
information, the dispatcher may then click the Apply button to lock in the information in
order to proceed.

The new customer form is setup to check data entered to make sure it follows the correct
entry format. The system ensures no numbers may be entered in any of the name fields,
and no letters may be entered in any of the number fields. If a dispatcher forgets to put in
a first, or last name the following message box error appears.

Name Entry Error

Phase V Part 3 | Page 121

If the dispatcher enters correctly enters the name areas, but incorrectly enters the phone
number, then another message box error appears.

 Phone Entry Error

Correctly entering a new customer’s basic information, and clicking the Apply button
locks in the information, and tells the dispatcher to click the Add an Address button to
enter in a new address for the customer.

 New Customer Basic Information Locked and Ready

The Apply button also switches to an Edit button the dispatcher can still click to edit the
customer’s basic information. However, clicking the Edit button also disables the Add an
Address button, thus ensuring the dispatcher follows the business orders of operation for

Phase V Part 3 | Page 122

customer information entry. The Add an Address button is only enabled after proper basic
customer information has been locked in.

The next step involves adding a new delivery address for the customer. After the basic
customer information has been locked in, the dispatcher clicks the Add an Address button,
and the new address form comes up.

Blank New Address Form

Something of special note to take into account that will be coming up a few times in this
program is that when a sub-form comes up (such as the new address form coming up here
from the new customer form), the parent form becomes disabled (turned to light gray) so
it cannot be selected, or brought into focus above the child form. This way, the user
knows to complete everything that needs to be done on the child form before going back
to the parent form. In this case, the new address form must be filled in or canceled before
the user can go back to dealing with the new customer’s basic form.

Just as the basic new customer information form did type entry checking, so does the
address entry form. With the address entry form, a legitimate street number of a
somewhat correct format must be entered. Entering a number alone, or letters alone in
the Street field brings up a data entry error Message Box. The correct format for address
entry is a few numbers followed by a word, and any other alphanumeric characters after

Phase V Part 3 | Page 123

that. No special characters are permitted in the Street text field. Failure to enter in
correctly formatted street information results in the following Message Box error.

Street Entry Error

To help enforce data entry business rules the same error prompts are brought up should
the dispatcher enter in a correct Street, but not a correct zip code, or enter in a correct
street, and zip code, but not a correct city.

Zip and City Entry Error Prompts

After keying in a full correct address entry (aside from the optional Apt text field), and
clicking the Apply button, the address entry form locks in, and notes a successful address
in the form.

Address Entry Success Form

Phase V Part 3 | Page 124

Like in the main new customer entry form, the Apply button in the address entry form
turns into an Edit button, letting the dispatcher know it’s still possible to edit the current
address.

Upon the dispatcher deciding the new address information is correct, and clicking the
Close button, the new address is queued in the new user’s address list for uploading to the
database. The main new user window notes the addition of a new address, and lets the
dispatcher know a new order for the new user can be started.

New Customer Setup Ready

At this point the dispatcher can modify the user’s basic information, add another address
to the user’s account, or start the order for the new customer. Either way, closing from
here on saves the new information to the database. Should the customer have another
address to add, the program will number in the next address for the new customer.

Second Address Form Title

Phase V Part 3 | Page 125

3.3 The Order Setup Forms

The other major component of the dispatcher role is setting up customer orders. To start
setting up an order, a dispatcher can bring up the new order form by clicking the new
order icon in the toolbar. Doing so brings up the following form:

Blank Order Form

The first thing one can see in this form is not only that it’s empty, but that the
Add Items -> button is disabled by default. This is done so that the dispatcher is made to
select a customer for the order first. Clicking the Select Customer button brings up a child
form from the order form, making the overall order form disabled. The child form is a
customer select form with two list boxes, one for the customer names, and phone
numbers, and the other on the right to list every address of the customer selected on the
right. For example, the next screen shows that selecting customer Saul M Steinbeck with

Phase V Part 3 | Page 126

phone number 6612059354 displays three addresses belonging to the customer in the right
list box.

Selecting a Customer for the Order

The application’s order of operations is again enforced here in that the dispatcher isn’t
allowed to load the customer into the order until a customer address is selected from the
list box to the right. The Load Selection button becomes available the moment the
dispatcher selects an address.

Load Selection Button Enabled after Address Selection

Phase V Part 3 | Page 127

After selecting, and loading a customer, the Select a Customer form closes, thus enabling
the main order form with the Customer area filled with the customer delivery information.

Order Form with Customer Information

As soon as customer information has been filled in, the business order of operations then
allows the dispatcher to add items to the order by enabling the Add Items -> button.

Clicking the Add Items -> button disables the new order form, and opens the Items to be
Ordered child form. Through this form the dispatcher selects a single restaurant, and
specific franchise location of the restaurant. All the menu items for the specific franchise
are available for choosing from within this form, and any number of such items can be
added to the order. There is a business restriction, however, that holds that only one
franchise of one restaurant can be included in each order. For example, a dispatcher
cannot add items from two different Taco Bell locations to the order. If the order is to

Phase V Part 3 | Page 128

include Taco Bell items, all such Taco Bell items will be ordered from the same
franchise.

Items to be Ordered Form

Having the Items to be Ordered form up, the dispatcher first selects a restaurant name
from the drop down combo box. The combo boxes in this form are set to enable search
suggestions. Should the dispatcher decide to type in a selection, the combo box will
attempt to append to the typed entry the rest of what is being selected. The dispatcher
may only choose from what is listed in the drop down box.

Restaurant Name Drop Down Combo Box

Phase V Part 3 | Page 129

Upon selecting the restaurant name, the Address combo box then becomes enabled, and
filled with every franchise address available for the chosen restaurant. By this time the
dispatcher knows the customer’s delivery location, so he/she knows which franchise
address to choose closest to the customer delivery location. The application screen shows
the available franchise addresses for the Carls Jr restaurant name.

Franchise Address Drop Down Combo Box

After the dispatcher selects the franchise address the form then enables the Save Locale
button.

The Save Locale Button is Enabled

To lock in the restaurant, and franchise, and bring up the franchise’s item menu the
dispatcher clicks the Save Locale button. After which, the restaurant information display
gets formatted to an easy to view layout, the Save Locale button switches to an Edit Locale
button, and the franchise’s menu items become selectable in a drop down combo box in
the Item Selector group box located below the Restaurant Information group box.

Phase V Part 3 | Page 130

A Franchise Expanded Item List

After selecting an item from the franchise’s item list the dispatcher can then click the
Add Item -> button to add the item to the list of items to be bought from the current
restaurant franchise for the order. Adding an item not only adds the selected item to the
list, it also enables the Remove button allowing the dispatcher to remove items from the
order list, and the Cancel button becomes an Apply button which when clicked adds every
item chosen to the general order list. The Add Item -> button also becomes disabled

Phase V Part 3 | Page 131

when a non-legitimate franchise menu item is typed into the menu item drop-down list.
The Add Item -> button only becomes enabled when an actual item from the franchise
menu is selected, or typed. As soon as an item is added to the list, the Edit Locale button
becomes disabled. It only becomes enabled at this stage when the selected item list is
empty. The status bar also updates to display the number of items entered for the
franchise order. The following screen shows the Items to be Ordered form after three
items have been added to the franchise order.

Three Items Entered in the List

It’s possible to delete the blue selected item by pressing the Remove button.

At this point let’s say the dispatcher clicks Apply, because the customer has decided the
selected items from the specified franchise are all he wants. The customer then decides
to move on to order items from a different franchise. When the dispatcher clicks Apply
the Items to be Ordered form closes while re-enabling the parent New Order 1 form.
Every item in the franchise list gets carried over, and the item costs get tallied in the main
order form. The main form also groups the items under the name, and address location of
the restaurant franchise from which the items are to be purchased. The dispatcher can

Phase V Part 3 | Page 132

also go back, and add items from a different franchise of the customer’s choosing to add
to the order. The process for adding another restaurant’s items to the order is the same as
the process of adding the first restaurant’s items to the order. The following screen
picture shows the result on the main order form of the dispatcher adding various items
from different restaurants.

Total Set of Order Items from Two Different Restaurants

Phase V Part 4 | Page 133

Part 4: Describing the Code
Though the front end of a database program may look simple in its layout, getting everything put
together to function in a way that enforces program data entry rules, and order of program
operation requires quite a bit of programming. The software design, and analysis process
requires one to do all the investigating necessary not only to understand how a program works,
but how it can be further improved. For now, however, the main concern of this section is
understanding the code design structures necessary for this project.

4.1 Major Step in Designing a User Interface

Initially, I had in mind to use a single form interface through which all forms in the
application would swap. Instead of having a multiple document interface workspace, I
figured a simple form would be enough. The application would start with a basic form
with a simple set of menu options, all the same ones included in the current design. If a
user were to click the new customer tool bar icon the entire application form would be
replaced with the new customer entry form, and everything described in the previous
section would carry on similarly. My main problem with this design, however, was that
it didn’t allow a flexible environment through which a user could do multiple things at
once. If, for example, a customer were to want to make three separate orders as
demonstrated in screenshots of the previous section, the dispatcher would have to
complete one order, then move on to the next, then the next. Going back to recover the
three separate orders seemed to me to be a bit too cumbersome. Either the user interface
would require a super summary form allowing a dispatcher to merge together orders
already entered into the system into one report, or the dispatcher would have to look up
each order made individually to be verified back to the customer. For such a case I
would have had to make up a pause status on each order so it wouldn’t be entered into the
system until the customer, and dispatcher agreed on the item totals. In the end, I figured
the multiple document interface best, because multiple orders could be started at once,
and easily reviewed to the customer for confirmation at once.

Initially, I’d had the idea for a single form layout, because the prior application I made
for record loading was of this same design. Single form layout worked fine for such a
simple data loading application, but for more complex operations such as the ones
required in this project, it just wasn’t robust enough.

4.2 Major Class Descriptions

The majority of this program so far involves use of classes used to hold up the forms used
in the GUI part of the application. Though these are interesting in their own, and they
will be summarily described, their focus doesn’t touch so much on the main premise of
this project, which is databases. For that there is one main class dealing with managing
data through the Oracle 10g DMBS used in the project. Though most of the classes will

Phase V Part 4 | Page 134

have their brief expository summations in this section, I think it best to expound a bit
further on the Oracle related database class this project contains. Something important to
note is that anytime a database manager object is brought up in any of the following
major form classes, the object being referred to is an instantiation of the same main
Oracle related database class already mentioned.

4.2.1

Major Form Classes

Class: fMain

This is the main form class for the multiple document interface. It contains an
array of form objects it uses to keep track of child forms it spawns within the
workspace. Since it is the principal form of the program, it contains all the event
methods necessary to react to toolbar icon clicks, and main menu selections. It
also contains functions used to restrict text box data entry to specified formats.

Class: cfCustomer

cfCustomer is a form class containing the new customer form called from the
main form. Most of this form class involves event based methods tailored to
change the form’s structure should data entry events happen as described in the
previous part of this phase. This class also contains an array of address list forms
it uses to keep track of the number of new addresses pertaining to new customers.
A database manager object is also included in this class for when new customer
information is pushed to the database.

Class: cfNewAddress

Form class cfNewAddress is the class for the new address form used to setup a
new customer’s new address information. Much like the new customer form
which instantiates new objects of this form class, cfNewAddress also contains
many event methods used primarily for the sake of enacting form manipulation
processes described in the previous part of this phase. When told to do so by the
parent new customer form, objects of this class use their local database manager
objects to push new address information to the database with the help of customer
information passed along from the parent new customer form class.

Class: cfOrder

This class is the base order form class. Not only does this form class contain
many event methods used to enforce the required order of application data entry,
it also contains custom application container objects used to hold requested order
data to be pushed to the database later in the application process. Of course,
methods included in this class instantiate form objects which add customer, and
item information to this form. All the standard order information found on the

Phase V Part 4 | Page 135

order form is information held in the container objects until the order is confirmed
ready to be sent to the database.

Class: cfExstingCstmr

cfExstingCstmr is the class form from which an object is instantiated when the
customer information needs to be added to the main order form. This is the class
for the select a customer form. This class has necessary form list box event
methods used in conjunction with a database manager object to pull information
from the database which is displayed in this form class objects’ list boxes. Event
methods already described for this form are also part of this class.

Class: cfAddItems

cfAddItems is the form class used to instantiate restaurant item listing forms when
requested from the main order form. Aside from the personally customized set of
form event methods dealing with enabling/disabling buttons, combo boxes,
locking in restaurant information, etc., this class also uses a database manager
object to pull specified information from the database. Information pulled from
the database is stored in custom class containers for the purposes both of display
in combo boxes, as well as sending back to the order form which instantiates
objects of this class.

4.2.2

Important Basic Application Data Utility Classes

Class: emsForm

emsForm is a form management utility class used to tell the main form of the
program the type of new form it’s to make. An object of this type is instantiated
prior to the initiation of any of the form types described above. This class is used
mainly for coding convenience to make the base parent’s form making function
more manageable. This class contains objects of every form type mentioned
above, of which only one type is instantiated every time an object of this type is
instantiated.

Classes: containerCustomer, containerAddress, containerArrayAddress,

 containerRestaurant, containerFranchise, containerItems

This set of classes is essentially a group of advanced structure-like types, each
used to retain Database information either after it’s pulled, or before it’s pushed.
Data members in any of these classes are simple types matching the information
required for storage, except for the containerArrayAddress class which holds an
array of simple data-types for the sake of holding record sets of information to be

Phase V Part 4 | Page 136

sent to the database all at once. Objects of these kinds of classes are used
throughout the application by the various forms that need them.

4.2.3

The Primary Database Management Class

Class: OManager

In order to understand how data is transmitted/received between the front end
application, and the DBMS it is necessary to expound in detail on the contents of
some of class OManager’s members. The purpose of this class is to setup
transmission lines between the front end application, and the DBMS. Some detail
on the basics of how this is done is explained in the following few sections.

Setting Up a Data Connection

As has already been made clear, the DBMS to which this application connects is
Oracle 10g, and as such there are certain Oracle related syntax structures required
to have a .NET C# application connect properly for the purposes of data
transmission.

Prior to do doing anything else, an object of the OManager class runs a few basic
necessary routines during instantiation through its constructor. These are listed in
the following C# code with appropriate comments for explanation.

//The database IP address as well as Login, and Password is specified in a
// full independent connection string structure.
 oradb = "Data Source=(DESCRIPTION=" + "(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)"+
 "(HOST=helios.cs.csubak.edu)(PORT=1521)))(CONNECT_DATA=(SERVER=DEDICATED)"+
 "(SERVICE_NAME=ORCL)));" + "User Id=cs342;Password=c3m4p2s;";

//An Oracle Connection Object is Constructed, and Assigned the Database Login Info
 conn = new OracleConnection();
 conn.ConnectionString = oradb;

//A new Oracle Command Object is Made, and Assigned the Oracle Database Connection
// also recently just Made
 cmd = new OracleCommand();
 cmd.Connection = conn;

Opening and Closing the Data Connection for Command Execution

After making an Oracle connection object, anytime a call to the database is to be
made, the connection object must be opened before the Oracle command can be
executed. After the command is executed, the connection is then closed
demonstrated in the following simple C# code:

conn.Open();
<Oracle execute command goes here>
conn.Close();

Phase V Part 4 | Page 137

Using an Oracle Stored Procedure to get a Record Set to C# .NET

The following Oracle stored procedure named HV_SP_GETCUSTOMERS is used in
the OManager class CustomerList method member.

-- Inside Oracle
-- This Simple Procedure Returns a Record Set through a SYS_REFCURSOR

PROCEDURE "HV_SP_GETCUSTOMERS" ("RCLIST" OUT SYS_REFCURSOR)
AUTHID CURRENT_USER IS

BEGIN -- executable part starts here

OPEN RCLIST FOR SELECT * FROM HV_CUSTOMER;

END;

/*Inside Visual Studio*/

//The Following Method Stores the Return Record Set into a containerCustomer object
// Array
//The custom containerCustomer object class has the following definition:
//
// public class containerCustomer
// {
// public int _ID;
// public string _fName;
// public string _mInitial;
// public string _lName;
// public long _Phone;
// public int _status;
// public containerCustomer () {}
// }
//
//***
// Beginning of OManager Class Method Member CustomerList()
//
public containerCustomer[] CustomerList() {
 //Holds the size of the Customer Data Container Array
 int size;

 //Instantiates a Zero Length Customer Data Container Array
 containerCustomer [] cHolder = new containerCustomer [0];

 //Tell the Oracle Command Object the Name of the Stored Procedure
 cmd.CommandText = "HV_SP_GETCUSTOMERS";

 //Tell the Oracle Command Object it’s an Oracle Stored Procedure type of Command
 cmd.CommandType = CommandType.StoredProcedure;

 //Add the SYS_REFCURSOR OUT Parameter to the Oracle Command
 cmd.Parameters.Add("outValue", OracleDbType.RefCursor,
 ParameterDirection.Output);
 //Open the Oracle Connection
 conn.Open();

 //Make an Oracle Data Reader Object
 OracleDataReader reader = cmd.ExecuteReader();

Phase V Part 4 | Page 138

 //While the reader still has return information, return the reader’s return values
 //(Return values are stored as an array in the reader with the number of array
 // offsets equal to the number of attributes in each Oracle record)
 //The Customer container is resized +1 everytime it needs the space to store
 // another returned record.
 for (int i = 0; reader.Read(); i++)
 {
 size = cHolder.Length;
 Array.Resize<containerCustomer>(ref cHolder, size + 1);
 cHolder[i] = new containerCustomer();
 cHolder[i]._ID = Convert.ToInt32(reader.GetValue(0).ToString());
 cHolder[i]._fName = reader.GetString(1);
 cHolder[i]._mInitial = reader.GetString(2);
 cHolder[i]._lName = reader.GetString(3);
 cHolder[i]._Phone = reader.GetInt64(4);
 cHolder[i]._status = reader.GetInt32(5);
 }

//Close, and Dispose of the reader, clear the Oracle command’s parameters, close the
//Oracle connection, and return the newly filled customer container array.
 reader.Close();
 reader.Dispose();
 cmd.Parameters.Clear();
 conn.Close();
 return cHolder;
}//End of OManager Class Method Member CustomerList()

Phase V Part 4 | Page 139

I was able to implement the next function at the last minute so I know it works,
even though it hasn’t been used in the application. It’s important to include it for
the sake of having an efficient way to send a record set, eliminating the need to
make repeated individual slow connection calls to the DBMS.

Send a C# .NET array of records all at once to an Oracle Stored Procedure

The following Oracle stored procedure named HV_SP_TBTEST is used in the
OManager class apTester method member.

-- Inside Oracle
-- This Simple Procedure Insert a single Record with 3 Attributes

PROCEDURE "HV_SP_TBTEST" ("STRINGPASS" IN VARCHAR2,"INTPASS" IN NUMBER)
AUTHID CURRENT_USER IS

 BEGIN -- executable part starts here
 insert into HV_TABLETEST (PKCOLUMN, STRINGER, NUMBSKY)
 values (HV_SQ_TEST.NextVal, STRINGPASS, INTPASS);

END;

/*Inside Visual Studio*/

//The Following Method Sends a Simple Record Set (Represented by Two Arrays) to the
// Oracle HV_SP_TBTEST stored procedure
//The Method sends a record set once to a stored procedure where Oracle repeats the
// stored procedure multiple times to insert the entire record set.
//
//***
// Beginning of OManager Class Method Member CustomerList()
//
public void apTester() {
 //Tell the Oracle Command the Name of the Oracle Stored Procedure
 cmd.CommandText = "HV_SP_TBTEST";

 //Tell the Oracle Command Object it’s an Oracle Stored Procedure type of Command
 cmd.CommandType = CommandType.StoredProcedure;

 //Tell the Oracle Command the number of rows it will receive.
 cmd.ArrayBindCount = 3;

 //Two Arrays to Function as Simple Sample Record Sets
String [] Street = new String[3]{"234 Pal", "234 Jim Bean", "345 Plane Dr" };
 int[] Zip = new int [3]{ 93280, 93312, 90210 };

 //Tell the Oracle command the type of Parameters the Stored Procedure
 // will receive
cmd.Parameters.Add("Street_Column", OracleDbType.Varchar2, Street,
 ParameterDirection.Input);
cmd.Parameters.Add("Zip_Column", OracleDbType.Int32, Zip,
 ParameterDirection.Input);

//Open the Connection, Execute the Procedure, Close the Connection, and
// clear the Parameters from the command.

 conn.Open()
 cmd.ExecuteNonQuery();
 conn.Close();
 cmd.Parameters.Clear();
}//End of OManager Class Method Member apTester()

Phase V Part 4 | Page 140

The OManager class contains essential methods like the ones just listed so the
other form classes can send or receive database information in an efficient enough
manner.

4.3 Major Features of the GUI

The strong suite of the graphical user interface for the Every Meal Delivery system lies in
the fact that it uses icons whenever possible with clear labels on what everything does,
through a user-friendly multiple document interface that enforces business application
rules of operation whenever possible. This combined suite of features offers the user a
reliable easy to understand, easy to use application with a low tolerance for errors. The
low tolerance for errors may not be something the typical user would care about, but the
managers in charge certainly would.

Easy to understand symbols of operation in the application are very important to how the
typical user goes about doing his/her job within the application’s workspace environment.
From the moment the user brings up the new customer entry form, the current task at
hand is made extremely clear. The form itself tells the user what to do at every moment:
“Enter the New Customer’s Basic Information”, “Click ‘Add an Address’ Button to Add
a Customer Address”, “New Customer Ready”, etc. Even the icons in the corner of each
form inform the user to the category of the form itself. When it comes to training new
people into how to use a Business Management System, all such symbolically supported
educational queues are very important.

4.4 Learning New Tools

When I first came into development in this project my experience with developing
project forms in C#, and Oracle was little to none. My background experience came
mostly in C++, with some web programming here, and there. What helped me to develop
this C# application was reading straight to what I needed to accomplish. I knew C#
wasn’t much different from C++ so I felt quite assured to do okay in that respect, and
learning the Oracle portions of the program came to me much the same way learning new
things in C# did. I consistently researched to learn what I needed using every useful
resource I had at my disposal. If I didn’t learn it in class, I learned it through a Visual C#
2008 book I bought by Deitel, and Deitel, and the internet. Mostly it was the internet. If
ever there was something I needed to do in my project, my main recourse consistently
came back to researching the topic at hand through a Google search leading me to the
Microsoft Developer Network, The Code Project Development resource, Oracle forums,
Oracle help files, etc. If the information I required even the web didn’t have, sometimes
I’d have no choice but to trial, and error the functionality of objects provided in the
Visual Studio class libraries. What helped throughout the entire ordeal was staying on
point researching, trying whatever I could, no matter how long it took doing whatever I
could to get things done. Primarily, what laid at the root of my learning in this project
was making a constant effort to sustain a tenacity to focus on what I needed to meet the

Phase V Parts 4 & 5 | Page 141

goals I set to accomplish. It all starts and ends with wanting to do something, and for me
it’s been about doing whatever I can to learn from any useful resource I can find to do
what I need to see this project through.

What also helped is the Visual Studio development environment. At this point the
IntelliSense features the Visual Studio IDE offers are extremely helpful when trying
ensure syntax in a program is structured correctly. Its suggestive nature consistently
teaches, and reminds one of how to build a working program.

Part 5: Application Design
 and Implementation
My main intention with the database application I was designing was to have a well-known
layout style with sufficiently good use of graphic design setup in way easy to understand by
anyone who uses the application. I took ideas from user interfaces provided by common popular
applications such as the Firefox web browser. However, I quickly came to realize the
application interfaces for such products are beyond what is easily offered in the Visual Studio
environment. One thing easy to learn in application programming is that getting dynamic good
looking graphics in a graphical user interface takes a lot of planning, and time to implement.

American computer scientist professor Ben Shneiderman who specializes in the field of human-
computer interaction recommends the following guidelines for a good form/report design:

• Meaningful title – the title of a form should unambiguously identify its purpose

• Comprehensible instructions – terminology should be used to instruct the user with a
standard grammatical style

• Logical grouping and sequencing of fields – fields that are related in a form should be

placed near one-another.

• Visually appealing layout – fields, and groups should be evenly positioned through out
the form.

• Familiar field labels – fields should be easy to distinguish

• Consistent terminology and abbreviations – as the description implies, familiar terms, and
abbreviations should be used consistently in the form

• Consistent use of color – color should be used to highlight important areas of the form

Phase V Part 5 | Page 142

• Visible space, and boundaries for data-entry fields – it should be easy for a user to know
how much space is available in the form

• Convenient cursor movement – Tab key, arrows, or mouse pointers should be used to
easily spot required operations

• Error correction for individual characters and entire fields – common items such as
Backspace key, or insert should be established as available input mechanisms for righting
data entry mistakes in a form

• Error messages for unacceptable values – entering incorrect data into a form should
inform the user of incorrect entries being made

• Optional fields marked clearly – fields the user doesn’t have to use should be made clear

• Explanatory messages for fields – tooltip or windows status information should inform
the user of the purpose of a field

• Completion signal – The application should make evident when the field entry process is
complete

The good thing about the application I’ve set up so far is that most of the Dr. Shneiderman’s
recommendations are taken into account. Any further form setups made on the project regarding
other components are definitely to continue toward more the same type of design ethos.
Currently, certain recommendation options such as the clear marking of optional fields are
something that can perhaps be added to forms in areas such as the entry of a middle initial,
apartment information, or the optional member status checkbox in the new customer form.

Conclusion | Page 143

Conclusion

The idea for this project came to me a while ago when working out near Taft doing payroll for a
contracting company. At the time I thought it’d be a great if there were a fast food delivery
business delivering people’s favorite fast food items to remotely located businesses, or even just
to busy people who could benefit from having such an affordable convenience. Recently, with
the research I made to complete this project I came across people from big cities throughout the
United States online who practice a business model similar to that proposed by this application.
This has led me to ponder that perhaps any great idea can be improved on, if not at the very least
modeled with some form of useful technology, in a way that could make life easier, and just
plain more productive. For anyone truly wanting to build a more efficient system of
organization, even in a field as rare as general fast food delivery, a database can definitely help
things go far in ways greatly organized, and perhaps even more resilient.

