
1

Web-based Geek Store

Database

By Gabe Pike and Jon Hardin

Dr. Huaqing Wang

CMPS 342

Fall 2011

2

Table of Contents

Phase I

1.1a Fact-Finding Techniques 4

1.1b Introduction to Enterprise 4

1.1c Scope of Conceptual Database 4

1.1d Descriptions of Entity Sets 5

1.1e User Groups, Data Views, and Operations 5

1.2a Entity Set Description 6

1.2b Relationship Set Descriptions 11

1.2c Related Entity Set 12

1.2d E-R Diagram 13

Phase II

 2.1 E-R Model and Relational Model 14

 2.2 Conversion to Relational Database 18

 2.3 Relational Instances 23

 2.4 Queries in Plain English 25

 2.5 Queries in Relational Algebra and Calculus 26

Phase III

3.1 Normalization of Relations 29

 3.2 SQL*PLUS 30

 3.3 Schema Objects 31

 3.4 Relational Schema and Content 33

 3.5 SQL Queries 39

 3.6 Data Loader 43

3

Phase IV

 4.1 Features of PL/SQL and Transact-SQL 44

 4.2 Oracle PL/SQL 45

 4.3 Oracle PL/SQL Subprogram 49

Phase V

 5.1 Daily Activities of Users 56

 5.2 Relations, Views, and Subprograms 57

 5.3 Screen Shots of Program 58

 5.4 Code 63

 5.5 Steps of Designing and Implementing a Database Application 68

4

Phase I

1.1a FACT-FINDING TECHNIQUES

With the proliferation of web-based market systems on the internet, it was not hard to

gather relevant facts. An existing website that has a database similar to what we have in

mind is www.thinkgeek.com. We analyzed the hierarchical structure of its store and

identified important entities, attributes, and relationships. We looked for examples of

market database models and used them as guidance to develop our own model.

1.2b INTRODUCTION TO ENTERPRISE

This enterprise is an online store designed to cater to people with geeky interests. A

web app will be developed for the end user to navigate the website and purchase

products. Products include clothing/apparel, gadgets, computer components, toys,

electronics, and decorations and tools for the home or office. It will be a small business

(at least to start), but has the potential to grow.

1.3c SCOPE OF CONCEPTUAL DATABASE

Our conceptual database model is only going to cover the parts that deal directly with

the online store. It will not cover employees or payroll, but this may be something to

consider in a more realistic model, especially if the company grows beyond just a few

employees. The entities covered will be User, Item, Item Category, Order, Order Items,

and Credit Card.

http://www.thinkgeek.com/

5

1.1d ITEMIZED DESCRIPTIONS OF ENTITY SETS AND

RELATIONSHIP SETS

A user is a customer, moderator, or administrator who has an account on the store's

website. A credit card is a method of payment for a user, and a user can have multiple

credit cards on file. An item is a product that can be sold. An item category is used to

categorize items. There can be sub-categories. Each category must store all its parent

categories to make it easier to search for items. An order is a purchase placed by a

user. It also has a list of order items and a payment method (credit card). An order item

is used to keep track of each item in an order and the quantity ordered.

1.1e USER GROUPS, DATA VIEWS, AND OPERATIONS

There are three types of users: super administrators, moderators and customers.

Administrators can see all data. Customers can only see their own account, credit

cards, and order history. Customers can add, remove, and change their account

information. Once an order has been put through, they can cancel or edit it before it is

shipped. Moderators can see customer data, except for their password hashes and the

first 12 characters of their credit card number. They can add or remove customers, but

not other moderators or admins. Super administrators can see all data except the first

12 characters of credit card numbers. They can add, remove, or change any user in the

database. Moderators and admins can view various reports of usage statistics and

financial data.

6

1.2a ENTITY SET DESCRIPTION

User

This entity will store the info of each user. The entity will hold necessary data such as contact

info. A new entry will be added to the database when they are sign up, each entry will be stored

and never deleted for our records. Entries may be updated if any data other than user name

changes about the person in question.

Candidate keys: email, name

Primary keys: email

Strong / weak entity: Strong

Fields to be indexed: email, name

Name email name Address password Acct Type subscriber

Description Identifies
user

Full name Physical
address

hashed
password

Determine
privileges

Does user
want emails

Domain/Type String String String String Integer Integer

Value Range Any valid
email

Alphabetic Any MD5 hash 0=admin,
1=mod.,
2=cust.

0=false,
1=true

Default Value None None None None 2 0

Nullable? No No Yes No No No

Unique? Yes No No No No No

Single or
Multiple

Single Single Multiple Single Single Single

Simple or
Composite

Simple Comp. Comp. Simple Simple Simple

7

Order

This entity will take the order of a person and their payment info.

Candidate keys: Order ID

Primary keys: Order ID

Strong / weak entity: Strong

Fields to be indexed: OrderID, Date

Name OrderID Shipping
Address

Billing
Address

Quantity Price Date

Description Identifies
Order

Address
to ship to

Address
to bill to

Qty of
item

Price of
item

Date of the
order

Domain/Type Integer String String integer Float Date

Value Range Positive
int

Any Any 0-* Positive
float

Any valid
date

Default Value Auto
Incremen
t

None None None None Current date

Nullable? No No No No No No

Unique? Yes No No No No No

Single or Mult Single Single Single Single Single Single

Simple/Comp Simple Comp Comp Simple Simple Simple

8

Credit Card

This entity will hold the users credit card information.

Candidate keys: Card number

Primary keys: Card number

Strong / weak entity: Weak

Fields to be indexed:

Name Card number Card holder Provider Exp date

Description Identifies
credit card

User’s full Name Credit card
company

Expiration date of
card

Domain/Type Int String String String

Value Range 16 0-40 0-30 4

Default Value None None None None

Nullable? No No No No

Unique? Yes No Yes No

Single or Mult Single Single Single Single

Simple or Comp. Simple Composite Simple Simple

9

Item

This entity will hold the information of the items on the page.

Candidate keys: ItemID, Name

Primary keys: ItemID

Strong / weak entity: Strong

Fields to be indexed: ItemID, Name

Name Photo Video Stock manufacturer

Description # of item photos # of item videos # in stock item manufacturer

Domain/Type Integer Integer Integer String

Value Range 0-* 0-* 0-max int *

Default Value None None None None

Nullable? Yes Yes No Yes

Unique? No No No No

Single or Multiple Single Single Single Single

Simple or Comp. Simple Simple Simple Simple

Name ItemID Name Price Description

Description Identifies item User’s full Name User’s address User’s email

Domain/Type Integer String Float String

Value Range * String 0 – max float *

Default Value None None None None

Nullable? No No Yes Yes

Unique? Yes Yes No No

Single or Mult. Single Single Single Single

Simple or Comp. Simple Composite Simple Simple

10

Category

This entity will hold which category the item belongs in. It is a recursive entity because every

category holds a reference to its parent category.

Candidate keys: Category name

Primary keys: Category name

Strong / weak entity: Strong

Fields to be indexed: Category ID, Category name, Parent

Name Category ID Category name Description Parent

Description Identifies
category

The category of
the item

Description of
the category

Parent of the category

Domain/Type Integer String String Integer

Value Range Any valid int 0-40 0-1000 Any existing category ID

Default Value None None None None

Nullable? No No Yes Yes

Unique? Yes Yes No No

Single/Mult Single Single Single Multiple

Simple/Comp Simple Simple Simple Simple

11

1.2b RELATION SET DESCRIPTION

User Places an Order

- A use can select a group of items in their shopping cart and place an order.

- Mapping cardinality: M…M

- Descriptive field: none

- Participation constraint: Mandatory for user and order

User owns a Credit Card

- A user must have credit cards associated with her account if she is going to make an

order

- Mapping cardinality: 1…M

- Descriptive field: none

- Participation constraint: Optional for User and mandatory for Credit Card

Order charges a Credit Card

- An order must have a credit card associated with it to charge for the purchase

- Mapping cardinality: M…1

- Descriptive field: none

- Participation constraint: Mandatory for Order and optional for Credit Card

Item has a Category

- An item can fall under categories or sub-categories

12

- Mapping cardinality: M…M

- Descriptive field: none

- Participation constraint: Optional for both

Category is a child of a Category

- A category can be divided into sub-categories. Sub-categories list each parent in order.

This can be used to help search for items by category. A category without a parent lists

itself as a parent.

- Mapping cardinality: M…1

- Descriptive field: None

- Participation constraint: Mandatory for both

1.2c RELATED ENTITY SET

The only specialization/sub-type relationship is for category. Category has a recursive “child of”

relationship to its parent category. There are several has-a relationships. A user has at least

one credit card, and an order has a credit card and an item. In addition, an order item has one

item, and an order can have many order items.

13

1.2d E-R DIAGRAM

14

Phase II

2.1 E-R MODEL AND RELATIONAL MODEL

The entity-relationship model is a popular conceptual data model designed to be

easy to read by management and other non-technical people. It is meant to

convey the abstract design of a schema in the form of an E-R diagram. The

diagram consists of entities which own certain attributes. In addition, the model

shows relationships between entities. The relationships are represented as links

between two entities with action words such as “orders” or “works for”.

Edgar F. Codd proposed the idea of the relational model in 1969. The relational

model was a major advancement in database modeling and is still used to this

day in major database management systems. The purpose of this model is to

provide the framework for making specific queries on a database. With this

model came relational algebra and relational calculus, which for the most part

have been implemented in modern DBMS's. The relational model is more

detailed than the E-R model, but it is more useful for people who need to design

a database or write complex queries for it.

Conversion from the ER Model to the Relational Model

 The ER model only describes the data requirements of each entity,

therefore a conversion from the ER model to the Relational model is needed in

order to implement the entities into a database. For each type there are special

requirements for each conversion, which are listed below.

15

Strong Entities:

 One or more simple attributes are used to create a primary key. A primary

key is a selected attribute that is unique or should be composed of multiple

attributes that they themselves are unique. Other possible candidate keys,which

are keys that can be primary keys, but are not selected may be used for other

purposes such as indexes.

Weak Entities:

 A weak entity cannot exist alone, and therefore needs a primary key from

the owner and a foreign key from the weak entity to represent a primary key for

the weak entity.

One to one relationships(1:1):

 There are two methods one for total participation or without total

participation.

With total participation of one entity:

 Include all attributes of one entity, primary key of the other entity, and

descriptive attributes of the relationship.

Without total participation:

 Include only primary keys from the entities and descriptive attributes of the

relation.

One to many relationships(1:M) without total participation:

 Same procedure as one to one relationship without total participation.

16

One to many relationships(1:M) with total participation:

 Include all attributes from the many sides entity(M), descriptive attributes of

the relationship, and the primary key of the one sides entity(1).

Many to Many relationships(M:M):

 Same procedure as one to one relationship without total participation.

primary key will be the union of the foreign keys of the two entities.

Ternary and N-ary relationships:

 Include all primary keys from all entities. May add additional fields for

descriptive attributes of the relationship. The primary key will be the union of all

the foreign keys that are on the many side.

Subclasses and super classes(IsA):

 Create a relation for both the super and subclass, the primary key for both

will be the superclasses'.

Sub class relation:

 create a relation for each subclass and append the superclass to each

subclass. Primary key will be the superclasses'.

Has a relationship:

 This is a recursive relation formed if an entity has multiple items. create a

new foreign key in the relation that will reference the primary key.

Categories or unions:

 Link the child to the shared parent primary key. If there is no common

shared primary key additional keys are required.

17

Constraints

 NOT NULL- Attribute will not accept null values

 UNIQUE- Attribute cannot be duplicated in the table

 Primary key- Attribute will be a primary key

 Must be unique

 Only one primary key attribute per table

 May be simple or composite attribute

 Foreign key- Attribute is referencing a primary key of another table.

 Check- Attribute will be checked against condition

 If true the value may be inserted, otherwise rejected

 Default- Attribute will be set to a default value if no value given.

18

2.2 CONVERSATION TO RELATIONAL DATABASE

User (Converted from User entity)

 Email (Primary key)– Domain: Varchar2(40)

 NOT NULL

 FirstName – Domain: Varchar2(25)

 NOT NULL

 MiddleInit – Domain: char(1)

 LastName – Domain: Varchar2(30)

 NOT NULL

 Password – Domain: char(129)

 NOT NULL

 Phone – Domain: char(10)

 AccountType – Domain: Integer

 Constraint: Must be 0 (admin), 1 (moderator), or 2 (customer)

 IsSubscriber – Domain: Integer

 Constraint: Must be 1 or 0 (boolean)

Candidate keys: Email (PK), Phone

19

Address (Converted from address composite attribute in User entity)

 AddressID (Primary Key) – Domain: Integer

 Auto incrementing

 AddressUser – Domain: Varchar2(40)

 Foreign key to User.Username

 NOT NULL

 AddressLine1 – Domain: Varchar2(50)

 NOT NULL

 AddressLine2 – Domain: Varchar(25)

 AddressCity – Domain: Varchar(30)

 NOT NULL

 AddressZip – Domain: char(5)

 AddressState – Domain: Varchar(30)

 AddressCountry – Domain: Varchar(30)

 NOT NULL

Candidate keys: AddressID (PK)

20

Credit Card (Converted from Credit Card entity)

 CardNumber (Primary Key) – Domain: char(16)

 CardUser – Domain: varchar(30)

 Foreign key to User.Email

 NOT NULL

 CardHolder – Domain: Varchar2(60)

 NOT NULL

 CardProvider – Domain: Varchar2(20)

 NOT NULL

 Must be from a list of credit card providers that we accept

 CardExpirationDate – Domain: Date

 NOT NULL

Candidate keys: CardNumber(PK)

21

Item (Converted from Item Entity)

 ItemID (Primary key) – Domain: Integer

 Auto Incrementing

 ItemName – Domain: Varchar2(70)

 NOT NULL

 Category – Domain: Varchar(40)

 Foreign key to Category.CategoryName

 NOT NULL

 ItemManufacturer – Domain: Varchar2(50)

 NOT NULL

 ItemPrice – Domain: Number

 ItemStock – Domain: Integer

 NOT NULL

 ItemPhoto – Domain: Integer

 ItemVideo – Domain: Integer

Candidate keys: ItemID (PK), ItemName

Category (Converted from Category entity)

 CategoryID (Primary key) – Domain: Integer

 CategoryName – Domain: Varchar2(40)

 Description – Domain: Varchar2(1000)

 Parent – Domain: Varchar2(40)

 Foreign key to Category.CategoryName (recursive)

22

Order (Converted from Order Entity)

 OrderID (Primary key) – Domain: Integer

 OrderUser – Domain: Varchar2(25)

 Foreign key to User.Email

 NOT NULL

 OrderItem – Domain: Integer

 Foreign key to Item.ItemID

 OrderShippingAddress – Domain: Integer

 Foreign key to Address.AddressID

 NOT NULL

 OrderBillingAddress – Domain: Integer

 Foreign key to Address.AddressID

 NOT NULL

 OrderCreditCard – Domain: char(16)

 Foreign key to CreditCard.CardNumber

 NOT NULL

 OrderQuantity – Domain: Integer

 NOT NULL

 OrderPrice – Domain: Integer

 NOT NULL

 OrderDate – Domain: Date

 NOT NULL

Candidate keys: OrderID (PK)

23

2.3 RELATIONAL INSTANCES

ITEM
ID NAME CATEGORY MANUFACTURER PRICE STOCK Photo Video

259092743 Red LANYARD 32 INTEL 1.01 2 1 1
459727727 Green LANYARD 32 SWISS 5.50 43 1 1
659912201 8 GB FLASHDRIVE 13 AMD 20.00 31 0 0
130446979 Black COFFEE MUG 12 ASUS 10.00 22 1 0
675198870 Light Saber 7 SWISS 10.00 16 2 0
482691015 USB Lamp 8 ASUS 5.00 0 3 2
935601757 BACONAISE 22 SWISS 2.00 1 4 2
834413066 USB Toaster 15 ASUS 5.00 10 2 0
307585175 Nyan Cat Costume 10 VANS 10.90 5 1 0

ORDER
ID EMAIL ITEM_ID SHIPADR BILLADR CREDIT_CARD QTY PRICE DATE

48803864 dui.ae@rhonollis.com 51231232 51238 25123 5214950934212358 2 53.21 9/19/2011

44415799 Nu.ac.sem@enim.net 61231232 12346 13234 5819082387571928 3 86.32 5/18/2011

45866406 soes.purus@scelue.ca 61293873 12676 12167 1237589128732183 1 12.50 8/16/2012

84778124 nisi.a@orci.ca 90869311 51322 51727 6987234978523912 5 66.72 6/23/2011

93113729 Etiam.m@Quire.com 86891723 39051 32124 6128918392012395 4 13.55 9/30/2011

32881190 nisl.senquat@tincit.ca 67192837 55612 55325 6898123901918372 7 43.25 1/3/2012

12742237 elem@Pellentnttus.ca 79817231 12317 68128 8873829182643812 3 3.79 2/3/2011

62419702 mSe@Morumsan.com 69817231 44432 32129 0923891002137284 2 41.12 5/4/2011

65147128 Proin.ues@priisin.org 68723948 88657 88651 4413123890175892 1 8.52 6/3/2011

USER
EMAIL (username) F_NAME M_INIT L_NAME PASSWORD PHONE ACCNT_TYPE IS_SUBSCRIBER

vel.quam@risusIn.ca Akeem T Marny VXW69F... 1-691-795-2366 0 0
neque.In.@endiget.ca Anthony H Amery RGJ53UQ... 1-953-142-3285 1 1
mattis@Aesed.com Jack D Deirdre OHX9UQR... 1-486-104-4923 2 1

montes@loblass.com Lillian G Armando UAI06IZM... 1-447-536-2087 2 1
feugiat@nn.ca Adara W Ezekiel ZJG93HLL... 1-905-862-9525 1 1

sagittis.sde@vul.com Kylan T Raymond GPO71XA... 1-525-211-8965 2 1
arer@lucttultrices.ca Priscilla M Gabriel LUO45OC... 1-711-304-5019 2 0

Praesent@euerat.edu Neil K Mariam EJR40ENC... 1-588-438-6050 1 0
maleda.fringilla@et.ca Medge B Quentin DQV9LUP... 1-426-269-3763 2 0

24

CATEGORY

ID NAME PARENT DESCRIPTION

0 Apparel Because you have to put on some clothes to go outside

1 Computer Stuff The man who dies with the most toys wins

2 Gadgets Inspect this

4 Snacks The narwhal bacons at midnight

5 T-Shirts That thing you wear, on your chest

6 Linux 5 Stallmanian fashion

7 USB Devices 1 Put that 24-port USB hub to use

8 Science 5 Nothing to see here

9 Bacon 4 Because everyone loves bacon

10 Watches 2 For those who dont have a cell phone

CREDIT CARD
CCN EMAIL (user) HOLDER PROVIDER EXP_DATE

5214950934212358 itor.tellus@hendrerit.ca Carissa O Burke DISCOVER Dec-11

5819082387571928 turpis@nollisvitae.ca Dillon F Moses AMERICAN EXPRESS Jul-12

1237589128732183 coad@Vestibum.edu Shaeleigh C Michael AMERICAN EXPRESS Mar-14

6987234978523912 lestie@SetumProin.ca Xyla B Daugherty DISCOVER Aug-13

6128918392012395 phareed@ssnec.com Melissa K Reyes AMERICAN EXPRESS Apr-14

6898123901918372 hymuris@arcuet.ca Lucian X Diaz VISA Feb-14

8873829182643812 suscsce@lictum.com Bell W Lawson MASTER CARD Aug-14

0923891002137284 ante@senNullam.ca Jordan P Steele VISA Apr-12

4413123890175892 tincidunt@Inat.ca Marsden V Lee MASTER CARD Oct-11

ADDRESS
ID USER LINE1 LINE2 CITY ZIP STATE COUNTRY

51232 nequmnec.org P.O. Box 353, 3508 Purus Rd. NULL La Habra Heights 92706 PA Tanzania
73122 urns@mlit.edu 907-1501 Magna. Ave P.O. Box 374 Olympia 56318 NULL Belarus
67123 In@ieSed.edu 9230 At Street NULL Rye 92564 CO Turkey
41236 lobtis@egsa.edu P.O. Box 119, 7311 Urna Av. NULL Miami 53525 NULL France
83412 Nullm@ma.org P.O. Box 621, 5798 Sit Street NULL Alamogordo 35908 RI Georgia
31273 In.at@idblit.edu Ap #333-3746 Amet, Av. NULL Arcadia 79534 PA Antigua
85562 nulla@Quas.edu 3808 FacilisisRd. P.O. Box 432 Pocatello 85537 NULL Kiribati
37854 iacis.nec@are.com Ap #929-5730 Dui. Av. NULL Batavia 85525 WA United States
00765 faus.ut@bidum.ca Ap #773-9898 Penatibus Av. NULL Chicopee 56471 NULL Armenia

25

2.4 QUERIES IN PLAIN ENGLISH

i. Find the most expensive orders

ii. List orders placed by jdoe@csub.edu between 9/1/2011 and 9/30/2011

iii. Find customers emails that have placed at least two orders

iv. List user emails that purchased a shirt in the first three months of 2011

v. Find orders placed by jdoe@csub.edu where the shipping and billing address
are not the same and that were paid with a Visa card

vi. Find the second cheapest items in the Clothing category

vii. List users who have ordered every item

viii. List user emails who own at least two credit cards

ix. Find customer names that have never ordered item with ID 3124

x. Find items that have never been purchased

26

2.5 QUERIES IN RELATIONAL ALGEBRA AND CALCULUS

i. Find the most expensive orders

cheap ← σ((Order(o1) X Order(o2)) ^ o1.price < o2.price)
mostExpensive ← π(o.oid, o.price)(σ(Order – cheap))

{o1 | Order(o1) ^ (∀o2)(Order(o2) → o1.oid != o2.oid ^ o1.price >= o2.price}

{<i> | Order(i1, _, _, _, _, _, _, p1, _) ^ (∀o2)(Order(i2, _, _, _, _, _, _, p2, _) →
 i1 != i2 ^ p1 >= p2}

ii. List orders placed by jdoe@csub.edu between 9/1/2011 and 9/30/2011

π(o.id) (σ(Order(o) ^ o.user='jdoe@csub.edu' ^
o.date >= 9/1/2011 ^ o.date <= 9/30/2011)))

{o | Order(o) ^ (∃u)(User(u) ^ u.email='jdoe@csub.edu' ^ u.email=o.user ^
 o.date >= 9/1/2011 ^ o.date <= 9/30/2011}

{<i> | Order(i, 'jdoe@csub.edu', _, _, _, _, _, _, d) ^ (∃u)(User('jdoe@csub.edu',
_, _, _, _, _, _, _) ^ e1='jdoe@csub.edu' ^
 u=e ^ d>= 9/1/2011 ^ d <= 9/30/2011) }

iii. Find customers emails who have placed at least two orders

π(u.email)(σ((User X Orders) ^ o1.user=o2.user ^ o1.id != o2.id ^
u.type='customer'))

{u | User(u) ^ (∃o1)(∃o2)(u.type='customer' ^ u.email=o1.user ^ o1.user=o2.user
 ^ o1.id!=o2.id) }

{<e> | User(e, _, _, _, _, _, 'customer', _) ^ (∃o1)(∃o2)(Order(i, e,_,_,_,_,_,_,_) ^
 Order(i, e, _, _, _, _, _, _, _)) }

27

iv. List user emails who purchased a shirt in the first three months of 2011

π(o.user)(σ((Item(i) X Order(o)) ^ i.category='shirt' ^ o.item=i.itemid ^
o.date>=1/1/2011 ^ o.date<=3/30/2011) }

{o.user | User(u) ^ (∃i)(Item(i)(∃o)(Order(o)(i.category='shirt' ^

 o.item=i.id ^ o.date>=1/1/2011 ^ o.date<=3/30/2011)) }

{<u> | (∃i)Item(i, _, 'shirt', _, _, _, _, _) ^ (∃o)Order(o, u, i,_,_,_,_,_, d) ^
 d>=1/1/2011 ^ d<=3/30/2011) }

v. Find orders placed by jdoe@csub.edu that was paid with a visa card and
the shipping and billing address are not the same

π(o.id) (σ((Order(o) X CreditCard(c))^ o.user='jdoe@csub.edu'
^ o.shipAddr!=o.billAddr ^ c.number=o.cardnumber ^ c.provider='Visa') }

{<o> | Order(o) ^ (∃c)(CreditCard(c)(c.number=o.cardnumber ^ c.provider='Visa'
^ o.user='jdoe@csub.edu' ^ o.shipAddr != o.billAddr)) }

{<o> | Order(o, 'jdoe@csub.edu', _, ba, sa, c, _, _, _) ^
(∃c)(CreditCard(c, 'jdoe@csub.edu', _, 'Visa', _) ^ ba != sa) }

vi. List the second cheapest items in the Snacks category
expensive ← σ((i2.price > i1.price)(item i2 X item i1) ^ i1.category='clothing ^
 i2.category = 'clothing'))
expensive2 ← σ((expensive e1 X expensive e2) ^ e2.price > e1.price)
2ndCheapest ← π(i.name)((Item ^ i.category='clothing') *
 π(i.id)(σ(Item – expensive2) – expensive))

{<i> | Item(i) ^ (∃i)(Item(i) ^ i.category='clothing' ^ (∃i2)(Item(i2) ^ i2.price<i.price ^

 ~(∃i3)(Item(i3) ^i3.price < i.price ^ i2.price != i3.price)) }

{<i, n> | Item(i, n, 'clothing',_,p1,_,_,_) ^ (∃p2)(Item(_,_,'clothing',_,p2,_,_,_) ^

 p2 < p1 ^ ~(∃p3)(Item(_,_,'clothing',_,p3,_,_,_) ^ p3 < p1 ^ p2 != p3)) }

28

vii. List users who have ordered every item

π(ItemID, user)(Order) / π(ItemID)(Item)

{u | user(u) ^((∀i)Item(i) → (∃o)order (o)) ^ o.user=u.email ^ o.item = i.item}

{<u>|User(u,_,_,_,_,_,_,_,_)^(∀i)Item(i,_,_,_,_,_,_,_) → (∃o)Order(o,u,_,_,_,i,_,_)}

vii. List user emails who own at least two credit cards

π(u.email)(σ(CreditCard(c1) X CreditCard(c2) ^ c1.ccn != c2.ccn ^
c1.user=c2.user))

{c1.user| (∃c1) credit_card(c1) ^ (∃c2) credit_card(c2) ^
 c1.ccn !=c2.ccn ^ c1.user = c2.user}

{<u> | (∃c1) credit_card(c1,u,_,_,_) ^ (∃c2)credit_card(c2,u,_,_,_) ^ c1 != c2 }

ix. Find customer names that have never ordered item with ID 3124

π(u1.fname, u1.lname)(User u1 - (σ((User u X Orders o) ^
 u.accnt_type='customer' ^ u.email = o.orderuser') ^ o.orderitem = 3124))

{u.fname, u.lname | User(u) ^ u.type = 'customer' ^ ~(∃o)(order(o) ^
 u.email=o.orderuser ^ o.orderItem=3124)}

{<f, l>| (∃u1)User(u1,f, _, l, _, 'customer', _) ^ ~(∃o)Order(o,u1,_,_,_,3124,_,_))}

x. Find items that have never been purchased

π(i.ItemID)(σ(Item(i).ItemID – Order(o).OrderItem))

{i.ItemID | ItemID(i) ^ ~(∃o)(OrderID(o) ^ o.item == I.ItemID)}

{<i,n>|ItemID(i,n,_,_,_,_,_,_) ^ ~(∃o)(Order(o,_,i,_,_,_,_,_,_))}

29

Phase III

3.1 NORMALIZATION OF RELATIONS

First Normal Form (1NF)

The first normal form only allows values that are simple and single. This means
that there cannot be relations within relations or relations as attribute values
within tuples.

Second Normal Form (2NF)

For a relation to be 2NF, it must be 1NF as well. Additionally, every non-prime
attribute must be fully functionally dependent on the primary key. You only need
to test for it if the primary key is more than one attribute. A relation schema can
be second normalized into a number of 2NF relations by associating nonprime
attributes with only part of the primary key that they are fully functionally
dependent on.

Third Normal Form (3NF)

The third normal form is present when there is no transitive dependency of a
non-key attribute on the primary key. To normalize, break up the relation and set
up relations that include the non-key attributes that functionally determine other
non-key attributes.

Boyce-Codd Normal Form (BCNF)

A relation R is in Boyce-Codd Normal Form when a nontrivial functional
dependency X  A holds in R and X is a super-key of R. All BCNF relations are
also 3NF, but not all 3NF relations are BCNF.

30

Problems with Normalization

Modification anomalies can occur when updating an attribute that is functionally
dependent on the primary key. If you change that value, you will have to change
all values if it is not normalized.

Normal Forms of Relations

All of the relations within our database are in 2nd normal form.

Modification Anomalies

Second normal form relations are susceptible to update anomalies. this implies
that a column has data in multiple tuples that are the same. When one goes to
update the data in one tuple the other one should be updated also but remains
as its original value.

Normalization

Since all relations are only in first normal form, there is no way to convert them to
the other forms.

3.2 SQL*PLUS

SQL*PLUS is a command-line utility created by Oracle that can run SQL and
PL/SQL commands interactively or from a script file. The first incarnation of the
program was called UFI (“User Friendly Interface”). It then became Advanced
UFI after some more features were added. Then its name was changed to
SQL*PLUS.

31

3.3 SCHEMA OBJECTS

Table

Tables are basic database objects that store data in rows and columns. Each
column stores data for a single attribute and each row stores data for a single
record.

Syntax:

CREATE TABLE table_name (

column1 datatype null/not null,

column2 datatype null/not null,

...

CONSTRAINT constraint_name PRIMARY KEY (column1, column2, . column_n)

);

Tables in our database:

GPJH_USER

GPJH_ITEM

GPJH_CC

GPJH_ADDR

GPJH_CATEG

GPJH_ORDER

View

Views are virtual tables that do not actually store any data. Views are often
stored procedures that display certain attributes from one or more tables, or even
use aggregate functions and PL/SQL to generate sets of interest.

Syntax:

CREATE VIEW view_name AS

SELECT columns

FROM table

WHERE predicates;

32

Views in our database:

GPJH_ORDERS_2011Q1

GPJH_SNACKS

Index

An index is a stored copy of one or more columns of a table. They are used to
improve the speed of retrieving data, but with the downside of increased storage
space and slower writes.

Syntax:

CREATE [UNIQUE] INDEX index_name
ON table_name (column1, column2, . column_n)

Indexes in our database:

GPJH_CATEG_NAME

Sequence

Sequences are used to create a sequence of numbers, which are often used to
auto-increment primary key attributes. However, this may not always be the
case. In addition, sequences do not have to increment by 1; they can be
whatever number specified.

Syntax:

CREATE SEQUENCE sequence_name

 MINVALUE value

 MAXVALUE value

 START WITH value

 INCREMENT BY value

 CACHE value;

33

Clusters

A cluster is a group of one or more tables that are physically stored together

because they share common columns that are often used together. The goal of

clustering is to reduce disk access time, which is the number one bottleneck for

DBMS software.

3.4 RELATION SCHEMA AND CONTENT

User

CS342 SQL> DESC GPJH_USER;

Name Null? Type

 --- -------- --

 EMAIL NOT NULL VARCHAR2(50)

 FNAME NOT NULL VARCHAR2(40)

 MINIT NOT NULL CHAR(1)

 LNAME NOT NULL VARCHAR2(40)

 PASSWORD NOT NULL CHAR(40)

 PHONE NOT NULL CHAR(12)

 ACCOUNTTYPE NOT NULL NUMBER

 ISSUBSCRIBER NOT NULL NUMBER

CS342 SQL> select * from gpjh_user;

EMAIL FNAME M LNAME PASSWORD PHONE ACCOUNTTYPE ISSUBSCRIBER

--------------- ---------- - ---------- --------------- ------------ ----------- ------------ ------------------------ ----------------------

alus@actas.edu Grady H Fulton XEA84MSG6XC 1406990445 1 1

tpis@equet.edu Nissim N Kerr AKR02ENY4EV 1558147292 2 0

ante@rimis.com Shea L Sellers JLF04LFA3QE 1217032851 0 0

Don@puereat.ca Whitney C Dudley ULS04FLR2VI 1304107393 1 0

34

rlis@rtor.com Velma L Joyner EFY82KCR0IN 1375886625 0 1

luaam@lla.com Dillon Q Rutledge TVA67GCV9EE 1458947609 0 0

erus@Mis.org Hermione V Chaney FPZ22TMJ5KN 1780674335 0 1

sera@nec.org Tatum D Graham BIY05FUA5JK 1012170604 0 0

cot@vite.org Rhona H Quinn EJB04QHF6WP 1096304364 2 1

tm.eu@nt.edu Hollee V Joseph DZW20HWJ5NG 1051781128 1 1

var@blras.com Uriah Z Douglas KCG23INF7AS 1912091213 0 1

Cras@mris.com Kessie Z Huff UJO06XJE1BF 1893002233 1 1

meus@estie.ca Xena T Torres LOH95XXY0AZ 1289680804 0 1

vunt@adio.com Ivana L Delacruz JWU68JOT2QT 1295254335 2 1

14 rows selected.

Category

CS342 SQL> DESC GPJH_CATEG;

 Name Null? Type

 --- -------- --

 CATEG_ID NOT NULL NUMBER

 NAME NOT NULL VARCHAR2(50)

 PARENT NUMBER

 DESCRIPTION VARCHAR2(255)

CS342 SQL> select * from gpjh_categ;

ID NAME PARENT DESCRIPTION

---------- --------------- ---------- --

 0 Apparel Because you have to put on some clothes to go outside

 1 Computer Stuff The man who dies with the most toys wins

 2 Gadgets Inspect this

 3 Snacks The narwhal bacons at midnight

35

 4 Books For those who... read

 5 Kids Your kid can be a geek too!

 6 T-Shirts 0 That thing you wear, on your chest

 7 Linux 6 Stallmanian fashion

 8 USB Devices 1 Put that 24-port USB hub to use

 9 Science 6 Nothing to see here

 10 Gaming 6 Show off your skillz

 11 Bacon products 3 Because everyone loves bacon

 12 Watches 2 For those who dont have a cell phone

13 rows selected.

Credit Card

CS342 SQL> DESC GPJH_CC;

 Name Null? Type

 --- -------- --

 CCN NOT NULL CHAR(16)

 CARDUSER NOT NULL VARCHAR2(50)

 HOLDER NOT NULL VARCHAR2(65)

 PROVIDER NOT NULL VARCHAR2(10)

 EXPDATE NOT NULL CHAR(5)

CS342 SQL> select * from GPJH_CC;

CCN CARDUSER HOLDER PROVIDER EXPDA

---------------- --------------- --------------------- ---------- -----

9907938645811588 vunt@adio.com Ora R. Ryan Visa 01/12

9806706776162620 meus@estie.ca Florence O. Arnold Visa 09/12

2721329487444206 Cras@mris.com Zephr Y. Harrell Visa 12/14

2512140453757532 var@blras.com Emery T. Hampton Visa 10/13

36

7762398410815452 tm.eu@nt.edu Ruth Z. Collins Visa 08/13

2336013647521730 cot@vite.org Linus X. Potts Mastercard 09/12

7126859229366731 sera@nec.org Raymond D. English Mastercard 11/11

7927299567059352 erus@Mis.org Anastasia F. Saunders Discover 12/13

0752031303399979 luaam@lla.com Dai Y. Colon Visa 04/16

9374771392605749 Don@puereat.ca Hilary R. Bonner Discover 09/15

9694197835558575 ante@rimis.com Aladdin C. Lane Visa 10/13

5559556497466722 alus@actas.edu Haley X. Gamble Visa 12/15

12 rows selected.

Address

CS342 SQL> DESC GPJH_ADDR;

 Name Null? Type

 --- --------- --

 ADDR_ID NOT NULL NUMBER

 ADDR_USER NOT NULL VARCHAR2(50)

 LINE1 NOT NULL VARCHAR2(50)

 LINE2 VARCHAR2(30)

 CITY NOT NULL VARCHAR2(50)

 STATE NOT NULL VARCHAR2(20)

 ZIP NOT NULL VARCHAR2(10)

 COUNTRY NOT NULL VARCHAR2(40)

CS342 SQL> select * from gpjh_addr;

 ID USER LINE1 LINE2 CITY STATE ZIP COUNTRY

---------- ---------------------- ---------------------- ------------- ------------------- ------- -------------- -------------------

 232 tpis@equet.edu Ap #783-2037 … Bakersfield YT 36581 Hungary

 451 tpis@equet.edu Ap #934-1151 … Stockton MB 59102 Swaziland

37

 954 rlis@rtor.com Ap #626-3972 … Lock Haven NC 59102 Poland

 151 erus@Mis.org 862-4600 Nun… Hanahan TX 32190 Belize

 792 cot@vite.org 2229 Velit. St. Claremore NT 63109 Guam

 21 var@blras.com 1179 Nulla. Av. Harrisburg PE 30950 Japan

 908 Cras@mris.com 445-3761 …. New York NL 86012331 Kiribati

 18 meus@estie.ca 138 Tristique Rd. Ogden KY 601923 Palau

 562 vunt@adio.com 555-9099 ... PO Box 12 Bowie AL 96312 Morocco

 550 cot@vite.org 8325 Conval… Avalon NB 003214 Nigeria

 75 vunt@adio.com 2908 Arcu… Texas City NM 95810 USA

 178 sera@nec.org Ap #522-4… Olean PE 673910 Tunisia

12 rows selected.

Item

CS342 SQL> DESC GPJH_ITEM;

Name Null? Type

 --- -------------- --

 ITEM_ID NOT NULL NUMBER

 NAME NOT NULL VARCHAR2(55)

 CATEGORY NUMBER

 MANUFACTURER NOT NULL VARCHAR2(255)

 PRICE VARCHAR2(50)

 STOCK VARCHAR2(50)

 PHOTO NOT NULL VARCHAR2(50)

 VIDEO NOT NULL VARCHAR2(50)

CS342 SQL> select * from gpjh_item;

 ID NAME CATEG MANUF. PRICE STOCK PHOTO VIDEO

---------- ------------------ --------- ---------------- ------------ --------- ---------- -----

38

1048 Portal 2 Poster 6 Valve 355.58 292 2 2

582 USB Toaster 8 IntelliTech 448.81 143 2 0

9840 Pip-boy 2 Bethesda 322.42 489 3 0

9212 Nuke-Cola 3 Bethesda 209 609 2 0

9251 Portal boots 0 Valve 1 183 1 0

856 Gravity Gun Toy 5 Valve 363 602 1 2

9570 Wizard hat 0 Wizards San. 494 494 0 2

6358 Spy camera 2 ACME 295 160 3 2

831 Wifi hat 0 IntelliTech 426 82 4 1

7741 Balance 2 Blizzard 130 13 3 1

8302 xkcd joke #392 7 xkcd 12 717 2 0

2709 Headcrab lotion 3 Valve 134 751 3 2

12 rows selected.

Order

CS342 SQL> DESC GPJH_ORDER;

Name Null? Type

 --- -------- --

 O_ID NOT NULL NUMBER

 O_USER NOT NULL VARCHAR2(50)

 O_ITEM NOT NULL NUMBER

 S_ADDR NOT NULL NUMBER

 B_ADDR NOT NULL NUMBER

 CC NOT NULL CHAR(16)

 QTY NOT NULL NUMBER

 PRICE NOT NULL NUMBER

 O_DATE DATE

39

CS342 SQL> SELECT * FROM GPJH_ORDER;

O_ID O_USER O_ITEM S_ADD B_ADD CREDIT CARD QTY PRICE O_DATE

------- ------------------------ ----------- ---------- ----------- -------------------------- ---------- ---------- ------------

3512 jdoe@csub.edu 1048 954 954 2721329487444206 4 48.32 19-JUN-11

3712 ante@rimis.com 582 232 232 2336013647521730 7 218.46 19-JUN-11

3112 Don@puereat.ca 9251 451 451 9806706776162620 1 482.32 19-JUN-11

7312 erus@Mis.org 9570 151 151 7927299567059352 2 90.45 04-DEC-10

8318 sera@nec.org 9212 21 21 9374771392605749 1 32.88 29-FEB-12

1337 sera@nec.org 856 21 21 9694197835558575 1 9.59 29-FEB-12

9001 sera@nec.org 7741 21 21 9694197835558575 3 390.59 29-FEB-12

6523 var@blras.com 8302 908 562 7927299567059352 9 159.14 12-JUL-11

8 rows selected.

3.5 QUERIES

-- #1 Most expensive order

SELECT o1.O_ID,o1.O_Item,o1.Price,o1.O_Date

FROM GPJH_ORDER o1

WHERE not exists (

 select *

 from GPJH_ORDER o2

 WHERE (o2.Price > o1.price and o1.O_ID <> o2.O_ID)

);

-- #2 lists orders placed by jdoe@csub.edu between 9/1/2011 and 9/30/2011

SELECT O.O_ID, O.O_USER, O.O_ITEM

FROM GPJH_USER U, GPJH_ORDER O

WHERE U.EMAIL = 'jdoe@csub.edu' AND U.EMAIL = O.O_USER

40

AND O.O_DATE >= to_date('2011-09-01','yyyy-mm-dd')

AND O.O_DATE <= to_date('2011-09-30','yyyy-mm-dd');

-- #3 Find customers emails who have placed at least two orders

select distinct u.email

from gpjh_user u, gpjh_order o, gpjh_order o2

where u.accounttype = 2 and u.email = o.o_user and

 o.o_user = o2.o_user and o.o_id != o2.o_id;

-- #4 List user emails who purchased a T-Shirt in the first three months of 2011

SELECT distinct O.O_USER FROM GPJH_ORDER O,GPJH_ITEM I,GPJH_CATEG C

WHERE C.NAME = 'T-Shirts' AND I.CATEGORY = C.CATEG_ID AND

 O.O_ITEM = I.ITEM_ID AND

 O.O_DATE >= to_date('2011-01-01','yyyy-mm-dd') AND

 O.O_DATE <= to_date('2011-03-30','yyyy-mm-dd');

-- #5 Find orders placed by jdoe@csub.edu that was paid with a visa card and the
shipping and billing address are not the same

SELECT O.*

FROM GPJH_CC C, GPJH_ORDER O

WHERE C.PROVIDER like 'Visa' AND C.CCN = O.CC AND

 O.O_USER = 'jdoe@csub.edu' AND O.S_ADDR <> O.B_ADDR;

-- #6 List the second cheapest items in the Snacks category

select i.item_id,i.name,i.price

from gpjh_item i, gpjh_item i2, gpjh_categ c

where c.name='Snacks' and i.category=c.categ_id and

 i2.category=c.categ_id and i2.price < i.price and

 not exists (

 select *

41

 from gpjh_item i3

 where i3.category=c.categ_id and

 i3.price < i.price and i2.price != i3.price);

-- #7 List users who have ordered every item

select unique u.email

from gpjh_user u

where not exists (

 select *

 from gpjh_order o

 where not exists (

 select *

 from gpjh_item i

 where o.o_item = i.item_id and

 u.email = o.o_user

)

);

-- #8 List user emails that own at least two credit cards

select distinct c1.carduser

from gpjh_cc c1, gpjh_cc c2

where c1.carduser = c2.carduser and c1.ccn != c2.ccn;

-- #9 Find customer names that have never ordered an item with ID 3124

select u.fname,u.minit,u.lname

from gpjh_user u

where not exists (

 select *

 from gpjh_order o

42

 where u.email = o.o_user and

 o.o_item = 3124

);

-- #10 selects items that have never been purchased

select i.item_id,i.name

from GPJH_ITEM i

where not exists (

 select * from GPJH_ORDER o

 where i.item_id = o.o_item);

-- #11 List cities where there are in at least 2 addresses, group by city

select city, count(*) as "# of cities"

from gpjh_addr

group by city

having count(city) >= 2;

-- #12 Find the cheapest price of an item manufactured by Valve

select min(price)

from gpjh_item

where manufacturer = 'Valve';

-- #13 Create table from orders in 2011 and only projecting item, quantity, and price

create table gpjh_2011orders as

 select o.o_item,i.name,o.qty,o.o_date

 from gpjh_order o,gpjh_item i

 where o.o_item = i.item_id and

 o.o_date >= to_date('2011-01-01','yyyy-mm-dd') and

 o.o_date <= to_date('2011-12-31','yyyy-mm-dd');

43

3.6 DATA LOADER

Data Loading Methods

The most rudimentary way to load data into a database in Oracle is with INSERT INTO …

VALUES (…). In Oracle, only one row can be inserted at a time with this method. However, one

can also use INSERT INTO … SELECT (…) FROM (…) to use the result set of a select

statement as input for another table. Oracle also provides some utilities for loading data.

Oracle Data Pump is a feature of Oracle Database 11g/Release 2 that provides high speed

import and export utilities and a web-based interface. Oracle Data Pump also boasts several

other features that improve data loading. SQL*Loader is also a fast data loading utility from

Oracle that loads from external files into tables. It can accept many formats of input, perform

filtering, and load into multiple tables at once. External Tables is another Oracle utility that

provides a preprocessor to increase flexibility of input formats.

Java Dataloader

The Java Dataloader program was created by Dr. Huaqing Wang, Professor of Computer

Science at California State University of Bakersfield. Its purpose is to read formatted data from a

text file into Oracle database tables. Dr. Wang lets students in his Database Systems class

modify the program to make it more user friendly. We have not done this (yet). Data must be

inputted into the program in the following format:

TABLENAME | tableName | numberOfColumns
row1col1value | row1col2value | … | row1colNvalue
row2col1value | row2col2value | … | row2colNvalue
...

44

Phase IV

4.1 FEATURES OF PL/SQL AND TRANSACT-SQL

PL/SQL (Procedural Language/Structured Query Language) is an extension for SQL and

Oracle’s relational database that provides many procedural language features. Its syntax is

similar to Ada or Pascal, and it supports variable declaration, arrays, loops, conditional

statements, exception handling, and object-oriented features.

Transact-SQL (T-SQL) is a proprietary extension for SQL created by Microsoft and Sybase that

is provides a similar functionality for Microsoft SQL Server as PL/SQL does for Oracle relational

databases. Unlike PL/SQL, it has made changes to the DELETE and UPDATE statements. All

applications must communicate with a Microsoft SQL Server by sending T-SQL statements, no

matter what interface it uses.

The purpose of both of these extensions is to provide benefits like better design structure,

security, and performance. They both allow for the creation of stored subprograms, which

provide both of these benefits. There is a performance increase because queries do not have to

be compiled when calling stored subprograms. Parameters can simply be passed to the existing

procedure, which reduces network traffic and improves CPU performance. These programs also

promote better design practices because business rules can simply be stored in stored

procedures or triggers so that frontend application programmers can focus on other issues.

Although PL/SQL and T-SQL both aim to achieve similar goals and share some common

features, there are many differences as well. Besides the obvious syntax differences, the two

extensions differ in many of the features they provide. PL/SQL allows for the creation of

packages, but T-SQL has no equivalent to this. PL/SQL also uses %TYPE, which allows

flexibility and portability because the datatype of an attribute can substitute as the datatype of a

variable or another attribute. In some cases, T-SQL is much simpler than PL/SQL. For instance,

sequences are not needed in T-SQL because you can simply add an auto-increment clause for

an attribute in a create statement. Also, T-SQL SELECT statements can be put just about

anywhere without the need for temporary variables as placeholders.

45

4.2 ORACLE PL/SQL

Program Structure

Pl/SQL program structure is based on code blocks. There are three basic parts to a code block:

declaration, execution, and exception handling, though not all parts are required for every code

block. Variables are declared after DECLARE statement. Commands are executed after the

BEGIN statement. Additional statements such as control statements and loops are optional.

Exceptions are handled for re-thrown after the EXCEPTION statement. A code block is

terminated with END.

Code block syntax:

 DECLARE [label]

 <variable name> <datatype>

 […]

 BEGIN

 Statements

 [EXCEPTION]

 EXCEPTION handlers

END [label];

Control statement syntax:

 IF <condition> THEN <statements>

 ELSEIF <condition> THEN <statements>

 ELSE <Statements>

END IF;

46

Loop syntax:

FOR <variable> in <lower bound> .. <upper bound> LOOP

 <statements>

 END LOOP;

Exception syntax:

 [EXCEPTION]

 WHEN <exception name> THEN <statements>

 END;

Stored Procedures

A stored procedure is a pre-compiled procedure that performs actions on the database or

makes a query, and they can be called by application software. They increase performance

because less data needs to be sent when calling a stored procedure and it is already compiled.

Creation Syntax:

 CREATE [OR REPLACE] PROCEDURE <procedure name>

 [(<variable> IN|OUT <datatype>, ...)] -- list of arguments

 AS|IS

 [variable declarations]

 BEGIN

 <statements>

 [EXCEPTION]

 WHEN <exception name> THEN <statements>

47

 END;

Execution syntax:

 EXEC <procedure name>([arguments]);

Stored Functions

A stored function is very similar to a stored procedure, except that it must return a single data

type.

Syntax:

 CREATE OR REPLACE FUNCTION <functionName>

[(<variable> IN|OUT <datatype>,…)] -- list of arguments

IS|AS

 [variable declarations]

 BEGIN

 <statements>

 [EXCEPTION]

 WHEN <exception name> THEN <statements>

Package

A package is a collection of schema objects (procedures, functions, etc.) similar to classes in

popular object-oriented languages. A package requires a prototype that declares the schema

objects used and a body that defines what the schema objects do.

Syntax:

48

 CREATE PACKAGE <package name> AS

 <OBJECT TYPE> <name>(arguments);

…

 END <package name>

 CREATE PACKAGE BODY <package name> AS

 <object definition (see create procedure or create function syntax)>

 …

 END <package name> ;

Triggers

Triggers are created to automate business rules on a database. They are automatically called

when a specified record or attribute is inserted, updated, or deleted. Triggers can check whether

data meets certain conditions, save changes to a log, and make changes to other tables, among

many other things.

Syntax:

 CREATE [OR REPLACE] TRIGGER <trigger name>

 BEFORE|AFTER INSERT|DELETE|UPDATE [OR INSERT|DELETE|UPDATE]

 OF COL <column_name>

 ON <table name>

 [DECLARE

 <variables>]

 BEGIN

49

 FOR EACH ROW

 [WHEN <condition>]

 <statements>;

END

4.3 ORACLE PL/SQL SUBPROGRAMS

Stored Procedures

GPJH_PROC_insertUser

This stored procedure is called to insert a new user. When calling it, you must pass every

attribute of the user table.

-- insert user record

CREATE OR REPLACE PROCEDURE gpjh_proc_insertUser (

 user_email in gpjh_user.email%TYPE,

 user_fname in gpjh_user.fname%TYPE,

 user_minit in gpjh_user.minit%TYPE,

 user_lastName in gpjh_user.lname%TYPE,

 user_passwd in gpjh_user.password%TYPE,

 user_phone in gpjh_user.phone%TYPE,

 user_accttype in gpjh_user.accounttype%TYPE,

 user_subscribe in gpjh_user.issubscriber%TYPE

)

50

IS

BEGIN

 INSERT INTO gpjh_user (

 email,

 fname,

 minit,

 lname,

 password,

 phone,

 accounttype,

 issubscriber

)

 VALUES (

 user_email,

 user_fname,

 user_minit,

 user_lastname,

 user_passwd,

 user_phone,

 user_accttype,

 user_subscribe

51

);

 COMMIT;

 EXCEPTION

 WHEN others THEN

 ROLLBACK;

 raise_application_error(-20998, sqlcode || ' : ' || sqlerrm);

 COMMIT;

END;

/

GPJH_PROC_deleteUser

This stored procedure deletes a single user record based off of the email (primary key) passed

as an argument to the procedure. However, all records that depend on that user (orders, credit

cards, addresses) are deleted first.

create or replace procedure gpjh_proc_deleteUser (

 user_email in gpjh_user.email%TYPE

)

IS

BEGIN

52

 -- remove dependents first

 delete

 from gpjh_order

 where o_user = user_email;

 delete

 from gpjh_cc

 where carduser = user_email;

 delete

 from gpjh_addr

 where addr_user = user_email;

 delete

 from gpjh_user

 where email = user_email;

 commit;

 exception

 when others then

 rollback;

 raise_application_error(-20998, sqlcode || ' : ' || sqlerrm);

 commit;

END;

53

/

Functions

GPJH_FUN_avgHighPrice

This calculates the average of the top N highest priced items. When calling this function, pass

an integer N (default 10 if not passed) as the number of records you want to select from the

most expensive items in the database. The function will return the average of those items.

create or replace function gpjh_fun_avgHighPrice (n in number default 10)

return number

is

 avg_price number;

begin

 with orderByHighest as

 (

 select price

 from gpjh_order

 order by price desc

)

 select avg(price)

 into avg_price

 from orderByHighest

54

 where rownum <= n;

 return avg_price;

 exception

 when others then

 raise_application_error(-20998, sqlcode || ' : ' || sqlerrm);

end gpjh_fun_avgHighPrice;

/

Triggers

GPJH_TRIG_logItemChange

This trigger logs when an item in the database is updated or deleted into the table

GPJH_logTable. It saves the old price and ID and the new price and ID into the table.

create or replace trigger gpjh_trig_logItemChange

before update or delete

on gpjh_item

for each row

begin

 insert into gpjh_logTable (

 oldVal,

 newVal

55

) values (

 :old.item_id || ' ' || :old.name,

 :new.item_id || ' ' || :new.name

);

 exception

 when others then

 rollback;

 raise_application_error(-20998, sqlcode || ' : ' || sqlerrm);

 commit;

end;

/

56

Phase V

5.1 DAILY ACTIVITIES OF THE USER GROUPS
Each user is constrained by their account type. Actions allowed by each user are as follows:

A. Admin

Admins have more control of the site and may add items to the listings along with generate

statistical data of usage and finances.

Administrators (Account type 0) are able to change/remove accounts and items, create

accounts for new admins and moderators, and view all data on a given user. An admin may also

generate reports on important data such as items with the most sales, items with back orders,

profits for a given time period, and geographical data of users.

B. Moderator

Moderators are a small but necessary group in which most provide assistance for the

customers. Moderators are allowed to change customer data and remove accounts of

customers, and view account history of the customers. They do not have as much privilege or

responsibility as an admin.

C. Customer

Customers are the general user base. Customers may only view data relevant to their own

account as well as all items for sale in the database. Printable reports on complete account

history are available to each customer. The report includes all items purchased, the date

purchased, and also the order id. Customers are allowed to add remove and change account

information should specific data need to be updated. If a customer places an order and decides

they no longer want the item it may be edited or canceled if it has not shipped yet.

57

5.2 RELATIONS, VIEWS, AND SUBPROGRAMS

Gpjh_orders_2011q1-

 This view returns the order item, quantity, price, and the order date for orders in the first

quarter of 2011. It is sorted by order date in ascending order.

gpjh_snacks-

 This view returns the item name, manufacturer, price, and the item stock from the item

and category table where the category name is Snacks. It is ordered by item name in ascending

order.

gpjh_proc_insertUser-

 Is a stored procedure in which a new user may be added to the database. It takes

parameters for all fields of the User table.

gpjh_ proc_deleteUser-

Is a stored procedure in which an existing user may be removed from the database starting with

dependent records (have a foreign key referencing the user) cascading down.

Due to the likelihood that these functions will be called often, we created these stored

subprograms in order reduce downtime by having precompiled procedures. Similar deletion

procedures were also created for all other tables.

58

5.3 SCREEN SHOTS OF PROGRAM

Login –

 Selecting Login will pull up the window as shown below, allowing the user to enter

credentials to log into the database.

Commit-

 All changes to the database are unreversable after clicking Commit.

Rollback-

 Click Rollback to revert all changes back to the last Commit.

59

Select-

The Select option allows the user to view all user data, addresses, credit card data, items,

categories, and orders. We have also implemented a SQL execution field in which an admin

may type in custom SQL selection statements if they need to select more specific data.

60

Insert-

Selecting one of the choices from Insert will bring up a form in a new window that lets the user

fill out all fields in the table. The user insert form is shown below. All fields with an asterik are

required.

61

Delete-

 Select a whole record by clicking on the small panel on the left of the table. Click it and

drag to select multiple records. After the desired entrees are selected click on the delete button

on the menu bar. A window will pop up and ask if you want to confirm that you want to delete

the selected rows.

62

Update-

Selecting the update field from the menu bar takes the data entered into the fields and updates

them into the database if they have been changed.

63

5.4 DESCRIPTION OF PROGRAM AND CODE

A. Major steps of designing a user interface

Designing a GUI application in Visual Studio and C# was a new experience for both of us. We

used a menu bar to control the flow of the program and stored the data into a single data grid.

All of the basic SQL operations – Select, Insert, Update, and Delete – are accessible from the

menu bar. When designing a GUI, you must make sure that menu item placement is fairly

intuitive. In addition, selections need to give proper error or confirmation messages. To improve

our existing design, we could add tabbed data grid management in the future.

B. C# Database Classes

Oracle database classes can be used by C# in Visual Studio by adding a reference to

Oracle.DataAccess.dll provided by the Oracle 11g client. These classes are specially designed

to interact with Oracle databases. In addition to these classes, there are some essential ones

built into the .NET Framework that are designed handle data from any database. I will cover the

important classes in this section.

OracleConnection-

 The OracleConnection class is used to manage connections with the Oracle database.

To create a connection, you can give it a connection string in the constructor that specifies the

data source, user id, and password. This is the connection string used in our database:

const string connString = "DATA SOURCE=delphi;USER ID=cs342;Password=c3m4p2s;";

OracleDataAdapter-

 The OracleDataAdapter class is a special class that is often used for storing the results

of a query on an Oracle database and filling the results into a generic dataset. The class can be

instantiated with the connection and the SELECT statement you want to execute. Invoking the

Fill method on the object with fill up the passed DataSet object with records from the result set.

64

OracleCommand-

 While data adapters are used for SELECT statements, the OracleCommand class is

designed for SQL commands that manipulate the data, such as INSERT, UPDATE, DELETE,

and calling stored procedures. The OracleCommand object can also be used to parameterize

commands, which has the advantage of being more secure and more efficient. Like

OracleDataAdapter, an OracleCommand object can be instantiated with a SQL command and

an OracleConnection object. Programmers also need to set the CommandType field correctly

as well, such as when calling a stored procedure. To execute the command, call

ExecuteNonQuery.

cmd = new OracleCommand(procedure, connectString);

cmd.CommandType = CommandType.StoredProcedure;

cmd.ExecuteNonQuery();

DataSet-

 This class can be used for locally storing database queries into easy-to-access tables. It

is not Oracle-specific – it could be used to store data from any database. The tables can then be

used as a data source for a user-friendly DataGridView.

DataGridView-

 DataGridView is used to create user-friendly visual data tables. Users can edit the cells

of the table if read-only is not enabled. A DataGridView object can be filled with data by setting

the data source to a DataTable:

adapter = new OracleDataAdapter(sql, connectString);

dataSet = new DataSet();

adapter.Fill(dataSet);

dataGrid.DataSource = dataSet.Tables[0];

65

C. Major Features of GUI Program

The deleteRow method can delete any record from the table based on the name of the stored

procedure and the key that the record is identified by. A stored procedure that is set based on

the currently selected table is called when this function is invoked. deleteRows invokes this

function in a for loop when deleting multiple rows.

private bool deleteRow(string proc, object key)

 {

 try

 {

 openConnection();

 cmd = new OracleCommand(proc, cnn);

 cmd.CommandType = CommandType.StoredProcedure;

 if (key.GetType().ToString() == "System.Decimal")

 cmd.Parameters.Add("arg1", OracleDbType.Int32, 0).Value =

Convert.ToDouble(key);

 else if (key.GetType().ToString() == "System.String")

 cmd.Parameters.Add("arg1", OracleDbType.Varchar2, 0).Value =

Convert.ToString(key);

 int k = cmd.ExecuteNonQuery();

 cmd = null;

 return true;

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.ToString());

 }

 finally

 {

 closeConnection();

 }

 return false;

 }

66

The insertUser method is invoked from a form that has all the fields to create a new user. The

fields are passed to the function, and then a stored procedure is called on the database server

to execute the SQL command.

public bool insertUser(string email, string fname, string minit, string lname, string

pass, string phone, int acc, int sub)

 {

 try

 {

 openConnection();

 cmd = new OracleCommand("gpjh_proc_insertUser", cnn);

 cmd.Parameters.Add("email", OracleDbType.Varchar2, 0).Value = email;

 cmd.Parameters.Add("fname", OracleDbType.Varchar2, 0).Value = fname;

 cmd.Parameters.Add("minit", OracleDbType.Varchar2, 0).Value = minit;

 cmd.Parameters.Add("lname", OracleDbType.Varchar2, 0).Value = lname;

 cmd.Parameters.Add("pass", OracleDbType.Char, 0).Value = pass;

 cmd.Parameters.Add("phone", OracleDbType.Char, 0).Value = phone;

 cmd.Parameters.Add("acctype", OracleDbType.Int32, 0).Value = acc;

 cmd.Parameters.Add("subscribes", OracleDbType.Int32, 0).Value = sub;

 tableName = "gpjh_user";

 int k = cmd.ExecuteNonQuery();

 selectTable(tableName);

 cmd = null;

 return true;

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex);

 }

 finally

 {

 closeConnection();

 }

 return false;

67

 }

The updateTable method calls the UPDATE command for every attribute of the currently

selected data in the DataGridView. It works for every table. In its current state, it takes a few

seconds to execute for even a small set of a data. A more efficient version of this method would

use a cached DataGridView and compare each value of the current DataGridView to the cached

one before executing the SQL command. It would only execute an UPDATE command if two

corresponding cells differ. Due to time constraints, we were not able to implement the more

efficient method.

private void updateTable()

 {

 if (tableName == null || tableName == "")

 return;

 if (MessageBox.Show(

 String.Format("Are you sure you want to update {0}?", tableName),

 "Update table", MessageBoxButtons.YesNo) != DialogResult.Yes)

 return;

 object key;

 string keyName;

 keyName = dataGrid.Columns[0].Name;

 for (int i = 0; i < dataGrid.RowCount; i++)

 {

 key = dataGrid[0, i].Value;

 for (int j = 1; j < dataGrid.ColumnCount; j++)

 {

 updateAttr(dataGrid.Columns[j].Name, keyName, key, dataGrid[j,

i].Value);

 }

 }

 }

68

D. Thoughts on Visual Studio / C#

After writing several projects in Java, the transition to C# was very easy. C# is so similar to Java

that it is sometimes hard to tell the difference when coding in it. Visual Studio made the

transition even easier, since GUI elements can be created with the click of a mouse. In addition,

the IDE assists you by helping you complete class, variable, and method names.

5.5 Steps of Designing and Implementing a Database

An end-to-end database solution is no trivial matter. A project of such magnitude requires a lot

of research, analysis, design, and refining.

The first step is to research the business, organization, or other purpose that the database is

meant so serve. If it is an existing business/organization, work closely with people from within. It

is a new idea, define your goals and all things that should be kept track of in the database. We

have learned that it is very important to clearly define your goals from the start, because it is

harder to change them later on.

Step two is to take your research and create an E-R (Entity-Relationship) model. This model is a

basic model that will give you a general idea of how the database will be implemented. An E-R

model can be easily explained to management and other non-technical people. We have

learned that it is very important to make a well-designed E-R model because it will directly affect

your relational model.

In the next step, one must convert the E-R model into a more practical form – the relational

model. Modern DBMS’s like Oracle are based on the relational model. In this process, entities

are converted to relations, and foreign keys are used to refer to other relations. We’ve learned

that relational models are very important because they can be directly applied to real databases.

If your relations are not designed well, your database will require a lot of refinement.

In step 4, one should design queries in relational algebra and calculus that will be used in the

database. However, a person who is an expert in the database design should be able to create

SQL statements without writing relational algebra and calculus first. If the database designer is

ever confused on how to write a SQL statement, they should first try to write it in relational

69

algebra/calculus and convert it. Relational algebra and calculus helped us understand how to

design real-world queries.

Step five is where stored subprograms are made, such as procedures, functions, and triggers.

These are important because storing database subprograms on a server helps streamline the

whole process. It abstracts the database design from the application programmer. In addition, it

is more efficient and secure to call a stored subprogram that to write it directly in the interface

software.

Lastly, the software interface should be written for the database. For businesses/organizations,

this is usually in the form of a windowed GUI application or a website. However, sometimes it is

more useful to write a console or CLI (command-line interface) application to interact with the

database as well. It all depends on the purpose of the database and program.

In summation, every step of the database process is very important. Mistakes that are made

early have a way of making it more difficult down the road. We had to go back and refine our ER

model and relational model several times. We have learned the importance of defining business

goals and sticking to them, and considering the consequences of every design decision. Though

we made many mistakes, we went back and fixed most of them. I feel as though the best way to

learn is the hard way, and this project has been a perfect example of that. After completing this

project, we feel much better prepared to approach the task of designing and implementing a

database.

