
1

Pizza Parlor Point-Of-Sales System

CMPS 342 Database Systems

Chris Perry

Ruben Castaneda

2

Table of Contents

 PHASE 1

1 Pizza Parlor: Point-Of-Sales Database..3

 1.1 Description of Business..3

 1.2 Conceptual Database...4

2 Conceptual Database Design..5

 2.1 Entities..5

 2.2 Relationships..13

 2.3 Related Entities..16

 PHASE 2

3 ER-Model vs Relational Model..17

 3.1 Description...17

 3.2 Comparison..17

 3.3 Conversion from E-R model to relational model...17

 3.4 Constraints..19

4 Relational Model..19

 4.1 Relations...19

 4.2 Sample Data...24

5 Queries..34

 PHASE 3

6 Normalization...35

7 Oracle/SQL*PLUS..36

8 Relational Database Schema..37

9 SQL Queries...38

 PHASE 4

10 Common Features of PL/SQL and T-SQL..43

11 PL/SQL...43

12 Sub Program..45

 PHASE 5

13 Genera Description..47

14 Daily Activities...47

15 Menu And Displays.…..48

16 Code Implementation …...16

3

1 Pizza Parlor: Point-Of-Sales Database

 1.1 Description of Business

 Using our group members personal experience and access, working at a pizza parlor, we were

able to begin the fact-finding process. At the pizza parlor we interviewed management about the types

of reports they use and would like to see in a Point-Of-Sales (POS) database. For this project we are

modeling just the sales portion of the business. We are not including tasks and portions of the business

that have to do with inventory, ordering, accounts payable, and labor, among others. Based on their

answers we planned accordingly. From a business perspective we will be able to query historical data

and produce total sales per day/week/month; sales based on pizza's sold; types of pizzas; salad and

wings sales; soft drink and beer sales; most sold items per category.

 From a user perspective, all employee's will be able to view orders based on time, total, name,

order number, and/or telephone number. There three types of employee permissions. Management will

have elevated permissions and will be split into two groups. Employees will only be able to take orders.

Assistant managers will be able to discount prices, comp-orders, override transactions, and take orders.

Managers will have the same permissions as assistant managers plus they can change prices, items, and

quantities and view reports.

 We analyzed and documented all the visible features we could find on the the existing POS

database. To have an ideal POS interface we had all employees who operate the registers answer the

following questionnaire:

1. What do you like about the current POS database?

2. What do you dislike about the current POS database?

3. What would like to see added?

4. What would like to see modified?

5. What would like to see removed?

4

 1.2 Conceptual Database

5

2 Conceptual Database Design

 2.1 Entities

Employee

 The Employee entity holds employee's information and controls what permissions each

employee has and what data they can view. The only candidate key is the EmployeeID attribute and

thus the EmployeeID attribute is the primary key. An employee's name can be unique and it is not

necessarily always going to be the case. Since the entity has a primary key, the Employee entity is a

strong entity.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

EmployeeID A user's

unique

identifier

int > 0 0 no yes single simple

Title A user's title

determines

their

permissions

and what data

they can view

String Employee,

Assistant

Manager,

or

Manager

Employee no no Single Simple

Name A user's name String Empty string no no Single Composite

Password A user's

hashed

(encrypted)

password

16 byte

array

 All 0s no no Single Simple

6

Order

 The Order entity holds information about orders that have been taken. The only possible

candidate key is the OrderNumber attribute and thus the OrderNumber attribute is the primary key and

the Order entity is a strong entity.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

OrderNumb

er

This identifies

the order

int > 0 0 no yes Single Simple

OrderType This is the

type of order

string Walk-in,

To-go, or

Phone

Order

Walk-in no no Single Simple

Discount Any coupon or

discount that

has been

applied to the

order

Decimal >= 0.00 0 no no Single Simple

Comments Any special

instructions or

considerations

that should be

known

Text Empty

String

no no Single Simple

Status Whether or not

the order has

been paid.

Phone Orders

are taken and

put into the

database but

are paid when

the order is

picked up

String Paid or

Unpaid

Unpaid no no Single Simple

7

Customer

 The Customer entity holds basic information about customers when phone orders are placed,

whether it is a pick-up or delivery. For a pick-up customers are identified by their name and phone

number. For a delivery the address is obviously needed to get the order to the customer. Although no

attributes are necessarily unique, the combination of a customer's name and phone number are unique

and thus those two attributes form the primary key and the Customer entity is a strong entity.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Name Customer's

name

string Empty string no no Single Composite

Phone

Number

Customer's

phone number

int > 0, 7 or

10 digits

1111111 no no Single Simple

Address Customer's

address

string Empty string no no Single Composite

Side Item

 The Side Item entity is the basis for all the items that can be associated with an order. This is a

super class to all other items. The ID attribute is the primary key so this, and all subclasses, is a strong

entity.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

ID Unique

identifier for

item

int > 0 0 no yes single Simple

Size The size of the

item. This is

used to

calculate the

total

string Empty string no no single Simple

Total The cost of the

item

decimal >= 0.00 0 no no single Simple

8

Comments Any special

instructions or

considerations

string Empty string no no single Simple

Number Number of the

item to be

ordered. This

is to save

space in the

database

int > 0 1 no no single Simple

Food

 The Food entity is a subclass of the Side Item entity and a generalization of the Wedge, Wing,

and Pizza entities. It is a strong entity because it inherits the ID attribute from Side Item.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

HowCooked Describes how

the food item

should be

cooked

string normal no no single Simple

Salad

 The Salad entity represents a salad from an order. There are several different types of salads,

each with its own price.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Type The type of

salad order

string Empty string no no single Composite

9

Salad Type

 The Salad Type entity represents the different kinds of salads that can be ordered. The Salad

Type entity is a strong entity because the Name attribute is the primary key.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Name The name of

the salad type

string Empty string no yes single Simple

Price How much the

salad type

costs

decimal >= 0.00 0 no no single simple

SaladIngredients

 The SaladIngredients entity represents different items that can be put in a Salad Type. The

Name Attribute is the primary key so the SaladIngredients entity is a strong entity.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Name Name of the

salad

ingredient

string Empty string no no Single Composite

Beer

 The Beer entity represents a beer item on an order.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

IsImport? Represents

whether the

beer is an

import. This is

Bool True or

false

FALSE no no single Simple

10

used to

determine the

price

Soda

 The Soda entity represents a soda item on an order. The Soda entity is a subclass but adds no

attributes.

Wedge

 The Wedge entity represents an order of potato wedges.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Sauce Indicates what

kind of

dipping sauce

the customer

wants, if any.

string Honey

Mustard,

1000

Island,

None

None no no single simple

Wing

 The Wing entity represents an order of hot wings.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

AddHotSau

ce?

Indicates

whether or not

the customer

wants hot

Bool True or

false

FALSE no no single simple

11

sauce added

Prices

 The Prices entity represents the price of an item and the date range for which the price is good

for. The Name attribute is the primary key so the Prices entity is a strong entity.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Name Name of the

item

string Empty

String

no yes Single simple

Amount Cost of the

item

decimal >= 0.00 0 no no single simple

StartDate When the

price starts

Date Today no no single simple

EndDate When the

price ends

Date NULL yes no single simple

Pizza

 The Pizza entity represents a pizza on an order.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Side1Chees

e

How much

cheese on side

1

String None,

Light,

Normal,

Extra

Normal no no Single Simple

Side2Chees

e

How much

cheese on side

2

String None,

Light,

Normal,

Extra

Normal no no Single Simple

Side1Sauce How much

sauce on side 1

String None,

Light,

Normal,

Extra

Normal no no Single Simple

Side2Sauce How much

sauce on side 2

String None,

Light,

Normal,

Extra

Normal no no Single Simple

12

Specialty

 The Specialty entity represents a specialty pizza type (combination, supreme, meat lovers, etc...).

The Name attribute is the primary key so the Specialty entity is a strong entity.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Name Name of the

specialty type

string Empty string no yes single simple

Topping

 The topping entity represents a pizza topping. The Name attribute is the primary key so the

Topping entity is a strong entity. This entity is used both to determine what toppings are in a specialty

and what individual toppings go on a pizza.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

Name Name of the

pizza topping

String Empty string no yes single simple

HistoricalData

 The HistoricalData entity holds totals for different categories from previous days. The Date

attribute is the primary key so the HistoricalData entity is a strong entity. This entity will primarily be

used for reports.

Name of

Attribute

Description Domain/

Type

Value-

Range

Default

Value

NULL? Unique? Single or

multi-value

Simple or

Composite

13

Date Day for which

the totals are

calculated

Date Yesterday no yes single simple

WedgeTotal Total sales

from wedges

Decimal >= 0.00 0 no no single simple

WingsTotal Total sales

from wings

Decimal >= 0.00 0 no no single simple

SodaTotal Total sales

from sodas

Decimal >= 0.00 0 no no single simple

BeerTotal Total sales

from beer

Decimal >= 0.00 0 no no single simple

PizzaTotal Total sales

from pizza

Decimal >= 0.00 0 no no single simple

SaladTotal Total sales

from salads

Decimal >= 0.00 0 no no single simple

SalesTax Total sales tax Decimal >= 0.00 0 no no single simple

DiscountTot

al

Total of all

discounts

Decimal >= 0.00 0 no no single simple

 2.2 Relationships

Name Order to Employee

Description This relationship connects each employee to orders that they took.

This allows stats to be kept of the performance of individuals to be

tracked. And if there is a problem with an order, management can

easily look up who took the order.

Entities Involved Order and Employee

Mapping

Cardinality

* to 1

Participation

Constraint

total

Name Customer to Order

14

Description If an order is a phone order then it is associated with a customer.

Entities Involved Customer and Order

Mapping

Cardinality

1 to *

Participation

Constraint

Total

Name Side Item to Order

Description When a side item is ordered it must be associated with an order,

otherwise it would be unknown who the item belongs to.

Entities Involved SideItem and Order

Mapping

Cardinality

* to 1

Participation

Constraint

Total

Name Salad to SaladType

Description When a salad is ordered it must be associated with a salad type so

employees know which items to put on the salad.

Entities Involved Salad and SaladType

Mapping

Cardinality

1 to *

Participation

Constraint

total

Name SaladIngredients to SaladType

Description Associates ingredients with a salad type so that employees will know

what to put on each salad

15

Entities Involved SaladIngredients and SaladType

Mapping

Cardinality

* to *

Participation

Constraint

optional

Name Pizza to Specialty

Description If a customer orders a pizza with a specialty (meaning they want a

combination pizza or a meat lovers pizza) then the pizza will be

associated with that specialty

Entities Involved Pizza and Specialty

Mapping

Cardinality

* to *

Participation

Constraint

optional

Name Pizza to Topping

Description If a customer orders a pizza but just orders by toppings (a large

pepperoni and sausage for example) then the pizza will be associated

with each of those toppings

Entities Involved Pizza and Topping

Mapping

Cardinality

* to *

Participation

Constraint

optional

Name Topping to Specialty

Description When a specialty pizza type is created it must be associated with

different toppings so employees will know what goes on that

specialty

16

Entities Involved Topping and Specialty

Mapping

Cardinality

* to *

Participation

Constraint

optional

 2.3 Related Entities

Side Item

 This entity is an instance of specialization. All side items have basic attributes and then their

own unique attributes. This entity contains those attributes that all side items use.

Food

 This entity is an instance of generalization. Food items that are cooked need an attribute for how

they are to be cooked. That attribute was pulled out of the Wedge, Wing, and Pizza entities into this one.

3 ER-Model vs. Relational Model

3.1 Description

 In 1976, Peter Chen derived the Entity-Relationship (ER) model, a high-level data model that is

useful in developing a conceptual design for a database. At the time other models existed but Chen's

ER model's was appealing and accepted due to its conceptual simplicity, visual representation, effective

communication, and integration with the relational database model. The following are key elements of

the ER model:

• Entities: A thing in the real world with an independent existence (Elmasri/Navathe, 2007, p. 61).

• Attributes: Each entity has attributes-the particular properties that describe it (Elmasri/Navathe,

2007, p. 62).

17

• Key attribute: distinct values in each entity that can be used to identify each entity uniquely

(Elmasri/Navathe, 2007, p. 66).

• Relationships: Exist between two entities that are related to each other.

3.2 Comparison

 While Chen's ER model is used to create an accurate reflection of the real world in a database,

Ted Codd of IBM research introduced the relational model that is used to show how this data will be

represented in a Relational Database Management System (RDBMS). The relational model represents

the database as a collective of relationships, consists of tables with rows that define relationships

between a set of values, and uses relational algebra to relations (Elmasri/Navathe, 2007,p. 46).

3.3 Conversion from E-R model to relational model

 The ER Model is an important preliminary stage of conceptual design use to communicate

between users and the DBA. We convert from ER to Relational Model because it is the logical level of

database design.

Relational Model Concepts

• A row of table is a relational instance/tuple

• A column of table is an attribute

• A table is the schema/relation

• Cardinality is the number of rows

• Degree is the number of columns

We can convert the ER Model to the Relational Model using the following principal idea:

• create a table for each entity set

• create a table for each relationship

• using columns for each attributes

18

• indivisibility rules and ordering rules

• primary key

 First step would be to create a relation for all strong entity types with columns to represent each

attributes. One of the attributes will be selected as the Primary key (composite and foreign keys can

also be implemented). Weak Entities must include a column on the right side of the table with the

primary key of the Strong Enitity Set. For composite attributes the Relational Model Indivisibility Rule

applies: one column for each component attribute; no column for the composite attribute itself. For

multi-valued attributes, take the attribute and turn it into a new entity of its own. Then make a 1:M

relationship between the new entity and the existing one. Then convert as normal. The Primary Key of

the Weak Entity Set should include 'Discriminator + Foreign Key'.

 For Unary/Binary Relationships there are two approaches. For a 1:1 relationship with out total

participation we build a table with two columns. One column for each participating entity set’s primary

key and we add successive columns, one for each descriptive attributes of the relationship set if any

exists. The other approach is for a 1:1 relationship with total participation. We add an extra column and

insert the primary key of the entity set with out complete participation to the relationship. The issue

with an N-ary relationships, a single relationship including three or more entities, is that they can

usually be better represented by using an additional entity and a set of binary relationships.

3.4 Constraints

 An entity constrain will require primary keys not to be null. Another constraint for the primary

key is that values must be unique. Constrains to a foreign key are enforce through a referential

constraint which is any references to other existing tuples in other relations must be valid. The check

constraint checks the values entered are valid according to the requirements of the attribute.

19

4 Relational Model

4.1 Relations

Employee

Attribute Name EmployeePK Title Name Password

Domain int string string Binary data

Constraints Primary Key

Order

Attribute Name OrderPK EmployeeFK CustomerFK OrderType Discount Comments Status

Domain int int int string double string string

Constraints Primary Key referential referential

Customer

Attribute

Name

CustomerPK Name PhoneNum

ber

Addre

ss

Domain int string int string

Constraints Primary Key

Salad

Attribute Name SaladPK OrderFK SaladTypeFK Size Total Comments Quantity

Domain int int int string double string int

Constraints Primary Key referential referential

20

Salad Type

Attribute Name SaladTypePK Name Price

Domain int string double

Constraints Primary Key

Salad Ingredients

Attribute Name SaladIngredientsPK Name

Domain int

Constraints Primary Key

Soda

Attribute Name SodaPK OrderFK Size Total Comments Quantity

Domain int int string double string int

Constraints Primary referential

Beer

Attribute Name BeerPK OrderFK IsImport? Size Total Comments Quantity

Domain int int bool string double string int

Constraints Primary Key referential

Wedge

Attribute Name WedgePK OrderFK Size Total Comments Quantity HowCooke

d

Sauce

Domain int int string double string int string string

Constraints Primary Key referential

Wing

21

Attribute

Name

WingPK OrderPK Size Total Comments Quantity HowCooked AddHotSauce

?

Domain int int string double string int string bool

Constrain

ts

Primary Key referential

Pizza

Attribute

Name

PizzaPK OrderFK Size Total Comments Quantity HowC

ooked

Side1

Chees

e

Side2

Chees

e

Side1

Sauce

Side2

Sauce

Domain int int string double string int string

Constraints Primary

Key

referential

Specialty

Attribute Name SpecialtyPK Name

Domain int string

Constraints Primary Key

Topping

Attribute Name ToppingPK Name

Domain int string

Constraints Primary Key

Prices

Attribute Name PricePK Name Amount StartDate EndDate

22

Domain int string double DateTime DateTime

Constraints Primary Key

Historic Data

Attribute

Name

HSPK Date Wedge

Total

WingT

otal

SodaT

otal

BeerT

otal

PizzaT

otal

Salad

Total

SalesTa

x

Discounts

Total

Domain int DateTime double double double double double double double double

Constraints Primary

Key

Unique

(Candidate

Key)

SaladTypeToIngredients

Attribute Name STTIPK SaladTypeFK SaladIngredientsFK Amount

Domain int int int double

Constraints Primary Key referential referential

PizzaToSpecialty

Attribute Name PTSPK PizzaFK SpecialtyFK

Domain int int int

Constraints Primary Key referential referential

PizzaToTopping

Attribute Name PTTPK PizzaFK ToppingFK Amount

Domain int int int double

Constraints Primary Key referential referential

23

PizzaToppingToSpecialty

Attribute Name PTTSPK SpecialtyFK ToppingFK Amount

Domain int int int double

Constraints Primary Key referential referential

4.2 Sample Data

Employee

EmployeePK Title Name Password

1 CEO Chris <Binary Data>

2 General Manager Ruben <Binary Data>

3 Store Manager Eric <Binary Data>

4 Assistant Manager Bob <Binary Data>

5 Shift Leader Henry <Binary Data>

6 Clerk Joe <Binary Data>

7 Driver Randy <Binary Data>

8 Clerk Jimmy <Binary Data>

9 Clerk Eddie <Binary Data>

Order

OrderPK Employee Customer OrderTyp Discount Comments Status

24

FK FK e

1 9 Dine-In 0 paid

2 9 Dine-In 0 paid

3 8 Dine-In 0 paid

4 8 Take-Out 0 paid

5 7 Delivery 5 $5.00 off

coupon

unpaid

6 5 2 Take-Out 0 paid

7 6 Dine-In 0 paid

8 9 Dine-In 2.5 Free

pitcher

sode

coupon

paid

9 4 Take-Out 7.5 paid

Customer

CustomerPK Name PhoneNumber Address

1 Henry Johnson

2 Jenny 8675309

3

4

5

6

7

8

9

Salad

SaladPK OrderFK SaladType

FK

Size Total Comments Quantity

1 1 1 side 5 3

2 2 1 side 5 1

25

3 5 4 chef 7 1

4 9 3 side 4.5 1

5 9 2 chef 7.75 Extra

dressing

2

SaladType

SaladTypePK Name Price

1 Chicken - side 5

2 Chicken - chef 7.75

3 Caesar - side 4.5

4 Caesar - chef 7

SaladIngredients

SaladIngredientsPK SaladTypeFK Name

1 1 Chicken

2 2 Chicken

3 3

4 4

5 2 Cheddar Cheese

Soda

SodaPK OrderFK Size Total Comments Quantity

1 1 small 1 1

2 2 small 1 4

3 3 large 1.5 2

4 3 small 1 1

5 3 large 1.5 1

6 4 pitcher 3.75 2

7 5 small 1 3

8 6 pitcher 3.75 Extra ice 1

26

9 7 pitcher 3.75 1

10 8 pitcher 3.75 1

11 8 large 1.5 No ice 2

12 8 pitcher 3.75 1

13 9 pitcher 3.75 1

14 9 small 1 2

Beer

BeerPK OrderFK Size Total Comments Quantity IsImport?

1 1 Mug 2 1 FALSE

2 2 Cup 3.5 4 TRUE

3 3 Pitcher 8 2 FALSE

4 3 Cup 3 1 FALSE

5 3 Pitcher 8 2 FALSE

6 6 Mug 2 2 FALSE

7 7 Pitcher 9 1 TRUE

8 8 Cup 3 2 FALSE

Wing

WingPK OrderFK Size Total Comments Quantity AddHotSauce? HowCooked

1 2 10pc 6 1 TRUE normal

2 2 10pc 6 2 TRUE well-done

3 3 15pc 9 1 TRUE normal

4 3 15pc 9 1 FALSE normal

5 3 10pc 6 1 TRUE normal

6 4 10pc 6 3 FALSE normal

27

7 5 15pc 9 4 TRUE normal

8 7 10pc 6 2 FALSE well-done

Wedge

WedgePK OrderFK Size Total Comments Quantity Sauce HowCooked

1 1 small 3 1 none normal

2 2 large 5 Extra sauce 1 Honey

mustard

well-done

3 2 large 5 2 ranch normal

4 3 small 3 2 Honey

mustard

well-done

5 4 large 5 Extra sauce 1 ranch normal

6 6 large 5 1 Thousand

island

normal

7 7 small 3 3 Honey

mustard

normal

8 9 large 5 2 ranch well-done

SaladTypeToIngredients

STTIPK SaladTypeFK SaladIngredientsFK Amount

1

2

3

4

28

5

6

Pizza

PizzaP

K

Order

FK

Size Total Comment

s

Quanti

ty

HowCo

oked

Side1Ch

eese

Side2Ch

eese

Side1S

auce

Side2S

auce

1 1 small 1 normal normal normal normal normal

2 1 large 1 normal normal normal none normal

3 1 large 2 normal normal normal light normal

4 2 Extra

large

 1 normal normal extra normal normal

5 2 ind 1 normal normal normal normal normal

6 3 small 3 light normal normal extra extra

7 3 large 2 normal extra normal normal normal

8 3 Extra

large

 3 normal normal light normal normal

9 3 small 3 normal normal normal normal normal

10 4 large 1 normal normal normal normal normal

11 5 large 2 normal normal normal extra extra

12 6 large 3 normal normal normal normal normal

13 6 Extra

large

 1 well-

done

normal normal normal normal

14 6 large 2 normal normal normal normal normal

15 7 Extra

large

 2 normal normal normal normal normal

16 7 large 2 normal normal normal normal normal

17 7 Extra 3 normal light light normal normal

29

large

18 8 large 1 normal normal normal normal normal

19 9 Extra

large

 1 well-

done

normal none normal normal

Topping

ToppingPK Name

1 Pepperoni

2 Sausage

3 Beef

4 Onion

5 Green Pepper

6 Black Olive

7 Jalapeno

8 Pineapple

9 Ham

10 Chicken

11 Mushroom

12 Bacon

HistoricData

HSPK Date Wedge

Total

Wing

Total

Soda

Total

Beer

Total

Pizza

Total

Salad

Total

Sales

Tax

Discounts

Total

1 10/19/11

2 10/20/11

3 10/21/11

4 10/22/11

30

Prices

PricePK Name Amount StartDate EndDate

1 soda-small 1 10/23/11

2 soda-large 1.5 10/23/11

3 soda-pitcher 3.75 10/23/11 11/12/11

4 beer-mug 2 10/23/11

5 beer-cup 3 10/23/11

6 beer-pitcher 8 10/23/11

7 import-mug 2.5 10/23/11

8 import-cup 3.5 10/23/11

9 import-pitcher 9 10/23/11

10 wedge-small 3 10/23/11

11 wedge-large 5 10/23/11

12 wings-10pc 5 10/23/11

13 wings-15pc 9 10/23/11

14 ind-1top 2.5 10/23/11

15 ind-add 0.4 10/23/11

16 small-1top 5 10/23/11

17 small-add 0.5 10/23/11

18 large-1top 10 10/23/11

19 large-add 0.65 10/23/11

20 xlarge-1top 13 10/23/11

21 xlarge-add 0.75 10/23/11

22 xlarge-1top 12 09/27/11 10/22/11

31

PizzaToSpecialty

PTSPK PizzaFK SpecialtyFK

1 1 1

2 2 3

3 5 4

4 6 2

5 12 1

Specialty

SpecialtyPK Name

1 Combination

2 Meat-Lovers

3 Vegetarian

4 Bacon Cheddar Burger

32

PizzaToTopping

PTTPK PizzaFK ToppingFK Amount

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

33

PizzaToppingToSpecialty

PTTSPK ToppingFK SpecialtyFK Amount

1

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

20

34

5 Queries

1. List all orders with a pepperoni pizza.

Πorder.*(σTopping.Name like 'Pepperoni'(((Order ⋈OrderPK=OrderFK Pizza) ⋈PizzaPK=PizzaFK PizzaToTopping)

⋈ToppingPK=ToppingFK Topping))

{o | Order(o) ^(∃ p)(Pizza(p) ^ o.OrderPK=p.OrderFK ^(∃ ptt)(PizzaToTopping(ptt) ^

ptt.PizzaFK=p.PizzaPK ^ (∃ t)(Topping(t) ^ t.ToppingPK=ptt.ToppingFK ^ t.Name = “Pepperoni”)))}

{<o, ot, d, c, s> | Order(o, ot, d, c, s) ^(∃ p)(∃ ptt)(∃ t)(Pizza(o,p,_,_,_,_,_,_,_,_,_) ^

PizzaToTopping(ptt,p,t,_) ^ Topping(t,ptt,”Pepperoni”))}

2. List all customers that order only pepperoni pizzas.

3. List customers who have only placed one order.

4. List employees who have placed no more than one order with the same customer.

5. List the customers who have ordered the most expensive pizza.

6. List employees that have taken the least expensive order.

7. List the order with the greatest discount.

8. List orders with more than one pizza with total greater than $20.

9. List employees that have taken an order for every customer.

35

10. List the item with the highest price between 10-12-11 and 10-22-11.

6 Normalization

 Data Normalization is a a set of rules and techniques used to identify relationships among

attributes, combine attributes to from relations, and combining relations to form a database. The

purpose behind data normalization is to eliminate redundant data storage, construct data so that model

is flexible, and close modeling of real world entities, processes, and their relationships. It is the best

way to efficiently organize data in a database.

Definitions of Normal Forms:

• First Normal Form: A table is in first normal form if all the key attributes have been defined

and repeating groups exist

• Second Normal Form: If a table is in First Normal Form and every non key attribute is fully

functionally dependent, there are no partial dependencies, on the whole of the primary key.

• Third Normal Form: A table is in Thirds Normal Form if it is in Second Normal Form and

every non key attribute has no transitive dependencies on the primary key.

• Boyce-Codd Normal Form: If and only if a table is in Third Normal Form and every

determinant is a candidate key.

 By Normalization the data, problems like duplication of data in several places in the database

can be avoided and the risk of updates in one place but not the other will be eliminate. It is important to

have data integrity since the information will live forever in a database and historical bad data can be

hard to eliminate.

36

7 Oracle/SQL*Plus

 The following is a list of Oracle/SQL*PLUS instructions that we used to create, load and query

our database. We used the following commands used or practiced in this phase:

1. CREATE TABLE table_name ...;

2. CREATE VIEW view_name ...;

3. CREATE INDEX idx_name ...;

4. INSERT INTO ...;

5. DROP TABLE ... PURGE;

6. DROP VIEW ... ;

7. COMMIT;

8. ROLLBACK;

9. SELECT

 10. DESC

 11. System tables such as user_objects, user_indexes, user_tables, tab, col,

 12. CREATE or REPLACE FUNCTION ...

 13. CREATE or REPLACE PROCEDURE ..

 14. CREATE or REPLACE TRIGGER ...

 15. DROP PROCEDURE | FUNCTION ...

 16. We Ran the following SQl statements to test our database:

 select * from tab;

 seelct * from user_objects;

 select * from user_constraints;

 17. To remove strange tables found after running "select * rom tab" we ran command "purge

recyclebin" in sqlplus to get rid of them.

37

8 Relational Database Schema

Beer {BeerPK, SideItemFK, IsImport}

Cheese {CheesePK, Portion}

Customer {CustomerPK, Name, PhoneNumber, StreetAddress, City, Zip}

Employee {EmployeePK, TitleFK, Name, Password}

EmployeeTitle {TitlePK, Name}

Food {FoodPK, SideItemFK, HowCooked}

HistoricData {HistoricDataPK, Day, WedgeTotal, WingTotal, SodaTotal, BeerToatl, PizzaTotal,

 SaladTotal, SalesTax, DiscountsTotal}

Order {OrderPK, CustomerFK, OrderTypeFK, OrderStatusFK, OrderNumber, Discount, Comments}

OrderStatus {OrderStatusPK, Name}

OrderType {OrderTypePK, Name}

PizzaCheese {PizzaCheesePK, PizzaFK, CheeseFK, IsOnSide1, IsOnSide2}

PizzaSauce {PizzaSaucePK, PizzaFK, SauceFK, IsOnSide1, IsOnSide2}

Pizza {PizzaPK, FoodFK}

PizzaTopping {PizzaToppingPK, PizzaFK, ToppingFK, Amount, IsOnSide1, IsOnSide2}

Price {PricePK, Name, Amount, StartDate, EndDate}

SaladIngredient {SaladIngredientPK, Name}

Salad {SaladPK, SideItemFK}

SaladTypeIngredient {SaladIngredientPK, SaladTypeFK, SaladFK, Amount}

SaladType {SaladTypePK, Name}

Sauce {SaucePK, Portion}

38

SideItem {SideItemPK, OrderFK, PriceFK, Comments, Quantity}

Soda {SodaPK, SideItemFK}

SpecialtyPizza {SpecialtyPizzaPK, PizzaFK, SpecialtyFK, IsOnSide1, IsOnSide2}

Specialty {SpecialtyPK, Name}

ToppingSpecialty {ToppingSpecialtyPK, ToppingFK, SpecialtyFK, Amount}

Topping {ToppingPK, Name}

Wedge {WedgePK, FoodFK, Sauce}

Wing {WingPK, FoodFK, AddHotSauce}

9 SQL Queries

1. List all orders with a pepperoni pizza.

SELECT o.*

FROM Order o

 INNER JOIN SideItem si ON (si.OrderFK = o.OrderPK)

 INNER JOIN Food f ON (f.SideItemFK = si.SideItemPK)

 INNER JOIN Pizza p ON (f.FoodPK = p.FoodFK)

 INNER JOIN PizzaTopping pt ON (pt.PizzaFK = p.PizzaPK)

 INNER JOIN Topping t ON (ppt.ToppingFK = t.ToppingPK)

WHERE t.Name LIKE “Pepporoni”

 AND NOT EXISTS

 (

 SELECT t2.*

 FROM Topping t2

 INNER JOIN PizzaTopping pt2 ON (pt2.ToppingFK = t.ToppingPK)

39

 INNER JOIN Pizza p2 ON (ppt2.PizzaFK on pt.PizzaPK)

 WHERE p2.OrderFK = o.OrderPK

 AND t2.Name NOT LIKE “Pepperoni”

)

2. List all customers that order only pepperoni pizzas.

SELECT c.*

FROM Customer c

 INNER JOIN Order o ON (o.CustomerFK = c.CustomerPK)

 INNER JOIN SideItem si ON (si.OrderFK = o.OrderPK)

 INNER JOIN Food f ON (f.SideItemFK = si.SideItemPK)

 INNER JOIN Pizza p ON (f.FoodPK = p.FoodFK)

 INNER JOIN PizzaToTopping ppt ON (ppt.PizzaFK = p.PizzaPK)

 INNER JOIN Topping t ON (ppt.ToppingFK = t.ToppingPK)

WHERE t.Name LIKE “Pepporoni”

 AND NOT EXISTS

 (

 SELECT t2.*

 FROM Topping t2

 INNER JOIN PizzaToTopping ppt2 ON (ppt2.ToppingFK = t.ToppingPK)

 INNER JOIN Pizza p2 ON (ppt2.PizzaFK on pt.PizzaPK)

 WHERE p2.OrderFK = o.OrderPK

 AND t2.Name NOT LIKE “Pepperoni”

)

3. List customers who have only placed one order.

SELECT c.*

40

FROM Customer c

 INNER JOIN Order o ON (o.CustomerFK = c.CustomerPK)

WHERE NOT EXISTS

 (

 SELECT o2.*

 FROM Order o2

 WHERE o2.Customer.FK = c.CustomerPK

 AND o2.OrderPK != o.OrderPK

)

4. List employees who have placed no more than one order with the same customer.

SELECT e.*

FROM Employees e

 INNER JOIN Order o ON (e.EmployeePK = o.EmployeeFK)

 INNER JOIN Customer c ON (o.OrderPK = c.OrderFK)

WHERE NOT EXISTS

 (

 SELECT *

 FROM Employee e2

 INNER JOIN Order o2 ON (e2.EmployeePK = o2.EmployeeFK)

 INNER JOIN Customer c2 ON (o2.OrderPK = c2.OrderFK)

 WHERE e.EmployeePK = e2.EmployeePK

 AND c.CustomerPK = c2.CustomerPK

 AND o.OrderPK != o2.OrderPK

)

5. List the customers who have ordered the most expensive pizza.

41

SELECT c.*

FROM Customer c

 INNER JOIN Order o ON (o.CustomerFK = c.CustomerPK)

 INNER JOIN SideItem si ON (si.OrderFK = o.OrderPK)

 INNER JOIN Food f ON (f.SideItemFK = si.SideItemPK)

 INNER JOIN Pizza p ON (f.FoodPK = p.FoodFK)

 INNER JOIN Prices pr ON (pr.PricePK = p.PriceFK)

GROUP BY c.CustomerPK

HAVING pr.Amount = MAX(pr.Amount)

6. List Employees that have taken the least expensive order.

SELECT e.*

FROM Employee e

 INNER JOIN Order o ON (e.EmployeePK = o.EmployeeFK)

 INNER JOIN SideItem si ON (si.OrderFK = o.OrderPK)

 INNER JOIN Price pr ON (pr.PricePK = si.PriceFK)

GROUP BY e.EmployeePK

HAVING SUM(pr.Amount) = MIN(SUM(pr.Amount))

7. List the order with the greatest discount.

SELECT o.*

FROM Order o

GROUP BY o.OrderPK

HAVING o.Discount = MAX(o.Discount)

8. List orders with more than one pizza with a total greater than $20.

SELECT o.*

FROM Order o

42

 INNER JOIN SideItem si ON (si.OrderFK = o.OrderPK)

 INNER JOIN Food f ON (f.SideItemFK = si.SideItemPK)

 INNER JOIN Pizza p ON (f.FoodPK = p.FoodFK)

 INNER JOIN Prices pr ON (p.PriceFK = pr.PricePK)

WHERE pr.Amount > 20

GROUP BY o.OrderPK

HAVING COUNT(*) > 2

9. List employees that have taken an order for every customer.

SELECT e.*

FROM Employee e

 INNER JOIN Order o ON (e.EmployeePK = o.EmployeeFK)

 INNER JOIN Customer c ON (o.CustomerFK = c.CustomerPK)

GROUP BY e.EmployeePK, c.CustomerPK

HAVING COUNT(*) = COUNT(SELECT * FROM Customer)

10. List the item with the highest price between 10-12-11 and 10-22-11.

SELECT pr.*

FROM Prices pr

WHERE pr.StateDate > 10-12-11

 AND pr.EndDate < 10-22-11

GROUP BY pr.PricePK

HAVING pr.Amount = MAX(pr.Amount)

11. List how many orders each employee has taken for each customer

SELECT e.EmployeePK AS Employee_ID, e.Name AS Employee_Name, c.Name AS

 Customer_Name, COUNT(*) AS Number_Of_Orders

FROM Employee e

43

 INNER JOIN Order o ON (e.EmployeePK = o.OrderFK)

 INNER JOIN Customer c ON (o.CustomerFK = c.CustomerPK)

GROUP BY e.EmployeePK, c.CustomerPK

10 Common Features of PL/SQL and T-SQL

 There are common features in Oracle PL/SQL and MS Trans-SQL for example both support

features such as constraints, functions, cursors, stored procedures, triggers, and packages. However the

syntax is not the same.

 Stored subprograms or procedures can perform an action and/or compute value and can be

restricted by user permissions. Example of actions by a subprogram would be insertion, deletion, or

updating records in a database.

 Benefits of a stored subprogram provide modularity, re-usability, and maintainability. Using

stored subprograms will increase performance and turn repetitive task to be automated and scheduled.

11 PL/SQL

• A stored procedure are saved in the databases to improve performance and re-usability. The

following is the syntax for creating a stored procedure:

 DECLARE (Declarative section: variables, types, and local subprograms)

 BEGIN (Executable section: procedural and SQL statements go here)

 (This is the only section of the block that is required)

 EXCEPTION (Exception handling section: error handling statements go here)

 END;

• A stored function returns a result. The following is the syntax use to create a stored function:

 CREATE [OR REPLACE] FUNCTION function_name [(parameter [,parameter])]

44

 IS

 [declaration_section]

 BEGIN

 executable_section

 return [return value]

 [EXCEPTION exception_section]

 END [procedure_name];

• A package is stored functions and procedures that can be packaged into a larger unit, essentially

a library of procedures and functions. The following is the syntax of creating a package:

 CREATE [OR REPLACE] PACKAGE package_name

 [AUTHID {CURRENT_USER | DEFINER}]

 {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition ...]

 [record_type_definition ...]

 [subtype_definition ...]

 [collection_declaration ...]

 [constant_declaration ...]

 [exception_declaration ...]

 [object_declaration ...]

 [record_declaration ...]

 [variable_declaration ...]

 [cursor_spec ...]

 [function_spec ...]

(Package Syntax Contd.)

 [procedure_spec ...]

 [call_spec ...]

 [PRAGMA RESTRICT_REFERENCES(assertions) ...]

 END [package_name];

 [CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition ...]

 [record_type_definition ...]

 [subtype_definition ...]

 [collection_declaration ...]

 [constant_declaration ...]

 [exception_declaration ...]

 [object_declaration ...]

 [record_declaration ...]

 [variable_declaration ...]

 [cursor_body ...]

 [function_spec ...]

 [procedure_spec ...]

45

 [call_spec ...]

 [BEGIN

 sequence_of_statements]

 END [package_name];]

• A trigger is fired when when a DML statement like Insert, Delete, or Updated are called.The

following is the syntax used to create a trigger:

 CREATE [OR REPLACE] TRIGGER trigger_name

 {BEFORE | AFTER | INSTEAD OF }

 {INSERT [OR] | UPDATE [OR] | DELETE}

 [OF col_name]

 ON table_name

 [REFERENCING OLD AS o NEW AS n]

 [FOR EACH ROW]

 WHEN (condition)

 BEGIN

 [sql statements]

 END;

12 Sub Program

– Trigger for updating and deleting values

CREATE OR REPLACE TRIGGER CPRC_PriceUpdateTrigger

BEFORE

UPDATE OR DELETE

ON CPRC_Price

FOR EACH ROW

BEGIN

 INSERT INTO CPRC_Log VALUES (:old.Name || :old.Amount,:new.Name || :new.Amount);

END;

/

– Stored procedure for deleting rows based on the primary key

CREATE OR REPLACE PROCEDURE CPRC_DeleteFromPrice (pPK IN INTEGER) AS

BEGIN

46

 DELETE FROM CPRC_Price

 WHERE PricePK = pPK;

End;

/

– Stored procedure for inserting a row

CREATE OR REPLACE PROCEDURE CPRC_InsertIntoPrice(

 pPK IN INTEGER,

 name IN VARCHAR2,

 amount IN FLOAT,

 sDate IN DATE,

 eDate IN DATE,

 groupName IN VARCHAR

)

 AS

gPK INTEGER;

BEGIN

 SELECT g.GroupPK

 INTO gPK

 From CPRC_Group g

 WHERE g.Name LIKE groupName;

 INSERT INTO CPRC_Price VALUES(pPK, name, amount, sDate, eDate, gPK);

END;

/

– function for returning the average of the top 'n' days

CREATE OR REPLACE FUNCTION CPRC_TopNDays(n IN INTEGER) RETURN FLOAT

AS

 averageDay FLOAT;

 i INTEGER;

 CURSOR c1 is

 SELECT h.Day, SUM(g.Total) AS "A"

 FROM CPRC_HistoricData h

 INNER JOIN CPRC_GroupData g on (h.HistoricDataPK = g.HistoricDataFK)

 GROUP BY h.Day;

BEGIN

 averageDay := 0.0;

 i := 0;

 OPEN c1;

47

 FOR hDay in c1

 LOOP

 IF i <= n

 THEN

 averageDay := averageDay + hDay.A;

 END IF;

 i := + 1;

 END LOOP;

 CLOSE c1;

 RETURN averageDay / n;

END;

13 General Description

 The following is a list of operations for each group of users in our database project.

• General Users: Can only take customer orders, both phone or walk-in, and Open and Close

tabs.

• Managers: Have elevated privileges that allows them to give discounts, view daily, monthly,

and yearly sales/order reports. They can also take orders but can not change prices or anything else on

the database.

• Administrators: Have full permissions to the databases to perform the same operations as the

General and Manger users, including the ability to change prices, and add and delete new items to the

database.

14 Group Activities

 In the Pizza Parlor that we use for our fact-finding part of Phase 1, we found there to be three

types of users. Below is a list of who their role is and the daily activities the perform.

48

• General Users: Are cash register operators who take order by phone or walk-in. Their duty is

to make note of the type, size, toppings, sauce, and cook preference of the pizza including the sides and

beverages if any. The most important part of their job is to collect and dispense the correct amount of

money per transactions .

• Management: This type of users can perform the same type of operations as General User but

has the ability to override transactions and give discounts. For the most part the user spend most of his

day taking care of business logistics and operations like determine whether extra help is needed or not

based on gross sales reports. Management is not limited to daily reports, they may pull weekly or

monthly reports as well.

• Administrators: The Pizza Parlor owner can help perform all the daily duties of the two users

groups mentioned but he is mainly interested in business operation costs to profit ratios by viewing

reports and introducing or removing promotions to stimulate revenue.

15 Menu and Display

 This is the main menu the user will first see before selecting the operation mode restricted by

the user permissions.

49

This screen shot will appear for users who select to place a 'Walk-in' or 'Phone' order.

50

 Selecting 'Add' Pizza, from the Order menu, will produce a pop-up menu that allows you to

compose all aspects of the pizza.

51

 Like the Pizza menu, a pop-up menu appears when 'Add' is selected under Salads.

16 Code Implementation

 Coding the project was challenging due to the compound use of languages , programming tools,

and platforms like C#, SQL, Oracle, Microsoft (MS) Visual Studio, and MS Windows Presentation

Foundation with Telerik RadControls. For questions regarding coding and debugging we turned to

online resources to help with issues with triggers, stored procedures, stored functions, and exception

handling. Finding code syntax was the best tool we found to code through database. The most

important aspect of the project was to collaborate as a team and stay focused on the big picture. As

group members we participated in daily meetings before and after class periods where we discuss

concepts, new and existing issues, anomaly resolutions, and member assignments in order to complete

the project in a timely manner. Fact finding and discussing ways to create the best database for a Pizza

Parlor was an exciting and informative phase of our project but it was the coding that prove to be a fun

52

an rewarding challenge. Working in an environment where different members have different ideas and

everyone has to agree on one thing to move the project forward allowed us to build relationships, refine

communications techniques, and improve are time management skills. This environment of having to

work in a team with specific instructions and existing platform, like Oracle, prove to be a challenge

and real world like work experience.

