

Bakersfield Flower Shop
CS 3420 Spring 2020

Dr. Huaqing Wang

Group 4

Joseph Shafer

Matthew Gonzales

Jacqueline Peralta

1

Table of Contents

Phase 1: Data Collection and Conceptual Database Design 4
1.1 Fact-Finding and Data Collection 4

1.1.1 Introduction to Organization 5
1.1.2 Description of Fact-Finding Techniques 5
1.1.3 Scope of Database 6
1.1.4 Itemized Descriptions of Entity Types and Relationship Types 6

Descriptions of Entity Types 6
Description of Relationship Types 16

1.1.5 User Groups, Data Views and Operations 20
1.2 Conceptual Database Design 21

1.2.1 Entity Type Description 21
1.2.2 Relationship Type Description 36
1.2.3 Related Entity Types 44
1.2.4 E-R Diagram 45

Phase 2: Conceptual and Logical Database 47
2.1 E-R Model and Relational Model 47

2.1.1 Description of E-R Model and Relational Model 48
2.1.2 Comparison of Two Different Models 50

2.2 From Conceptual Database to Logical Database 51
2.2.1 Converting Entity Types to Relations 51
2.2.2 Converting Relationship Types to Relations 52
2.2.3 Database Constraints 58

2.3 Convert E-R Model to Relational Database 60
2.3.1 Relation Schema for our Local Database 60
2.3.2 Sample Data of Relation 68

2.4 Sample Queries to Our Database 94
2.4.1 Design of Queries 94
2.4.2 Relational Algebra for Queries of 4.1 94
2.4.3 Tuple Relational Calculus Expressions for Queries 96
2.4.4 Domain Relational Calculus Expressions for Queries 99

Phase 3: Relational Database Normalization and Implementation 102
3.1 Normalization of Relations 103

3.1.1 Normalization and Anomalies 103
3.1.2 Normal Forms for Bakersfield Flower Shop 108

2

3.2 Postgres Main Purpose and Functionality 116
3.3 Schema Objects Allowed in Postgres 116
3.4 Displaying Relations with SQL Commands 121
3.5 Queries in SQL 141

Phase 4: DBMS Procedural Language & Stored Procedures and Triggers 151
4.1 Postgres PL/pgsql 151

4.1.1 Introduction to PL/pgsql 152
4.1.2 Advantages of PL/pgsql 152
4.1.3 Control Statements and their Syntax 152
4.1.4 PL/pgSQL Syntax of VIEW, FUNCTION, PROCEDURE, TRIGGER 155

4.2 Views and Stored Subprograms of our Database 156
4.2.1 Views 156
4.2.2 Stored Procedures and/or Functions 160
4.2.3 Testing Results of Views, Functions and/or Procedures 165

4.3 Stored Function, Procedures, and Triggers of Three DBMS (Microsoft SQL, MySQL, and
Oracle) 168

4.3.1 Differences between languages T-SQL, SQL, PL/SQL 169
4.3.2 Similarities between T-SQL, SQL, and PL/SQL 169
4.3.3 Syntax of Stored Functions, Procedures, and Triggers of the Three DBMS 169

Phase 5: Graphic User Interface Design and Implementation 174
5.1 Functionalities and User group of the GUI application 174

5.1.1 Itemized descriptions of GUI application, and reports generated 175
5.1.2 Screenshots of the application 176
5.1.3 Tables, Views, Stored Subprograms, and Triggers Used 184

5.2 Programming Sections 195
5.2.1 Server-side Programming 195
5.2.2 Middle Tier Programming 201
5.2.3 Client-side programming 205

5.3 Survey Questions 207

3

Phase 1: Data Collection and Conceptual

Database Design
Our project’s focus will be to design a database system for Bakersfield Flowershop.

Prior to designing its database system, we will have to do research to determine the

business’s day to day operations which will give us the necessary knowledge to design

a database that will best serve Bakersfield Flowershop and their customers.

This phase of our database report will go into detail how we learned about our

organization and translated it into conceptual database design. We’ll talk about how we

identified the necessary entities to run a flower shop and the ways these entities interact

with each other. We will conclude this phase with a Entity-Relationship (ER) model to

visually explain our conceptual database design.

1.1 Fact-Finding and Data Collection

We, as the designers, need to have full understanding as to how our business operates.

This will allow us to accurately design a database that will suit our business’s needs.

This section will be about our research methods used to gather and collect information

about flower shops.

A brief description of the organization and an explanation of the research process will

be given. Itemized descriptions of the entities and relationships that build our design will

also be discussed.

4

1.1.1 Introduction to Organization

Bakersfield Flowershop is a fictitious flower shop for which we are designing a database

for. Flower shops supply customers with flowers, bouquets, and other floral

arrangements for all types of occasions. Additional services such as delivery are also

offered. Availability of certain flower products depends on the seasons. They are

handled with care and constantly maintained to ensure freshness to achieve customer

satisfaction.

Our customers will have the option to place an order online or in-person. They will also

have the option to create an account on our website or proceed with guest checkout.

Employees at our flower shop will take customers’ orders for our florists to fulfill them.

Delivery services are an option only for recipients living in Bakersfield.

1.1.2 Description of Fact-Finding Techniques

In order for our group to create the Database for Bakersfield Flowershop, we needed to

get a greater understanding of the business flow for a flower shop. We decided to

search for information from already established shops in the Bakersfield area. One of

our group members interviewed employees of Mt. Vernon Florist and managed to obtain

a better insight as to how they handle their orders, particularly those made in-person.

We also researched online and looked at several flower shops’ websites to learn more

about how online orders are handled.

In addition, we emailed surveys out to the owners of several flower shops in Bakersfield.

The list of questions we emailed to flower shops are as follows: If you have a database,

what kind of information do you store in your current database (i.e customer addresses,

phone numbers, ect)? If you do not currently have a database, what kind of information

would you want to keep track of? Do you have reports you generate, and what kind of

information is required to generate this report? If you do not, what kind of information

5

would you want in a report? What do you like about the design of your current website?

What don't you like and would you want to change? From the shops that responded we

learned valuable information that helped in the conceptual design of our database.

1.1.3 Scope of Database

Our database’s model represents what a Customer to Bakersfield Flowershop would

need to make orders of our products, and what an employee would need to fulfill those

orders. This includes designing a system for deliveries customers can make that store

employees can then fultill.

The end goal of the design of our database is to create a front end application that

customers can use to accomplish this. Our database will also model what an employee

of Bakersfield Flowershop needs to refill our products we sell to customers which we will

also integrate into our front end. The scope of our database is to cater to customers and

allow employees to smoothly do their job.

1.1.4 Itemized Descriptions of Entity Types and Relationship Types

Once all the information has been gathered on the structure and organization of the

company, the data will be represented as entity sets and relationship sets to create an

Entity-Relationship (ER) model. The entity and relationship sets will be explained in

further detail.

For each entity type, there will be a description of every attribute and an example has to

how each entity type relates to others. For each relationship set, the related entity types

and constraints of the relationship will be listed and an example of the relationship will

also be given.

Descriptions of Entity Types

Entity Name: Customer

6

Attribute:​ ​customer_id

Type: integer

Meaning: Unique number associated with each customer.

Instance: 12345

Attribute: name

Type: String

Meaning: Holds the customer’s name.

Instance: John Doe

Attribute: address

Type: String

Meaning: Holds the customer’s address.

Instance: 123 Main St. Bakersfield, CA 93301

Attribute: username

Type: String

Meaning: Holds the customer’s username

Instance: JohnDoe70

Attribute: password

Type: String

Meaning: Holds the hashed password of the customer.

Instance: gHje1J09pK

Attribute: email

Type: String

Meaning: Holds the customer’s email address.

Instance: JDoe70@email.com

Attribute: acc_creation_date

Type: Datetime

Meaning: Holds the date and time the account was created.

Instance: 10/20/2018 13:25:11

Attribute: phone_number

7

Type: String

Meaning: Holds the customer’s phone number.

Instance: (661)555-5555

A ​Customer ​visits our store to buy products or is able to make orders for products from

the Bakersfield Flowershop website.

Entity Name: Delivery Address

Attribute:​ ​address_id

Type: Integer

Meaning: Holds a unique id for each address for deliveries.

Instance: 0534701

Attribute: address

Type: String

Meaning: Holds the recipient’s address

Instance: “4615 Polo View Drive Bakersfield, CA, 93312”

An online customer inputs a ​Delivery Address​ for their product order.

Entity Name: Employee

Attribute:​ ​employee_id

Type: Integer

Meaning: Holds the employee’s unique id number.

Instance: 1191021

Attribute: name

Type: String

Meaning: Holds the employee’s name.

Instance: Jane Doe

Attribute: address

Type: String

Meaning: Holds the employee’s address

8

Instance: 181 24th St. Bakersfield, CA 93302

Attribute: phone_number

Type: String

Meaning: Holds the employee’s phone number.

Instance: (661) 555-5050

A ​Employee ​of the store’s responsibilities include taking orders from in-store

customers, packaging products for deliveries, and delivering orders.

Entity Name: Flower Product

Attribute:​ ​product_id

Type: Integer

Meaning: Unique id for each flower product

Instance: 101

Attribute:​ ​product_name

Type: String

Meaning: Holds the name of product/flower

Instance: “Rose”

Attribute: sell_price

Type: decimal

Meaning: Holds the current selling price of the product to the customer.

Instance: “9.99”

Attribute: purchase_price

Type: decimal

Meaning: Holds the price the product was purchased at from the supplier.

Instance: “2.99”

Attribute: color

Type: String

Meaning: Holds the color of the flower

Instance: “Red”

9

Attribute: length

Type: String

Meaning: Holds the length of the flower

Instance: “6 in.“

Attribute: product_image

Type: String

Meaning: Holds a filename to the image

Instance: “redrose.png”

Attribute: description

Type: String

Meaning: Holds a brief description of the product.

Instance: “A beautiful red rose, thornless.”

A ​Flower Product ​is a product available to customers of Bakersfield Flowershop.

Entity Name: Incoming Payment

Attribute: ​incoming_id

Type: Integer

Meaning: Holds the id associated with the transactions made online or in

the store.

Instance: “10039214”

Attribute:​ ​sales_tax

Type: Float

Meaning: Holds the percentage of sales tax charged in Bakersfield.

Instance: “8.25”

A ​Incoming Payment ​is a more specific payment related to customers paying

Bakersfield Flowershop for product orders.

Entity Name: Order Status

Attribute: status_id

10

Type: Integer

Meaning: Holds a unique id for each status.

Instance: “405392342”

Attribute: status

Type: String

Meaning: Holds the current order status.

Instance: “In Process”

Customers can check the ​Order Status ​to see the current status of their order.

Entity Name: Package

Attribute: ​package_id

Type: Integer

Meaning: A unique identifier for each package.

Instance: 14312

Attribute: expected_time

Type: Datetime

Meaning: The date and time a customer can expect their delivery.

Instance: 02/14/2020 11:30:00

Attribute: message

Type: String

Meaning: This will hold a message relating to the delivery.

Instance: “Happy Valentines Day!”

A ​Package ​is for a product order that is sent out of the store.

Entity Name: Payment

Attribute:​ ​payment_id

Type: Integer

Meaning: Holds a unique id associated with each transaction.

Instance: “190123411”

11

Attribute: date

Type: datetime

Meaning: Holds the date and time of the payment.

Instance: “02/14/2020 11:34:52”

Attribute: amount

Type: decimal

Meaning: Holds the amount paid.

Instance: “49.99”

A ​Payment​ is an exchange of money in Bakersfield Flowershop.

Entity Name: Payment Type

Attribute:​ ​payment_type_id

Type: Integer

Meaning: Holds a unique id for every form of payment.

Instance: “1”

Attribute: description

Type: String

Meaning: Holds the name of the payment type.

Instance: “Cash”

A ​Payment Type​ is the method of paying used for a Payment.

Entity Name: Product Order

Attribute:​ ​p_order_number

Type: Integer

Meaning: Holds an order number associated with the product order.

Instance: “109222341”

Attribute: date

Type: Datetime

Meaning: Holds the date and time the order was placed.

12

Instance: 02/10/2020 16:22:12

A ​Product Order​ is made by customers and contains items from Flower Products that

the customer has ordered.

Entity Name: Recipient

Attribute:​ ​recipient_id

Type: Integer

Meaning: Holds a unique id for every recipient.

Instance: “ 1001234483”

Attribute: name

Type: String

Meaning: Holds the recipient’s name.

Instance: “James Trickington”

Attribute: phone_number

Type: String

Meaning: Holds the recipient’s phone number.

Instance: “(661)555-0505

A ​Recipient ​is who receives a delivery.

Entity Name: Supplier

Attribute:​ ​supplier_id

Type: Integer

Meaning: Holds a unique id for each supplier.

Instance: “909011”

Attribute: vendor_name

Type: String

Meaning: Holds the name of the supplier.

Instance: “Flower Farm”

13

Attribute: address

Type: String

Meaning: Holds the address to the supplier.

Instance: 123 Flower Lane Arvin, CA 93203

Attribute: phone_number

Type: String

Meaning: Holds the supplier’s phone number.

Instance: “(661)505-0055”

A ​Supplier​ is who Bakersfield Flowershop purchases products from to then sell.

Entity Name: Outgoing Payment

Attribute: ​outgoing_id

Type: Integer

Meaning: Holds a unique id for transactions that occur with a supplier.

Instance: “99000123”

Attribute:​ ​supplier_invoice_id

Type: Integer

Meaning: Holds the suppliers invoice id.

Instance: “110092341”

An Outgoing​ Payment ​is a more specific type of payment, for when Bakersfield

Flowershop pays a supplier to refill our products.

Entity Name: Supply Purchase Order

Attribute: ​supply_purchase_id

Type: Integer

Meaning: Holds a unique id for each purchase from a supplier.

Instance: “100012413”

Attribute: supply_purchase_time

Type: Datetime

14

Meaning: Holds the date and time that a supply purchased was placed.

Instance: “02/11/2020 18:01:11”

A ​Supply Purchase Order​ is the purchase of products an employee makes to refill

products from a supplier.

Entity Name: Work History

Attribute: ​history_id

Type: Integer

Meaning: Holds a unique id of the employee work history.

Instance: “10003”

Attribute: start_date

Type: Datetime

Meaning: Holds the date the employee was hired”

Instance: “05/10/2018 00:00:00”

Attribute: end_date

Type: Datetime

Meaning: Holds the date the employee stopped working for the company.

Instance: “07/17/2019 00:00:00”

Attribute: job_title

Type: String

Meaning: Holds the employee’s job title.

Instance: “Sales Associate”

Attribute: pay_rate

Type: decimal

Meaning: Holds the employee’s current pay rate per hour.

Instance: “14.50”

Each employee has a ​Work History​ to track when they have worked for Bakersfield

Flowershop.

15

Entity Name: Work Shift

Attribute: ​shift_id

Type: Integer

Meaning: Holds a unique id of the shift workedd.

Instance: “10003”

Attribute: shift_date

Type: date

Meaning: Holds the date the employee worked”

Instance: “05/10/2018”

Attribute: start_time

Type: time

Meaning: Holds the starting time of an employees shift.

Instance: “08:00:00”

Attribute: end_time

Type: time

Meaning: Holds the ending time of an employees shift

Instance: “11:00:00”

An employee works a ​work shift​ during a specific date and time within bakersfield

flowershop.

Description of Relationship Types

Relationship name: ​Assigned

● Meaning: An employee is ​assigned ​to make a delivery.

● Related Entity Types: Employee, Delivery

● Cardinality: 1..M; Participation: Partial, Total

● Example of relationship: Employee bob is assigned to take a delivery for 3:00

PM.

16

Relationship name: ​Classifies

● Meaning: Payment type ​classifies ​how the customer has provided their

payment.

● Related Entity Types: Payment Type, Payment

● Cardinality: 1..M; Participation: Total, Total

● Example of relationship: Customer John made a payment using his credit card.

Relationship name: ​Contains

● Meaning: Product order ​contains ​a flower product.

● Related Entity Types: Product Order, Flower Product

● Cardinality: M..M; Participation: Total, Partial

● Example of relationship: Customer Jamie has made an order of two bouquets

one containing only roses and the other daffodils.

Relationship name: ​Has

● Meaning: A product orders ​has ​an order status.

● Related Entity Types: Product Order, Order Status

● Cardinality: 1..1; Participation: Total, Total

● Example of relationship: The order of Crimson Passion bouquet has an order

status which tells the customer that it is currently still in the process of making.

Relationship name: ​Makes

● Meaning: Customer ​makes ​a product order.

● Related Entity Types: Customers, Product Order

● Cardinality: 1..M; Participation: Partial, Total

● Example of relationship: Customer Ann makes an order of two Red Rose

bouquets.

Relationship name: ​Needs

17

● Meaning: A Supply Purchase Order ​needs ​Payment.

● Related Entity Types: Supply Purchase Order, Payment

● Cardinality: M..M; Participation: Total, Partial

● Example of relationship: We pay for Supply Purchase Order 144433 with $500.

Relationship name: ​Places

● Meaning: An Employee ​places ​a Supply Purchase Order.

● Related Entity Types: Employee, Supply Purchase Order

● Cardinality: 1..M; Participation: Partial, Total

● Example of relationship: Bakersfield Flowershop is low on Lilies so the employee

Francis creates a supply purchase order to refill them.

Relationship name: ​Processes

● Meaning: An employee ​processes ​product order.

● Related Entity Types: Employee, Product Order

● Cardinality: 1..M; Participation: Partial, Total

● Example of relationship: Employee Chris has processed a total of 5 orders this

morning.

Relationship name: ​Refills

● Meaning: A Supply Purchase Order ​refills ​flower products.

● Related Entity Types: Supply Purchase Order, Flower Products

● Cardinality: M..M; Participation: Total, Partial

● Example of relationship: The Supply Purchase Order refills our stock of red

roses.

Relationship name: ​Requires

● Meaning: Product order ​requires ​a payment from the customer.

● Related Entity Types: Product Order, Payment

18

● Cardinality: M..M; Participation: Total, Partial

● Example of relationship: The order of one Crimson Passion bouquet still requires

a payment before the florist may proceed to arrange it.

Relationship name: ​Satisfies

● Meaning: A Supplier ​satisfies ​a supply order.

● Related Entity Types: Supplier, Supply Purchase Order

● Cardinality: M..M; Participation: Partial, Total

● Example of relationship: Golden Valley Rose Distributors satisfies an order for

white roses.

Relationship name: ​Shipped To

● Meaning: A product order is ​Shipped to​ an address in the database.

● Related Entity Types: Product order, Delivery Address

● Cardinality: M..1; Participation: Total, Partial

● Example of relationship: Product order 12354453 is shipped to 1234 Elmo Street,

Bakerfield, CA, 93309.

Relationship name: ​Packed

● Meaning: A product order is ​Packed for ​a package.

● Related Entity Types: Product Order, Package

● Cardinality: 1..M; Participation: Partial, Total

● Example of relationship: An order of Red Roses is packaged and scheduled to

be delivered at 2:00 PM.

Relationship name: ​Sent To

● Meaning: A delivery is ​sent to​ a recipient.

● Related Entity Types: Delivery, Recipient

● Cardinality: M..1; Participation: Total, Total

19

● Example of relationship: A delivery is sent to Stacy Diamonds from her husband

Chad Diamonds.

Relationship name: ​Tracked By

● Meaning: The times an employee has worked for Bakersfield Flowershop is

tracked by ​their Work History.

● Related Entity Types: Employee, Work History

● Cardinality: 1..M; Participation: Total, Total

● Example of relationship: Employee George started working for Bakersfield

Flowershop on 01/03/2015 and quit 05/04/2017.

Relationship name: ​Works

● Meaning: An employee ​works ​a shift in Bakersfield Flowershop

● Related Entity Types: Employee, Work Shift

● Cardinality: 1..M; Participation: Total, Partial

● Example of relationship: The employee stacy ​works ​on July 14th as a cashier in

Bakersfield Flowershop.

1.1.5 User Groups, Data Views and Operations

The database for Bakersfield Flowershop will have three user groups. One will be for

customers, one is for the manager of the database, and one is for employees.

Separating what is accessible to each user ensures the information in our database is

secure, protected, and maintained.

The customers of Bakersfield Flower Shops interactions with the database will involve

their account information, viewing past orders, and creating new orders. Customers will

not have any direct interaction with the database, but only be able to access it through

what our website allows them to. Employees of our database will be able to view

customer orders, make orders with suppliers, and add new products as they are made.

20

They can also assist customers with account creation in store, but customers will be

unable to input sensitive information until they access our website and change their

login credentials. The manager will be able to insert information related to making new

employees, their histories, and the shifts employees work into the database.

1.2 Conceptual Database Design
Before creating a database, you must first figure out how your data will be stored. An

Entity-Relationship (ER) model will be used to represent the data we have collected and

the relationships they have.We can represent our data with two properties, an entity

which will represent an object such as our flower_product or employee and a

relationship which will show how different entities relate to each other.

Section 1.2 contains detailed information about the entity sets and relationships that are

part of our database scheme. For every entity, information is given for it primary key, the

type of entity is it and a table explaining all of its attributes. Similarly, for every

relationship, a description of the entity is given that explains its purpose, what entities

that it relates, and the multiplicities of the relationship. The section concludes with our

database E.R. model.

1.2.1 Entity Type Description

In a database an entity is a collection of data meant to model an object in our system.

Each entity has a descriptive name meant to generalize the kind of object it is and is

described by the attributes found in it’s fields. For example: one such entity in our

database is the Employee Entity. Each employee has a name, address, and phone

number that describe who this employee is. Due to possible collisions in data we also

have a generated id associated with each of the employees to uniquely identify them.

21

This section will go into detail of each of the entities in our conceptual database and

their respective attributes. We will go over it’s chosen name, whether it is a strong or

weak entity type, the Primary key of the entity to identify each instance, and a

description of the entity and what it represents. Each entity also has a table of attributes

and descriptive traits for each.

Entity Name: ​Customers

Entity Type: ​Strong

Primary Key: ​Customer ID

Description: ​The purpose of the customer entity is to store information about the

customers who purchase flowers from the website. This entity will contain common

information such as the customer’s name, email address, street address, phone

number, as well as a username, password, and date the account was created.

The customer entity will have frequent insertions of new tuples because new

customers could make a purchase at any time. Updates will be somewhat frequent as

the customer can change addresses, phone numbers, passwords, and sometimes email

addresses. Deletion of tuples will be very infrequent and only occur after an error has

occurred.

Attributes:

Attribute Name customer_id name address username

Description Used to uniquely
identify the
customers of the
shop.

Name of a
customer (First,
Middle, Last).

Customer’s
street address,
city, state, and
zip code.

The username of
a customer's
account.

Domain/Type Integer Varchar,
Varchar, Varchar

Varchar,
Varchar,
Varchar, Integer

Varchar

Value/Range All positive n-digit
numbers

Any, Any, Any Any, Any, Any,
00000-99999

Any

Default Value None None None None

Null Value Allowed No No No No

22

Unique Yes No No Yes

Single or
Multi-value

Single Single Single Multi

Simple or
Composite

Simple Composite Composite Single

Customer Continued…

Attribute Name password email acc_creation_
date

phone_number

Description This will contain a
hash of the users
password.

This holds the
email of the user
and will be used
to update the
customer on the
status of their
order.

This will hold
the date the
account was
created.

This will hold the
phone number of
the customer in
case they need
to be contacted
in regard to their
order.

Domain/Type char[64] Varchar Date Varchar

Value/Range [a-z][0-9] valid in
size of char

All valid email
addresses

All dates All valid phone
numbers

Default Value None None 01/01/1970 (000)000-0000

Null Value Allowed No No No No

Unique Yes Yes No No

Single or
Multi-value

Single Single Single Multi

Simple or
Composite

Simple Simple Simple Simple

Entity Name:​ Package

Entity Type:​ Strong

Primary Key:​ package_id

Description:​ The delivery entity represents each delivery made by our company to the

recipient. This entity has three attributes, package id, expected delivery time, and

message. Each id will be used for each package being delivered, expected delivery time

23

will hold when the package is expected to be delivered to the recipient, and the

message attribute will hold the message that will accompany the flower order.

Insertions will be very frequent as many customers prefer to have the flowers

delivered. Updates will be semi-frequent as the expected delivery time may change or

the customer may request to change their message. Deletions will be very rare.

Attributes:
Attribute Name package_id expected_delivery_time message

Description Unique ID for each
package delivered by
employees to recipients.

This will display when the
customer can expect the
delivery to arrive.

This will hold a message
related to the delivery

Domain/Type All positive n-digit
numbers

datetime varchar

Value/Range All All valid datetimes Any

Default Value 00000000000 01/01/1970 00:00:00 None

Null Value
Allowed

No No Yes

Unique Yes No No

Single or
Multi-value

Single Multi Single

Simple or
Composite

Simple Simple Simple

Entity Name:​ Delivery Address

Entity Type:​ Strong

Primary Key:​ address_id

Description:​ The Delivery address entity represents addresses Bakersfield Flower

Shop will deliver too. It will store as a composite attribute the addresses input from

customers and employees where product orders will be delivered.

This entity will keep all addresses input from our front end and instances of the

entity will only be removed under special circumstances, like a customer requesting an

address be removed from the database. The entity will keep a record of all addresses

input.

24

Attributes:
Attribute Name address_id address

Description This is an id to uniquely identify
addresses.

The street address, city, state, and zip
code where product orders will be
delivered to.

Domain/Type All positive n-digit numbers Varchar, Varchar, Varchar, Integer

Value/Range All Any, Any, Any, 00000-99999

Default Value 00000000000 None

Null Value
Allowed

No No

Unique Yes No

Single or
Multi-value

Single Multi

Simple or
Composite

Simple Composite

Entity Name:​ Employee

Entity Type:​ Strong

Primary Key:​ employee_id

Description:​ The employee entity represents each unique employee that is currently

employed by the company. This entity stores information about the individuals who work

for the company. This entity will include some basic information such as the employee’s

name, address, and phone number and the employee’s id number.

The employee entity will have frequent insertions due to hiring new employees

and having to input their data into the database.Updates will be frequent because an

employee may change addresses or phone numbers during their employment.

Deletions may also be somewhat frequent because when an employee quits or is fired,

the company may no longer need their information.

Attributes:
Attribute Name employee_id name address phone_number

Description This is an id
number used to

This contains
the employee’s

The current
address of the

The current
phone number of

25

distinguish
employees from
each other.

full legal name.
(First, Middle,
Last)

employee which
includes street
address, city, state,
and zip code.

the employee.

Domain/Type Integer varchar,
varchar,
varchar

varchar, varchar,
varchar, Integer

varchar

Value/Range All positive n-digit
numbers

All names Any, Any, Any,
00000-99999

All valid phone
numbers

Default Value 00000 None None “(000)000-0000”

Null Value Allowed No No No No

Unique Yes No No No

Single or
Multi-Value

Single Single Single Single

Simple or
Composite

Simple Composite Composite Simple

Entity Name:​ Flower Product

Entity Type:​ Strong

Primary Key:​ product_id

Description:​ This entity represents each flower product that can be added to the order.

This is an important entity in our diagram as it is the only product being sold through our

website. It will hold information on the type of flower, the flower name, current selling

price, and the price it was purchased at from suppliers.

Attributes:
Attribute Name product_id product_name sell_price purchase_price

Description An id that
identifies each
of the products
sold by the
shop.

The name of the
product/flower

Current selling
price of the
product to
customer

Price purchased at from
the supplier.

Domain/Type Integer Varchar decimal decimal

Value/Range All n-digit
numbers

All flower names All positive
values

All positive values

26

Default Value 0000000000 None 0.00 0.00

Null Value
Allowed

No No No No

Unique Yes Yes No No

Single or
Multi-value

Single Single Multi Multi

Simple or
Composite

Simple Simple Simple Simple

Flower Product Continued…

Attribute Name color length product_image description

Description The color of the
specific flower
product.

The length of
the flower
product.

An image of the
product.

A brief
description of the
flower product

Domain/Type Varchar Varchar Varchar Varchar

Value/Range All valid colors All positive
lengths

All valid image files Any

Default Value White None None Flower

Null Value Allowed No No Yes No

Unique No No No No

Single or
Multi-value

Single Single Single Single

Simple or
Composite

Simple Simple Simple Simple

Entity Name:​ Incoming Payment

Entity Type:​ Strong

Primary Key:​ incoming_id

Description:​ This entity will contain a sell id that is unique to each sale and the current

sales tax for the city of Bakersfield. This is a child entity resulting from the disjunction on

27

the Payment Entity. This table tracks transactions involving sales between the store and

customers.

Attributes:
Attribute
Name

incoming_id sales_tax

Description Id associated with transactions that occur
from sales within the store or on our website.

The percentage of sales tax charged
in Bakersfield.

Domain/Type Integer Float

Value/Range All positive n-digit numbers 0.0-100.0

Default Value 000000000000 0.0

Null Value
Allowed

No No

Unique Yes No

Single or
Multi-value

Single Multi

Simple or
Composite

Simple Simple

Entity Name:​ Order Status

Entity Type:​ Strong

Primary Key:​ status_id

Description:​ The purpose of the status entity is to indicate how far along an order is.

There will be a brief description about the status and the date.

Attributes:

Attribute Name status_id description

Description A unique id to each description of
status for orders.

This will store the current status of the order.

Domain/Type Integer Varchar

Value/Range All n-digit numbers Any

Default Value 000000 None

Null Value No No

28

Allowed

Unique Yes No

Single or
Multi-value

Single Single

Simple or
Composite

Simple Simple

Entity Name:​ Payment

Entity Type:​ Strong

Primary Key:​ payment_id

Description:​ The purpose of this entity is to hold information about base payment used

for an order. The information held in this entity is basic information about the payment

such as the date and the amount paid.

For this entity there will be frequent insertions because it will track all payments

from every customer. Updates will not occur unless a customer decides to add on to

their order. Deletions will only occur if a customer cancels their order.

Attributes:

Attribute Name payment_id payment_time amount

Description A unique id associated
with each transaction
that occurs both in store
and on the website.

The date and time a
payment occurs.

The total amount paid
for the transaction.

Domain/Type Integer Datetime decimal

Value/Range All positive n-digit
numbers

All valid datetimes All positive values

Default Value None 01/01/1970 00:00:00 None

Null Value Allowed No No No

Unique Yes No No

Single or
Multi-value

Single Single Single

Simple or Simple Simple Simple

29

Composite

Entity Name:​ Payment Type

Entity Type:​ Strong

Primary Key:​ payment_type_id

Description:​ The payment type entity is used to track the different forms of payment

used by customers. It will contain a payment type id and a description of the payment

used.

Payment type id will be a unique id for every possible form of payment, such as

cash, check, or credit card. The description attribute will store the actual name of the

payment as it relates to the id number.

Attributes:
Attribute Name payment_type_id description

Description Unique Id for each of the possible
forms of payment transaction could
be.

Name of the type of payment for a
transaction.

Domain/Type Integer Varchar

Value/Range All positive n-digit numbers Any

Default Value 00000000 None

Null Value Allowed No No

Unique No Yes

Single or
Multi-value

Single Single

Simple or
Composite

Simple Simple

Entity Name:​ Product Order

Entity Type:​ Strong

Primary Key:​ p_order_number

30

Description:​ The purpose of this entity is to keep track of each purchase made through

the website and storefront. It contains two attributes, an order number and a datetime

for when the order was placed.

There will be frequent insertions as new orders will be constantly coming in, but

an order will only be deleted if an order is cancelled by the customer. There may be

some updates to the order, such as when a customer wants to change the type of

product being added or removed from the order.

Attributes:
Attribute Name p_order_number order_time

Description An order number associated with
the product order.

The date and time the order was placed.

Domain/Type Integer Datetime

Value/Range All positive n-digit numbers All valid datetimes

Default Value 00000000 01/01/1970 00:00:00

Null Value Allowed No No

Unique Yes No

Single or
Multi-value

Single Single

Simple or
Composite

Simple Simple

Entity Name:​ Recipient

Entity Type:​ Strong

Primary Key:​ recipient_id

Description:​ The purpose of this entity is to keep track of to whom the order is going to.

It contains an id for the recipient, as well as their name, address, and phone number.

There will be frequent insertions as customers may want to have the product

delivered to a specific person throughout the year. Deletions will be very infrequent and

31

updates will be somewhat frequent as a recipient can change addresses or phone

numbers.

Attributes:
Attribute Name recipient_id name address phone_number

Description An id number that
is unique to each
recipient.

The recipient’s
name.

The recipient’s
address.

The recipient’s
phone number.

Domain/Type integer Varchar Varchar Varchar

Value/Range All positive n-digit
numbers

Any All valid addresses All valid phone
numbers

Default Value 000000000 None None “(000)000-0000”

Null Value Allowed No No No No

Unique Yes No No No

Single or
Multi-value

Single SIngle Multi Multi

Simple or
Composite

Simple Composite Composite Simple

Entity Name:​ Supplier

Entity Type:​ Strong

Primary Key:​ supplier_id

Description:​ The purpose of this entity is to record information about the companies

supplying flower products to our company. These suppliers will typically be purchased

from flower farms. This entity will hold the suppliers id, name, address, and phone

number.

Insertions will be infrequent since adding a new supplier will only happen when

we purchase new flowers from a new farm. Updates will be infrequent as well since

farms may rarely change locations. A deletion would not occur very often if at all.

Attributes:
Attribute Name supplier_id vendor_name address phone_number

Description A unique id for
each supplier.

The name of
the supplier.

The supplier’s
current address.

The supplier’s
current phone

32

Name
identifies
company, not
person’s
name.

number.

Domain/Type integer varchar Varchar, varchar,
varchar, Integer

varchar

Value/Range All positive n-digit
numbers

Any Any, Any, Any,
00000-99999

All valid phone
numbers

Default Value 000000 None None (000)000-0000

Null Value Allowed No No No No

Unique Yes No No No

Single or
Multi-value

Single Single Multi Multi

Simple or
Composite

Simple Simple Composite Simple

Entity Name:​ Outgoing Payment

Entity Type:​ Strong

Primary Key:​ buy_id

Description:​ The purpose of the outgoing payment entity is to record all the payment

made to the suppliers. This entity will have two attributes, buy id and supplier invoice id.

Insertions will be frequent as our flower shop will constantly be ordering flowers

to keep inventory fresh. Deletions will only occur when a payment has been cancelled

and updates will be non-existent.

Attributes:
Attribute Name outgoing_id supplier_invoice_id

Description A unique identifier for transactions
that occur between Bakersfield
Flowershop and suppliers.

The suppliers invoice id we apply
payment to.

Domain/Type Integer Integer

Value/Range All positive n-digit numbers All positive n-digit numbers

Default Value 0000000000 None

33

Null Value Allowed No No

Unique Yes No

Single or
Multi-value

Single Single

Simple or
Composite

Simple Simple

Entity Name:​ Supply Purchase Order

Entity Type:​ Strong

Primary Key:​ supply_id_purchase

Description:​ The purpose of this entity is to keep track of all purchases made from the

suppliers. This entity will contain the supply purchase id and the date and time the

purchase was made.

This entity will be frequently updated as purchases from the supplier are made.

Deletions will only happen when an order is cancelled by us. Updates will not happen.

Attributes:
Attribute Name supply_purchase_id supply_purchase_time

Description A unique id for each purchase
from the supplier.

The date and time the Supply Purchase
Order was placed.

Domain/Type Integer Datetime

Value/Range All positive n-digit numbers All valid date times

Default Value 00000000 01/01/1970 00:00:00

Null Value Allowed No No

Unique Yes No

Single or
Multi-value

Single Single

Simple or
Composite

simple simple

Entity Name:​ Work History

Entity Type:​ Strong

34

Primary Key:​ history_id

Description:​ This entity will hold the work history of each individual employee hired by

our company. It will contain a unique id, the start_date and if the employee has quit, an

end date. It will also contain that employee’s job title and salary.

With the employee entity, we can track when a specific employee has started

working and for how long they have been with the company. The job title will store what

the worker’s current position within the company is and the pay rate will be the

employee’s current salary.

Attributes:
Attribute Name history_id start_date end_date job_title pay_rate

Description Unique
identifier of
employee work
history.

This will track
when an
employee
began working
for our flower
shop.

This will
store when
an
employee
has stopped
working for
us.

This stores the
various job titles
for all
employees.

This will store
the current
pay rate of
each
employee.

Domain/Type Integer Datetime Datetime varchar decimal

Value/Range All positive
n-digit
numbers

All valid dates All valid
dates

Any All positive
values

Default Value 00000 01/01/1970
00:00:00

Null Cashier 13.00

Null Value
Allowed

No No Yes No No

Unique Yes No No No No

Single or
Multi-value

Single Single Single Single Single

Simple or
Composite

Simple Simple Simple Simple Simple

Entity Name:​ Work Shift

Entity Type:​ Strong

Primary Key:​ history_id

35

Description:​ This entity will hold the day that an employee will work in Bakersfield

Flower Shop. It will contain a shift_id to identify the shift uniquely. There will be a

column to identify the date they will work in the store, a column that identifies the

starting time of their shift, and a column identifying the ending time of their shift.

In future phases of our document we will go over how this will reference the

employee entity and allow our store to assign employees to shifts easily. With this table

it will be used to simplify scheduling for a store.

Attributes:
Attribute Name Shift_ID shift_date begin_time End_time

Description Unique identifier of
the shift an en
employee is
working.

Day Employee
works

Starting time of the
shift

Ending time of the
shift

Domain/Type Integer date time time

Value/Range All positive n-digit
numbers

All valid dates All valid times All valid times after
begin_time

Default Value 00000 01/01/1970
00:00:00

Null Null

Null Value
Allowed

No No No No

Unique Yes No No No

Single or
Multi-value

Single Single Single Single

Simple or
Composite

Simple Simple Simple Simple

1.2.2 Relationship Type Description

Relationships illustrate how entities are related with one another. Relationships help

describe how two different entities will interact with each other and why they may be

36

important to another entity in the database. Relationships may have an attribute that

helps describe how the entities are connected.

In this section, we detail each relationship type in our conceptual database by listing the

following: a description of the relationship types’ purpose and the entities involved,

mapping cardinality, descriptive field, and participation constraints

Relationship​: Assigned

Description​: An employee will be assigned to make deliveries. Employees can also

take numerous orders, so they can make more than one delivery before returning back

to the flower shop.

Entity Sets Involved​: Employee, Delivery

Mapping Cardinality​: 1..M

Descriptive Field​: None

Participation Constraint​: Partial participation for Employee. Total participation for

delivery. Each delivery must be made by an employee, but there are only some

employees designated to make these deliveries.

Relationship​: Classifies

Description​: A customer can purchase flowers with a debit/credit card, cash or check.

Payment type will classify how the customer has provided their payment. Payments are

also done by employers when doing a supply purchase order.

Entity Sets Involved​: Payment Type, Payment, Product Payment, Supply Payment

Mapping Cardinality​: 1..M

Descriptive Field​: None

Participation Constraint​: Total participation for both Payment Type and Payment.

Payment type is recorded only when a payment has been made. For every payment

made, the type of payment that is used should be identified.

37

Relationship​: Contains

Description​: As a flower shop, every one of our product orders will contain a flower

product. A customer can choose a variety of flower products to be made into a flower

arrangement of their choice. The price at which those flower products were sold will

allow for customers to find other flower products at equivalent price in case something

goes wrong with the flowers they initially purchased. In the case of refunds, no more or

less of the amount used to purchase will be refunded.

Entity Sets Involved​: Product Order, Flower Product

Mapping Cardinality​: M..M

Descriptive Field​: quantity_item, point_of_sale_price

Participation Constraint​: Total participation for Product Order. Partial participation for

Flower Product. There will be flower products that have yet to be ordered. Meanwhile,

every order will have a flower product.

Relationship​: Has

Description​: Product orders all have an order status. Order status will let customers

know when their payment has been received and when their order is in process. In

general, it will let customers know at what stage their orders are in up until it is ready to

be delivered or to be picked up by the customer. An order status may be updated for

more than one product order if it is made by the same customer.

Entity Sets Involved​: Order Status, Product Order

Mapping Cardinality​: 1..M

Descriptive Field​: time_updated

Participation Constraint​: Total participation for both Order Status and Product Order.

Every order status must be associated with a product order that has been made. If there

is no order status, then there is no product order. Every product order must have an

order status.

Relationship​: Makes

38

Description​: Customers will have the option to make an order either through our

website or in-store, and they can also make multiple orders. No matter what method a

customer chooses to make an order, all orders are associated with the same customer

based on the personal information they have provided.

Entity Sets Involved​: Customers, Product Order

Mapping Cardinality​: 1..M

Descriptive Field​: None

Participation Constraint​: Partial participation for Customers. Total participation for

Product Order. There may exist customers who have not made an order. Every product

order, however, must be linked to a customer.

Relationship​: Needs

Description​: A supply purchase order needs payment. The payment can only be done

by an employee. Multiple payments can be made for more than one supply purchase

order.

Entity Sets Involved​: Supply Purchase Order, Payment

Mapping Cardinality​: M..M

Descriptive Field​: supply_purchase_id, date

Participation Constraint​: Total participation for Supply Purchase Order. Partial

participation for Payment. To purchase more supply of flower products, a payment is

always needed. Payment may not be for a supply purchase order, but for a product

order done by a customer.

Relationship​: Places

Description​: An employee will place a supply purchase order. Multiple flower products

can be close to or completely out of stock. One employee can make more than one

supply purchase order as suppliers only carry a certain number of flower types.

Entity Sets Involved​: Employee, Supply Purchase Order

Mapping Cardinality​: 1..M

39

Descriptive Field​: None

Participation Constraint​: Partial participation for employees. Total participation for

Supply Purchase Order. Not every employee in our flower shop has made a supply

purchase order. All supply purchase orders, on the other hand, need to be placed by an

employee.

Relationship​: Processes

Description​: A single employee can process more than one product order. There can

be more than one product order being processed by a single employee but no two or

more employees can process the same product order.

Entity Sets Involved​: Employee, Product Order

Mapping Cardinality​: 1..M

Descriptive Field​: None

Participation Constraint​: Partial participation for Employee. Total participation for

Product Order. Not all employees are assigned to process a product order, but every

product ordered must be processed by an employee.

Relationship​: Refills

Description​: A supply purchase order refills the flower products. Since the condition

and availability of certain flowers depends on the weather, multiple supply purchase

orders are made because a supplier may not have all the flower products that are

needed to restock.

Entity Sets Involved​: Supply Purchase Order, Flower Product

Mapping Cardinality​: M..M

Descriptive Field​: quantity_item, supply_price

Participation Constraint​: Total participation for Supply Purchase Order. Partial

participation for Flower Product. When a supply purchase order is made for a flower

shop, it must be refilling a flower product. A flower product can exist without having yet

been refilled.

40

Relationship​: Requires

Description​: To proceed with an order, a payment is required from the customer. In

addition, a customer may choose to pay part of their order with a card and then the rest

with cash. Multiple payments can be used to pay for one or more product orders.

Entity Sets Involved​: Product Order, Payment

Mapping Cardinality​: M..M

Descriptive Field​: None

Participation Constraint​: Total participation for Product Order. Partial participation for

Payment. For all product orders, a payment is required. Not all payments made will be

for a product order but could for a supply purchase order.

Relationship​: Satisfies

Description​: When a supply purchase order is made, a supplier will be the ones to

satisfy that purchase. One supplier could satisfy more than one supply purchase order.

Entity Sets Involved​: Supplier, Supply Purchase Order

Mapping Cardinality​: M..M

Descriptive Field​: None

Participation Constraint​: Partial participation for Supplier. Total participation for

Supply Purchase Order. Every supply purchase order made must be linked to a

supplier. A supplier may exist but have not yet satisfied a supply purchase order.

Relationship​: Packed

Description​: The product order schedules a delivery. A customer may have flowers

delivered at the time and date of their choosing to more than one recipient. This may all

be done within the same order. Also, there could be a failed attempt at delivery, so a

new delivery is set for the same product order.

Entity Sets Involved​: Product Order, Package

Mapping Cardinality​: 1..M

41

Descriptive Field​: None

Participation Constraint​: Partial participation for Product Order. Total participation for

Packed. Customers may choose to pick up their orders, so not all product orders are

needed to be delivered. A Package, on the other hand, must be associated with a

product order.

Relationship​: Sent To

Description​: A delivery is sent to a recipient. Multiple deliveries can be made to a

single recipient. Separate individuals may have flowers or other flower arrangements

sent to the same individual, thus multiple deliveries will be made to a single recipient .

We can verify it is the same recipient by their personal information.

Entity Sets Involved​: Delivery, Recipient

Mapping Cardinality​: M..1

Descriptive Field​: None

Participation Constraint​: Total participation for both Delivery and Recipient. Every

delivery requires a recipient. There is no need for a delivery to be made if there is no

intended recipient. Each recipient is expected to have a delivery be made to them. A

recipient is not recorded if the customer has chosen to pick up the order themselves.

Relationship: Shipped To

Description​: Product orders in our database are shipped to an address saved in our

database. Our front end will collect this data from customers who have accounts online,

and employees will also collect this information from customers if they make an in store

order that is going to be scheduled for delivery. This will allow Bakersfield Flowershop to

save frequent delivery addresses and where many product orders go to.

Entity Sets Involved​: Product Order, Delivery Address

Mapping Cardinality: ​M..1

Participation Constraint​: Total participation for Delivery addresses and partial

participation for product order. Every Delivery address will have a product order

42

associated with it, but not every product order has a delivery address. Some product

orders are in store orders so a delivery address is not needed.

Relationship​: Tracked By

Description​: Every employee is tracked by a work history. In case an employee quits

and/or returns, their work history would already be stored. This may help them in

obtaining old or new positions at the flower shop or to simply confirm their work

experience. It will also let the flower shop keep track as to who is doing what. If

something happens, we may turn to the right employee to ask the questions.

Entity Sets Involved​: Employee, Work History

Mapping Cardinality​: 1..M

Descriptive Field​: None

Participation Constraint​: Total participation for both Employee and Work History.

Every employee will have a work history, as well as every work history must be

associated with an employee. A work history doesn’t exist without being linked to an

employee.

Relationship​: Works

Description​: Describes the relationship between an employee and the shift that they

are working. Each employee is able to work a work_shift within the store. This

relationship helps for when a manager would like to schedule employees and they don’t

have to manually enter an employee each time, as the future design of the front end will

show them the currently working employees.

Entity Sets Involved​: Employee, Work Shift

Mapping Cardinality​: 1..M

Descriptive Field​: None

Participation Constraint​: Total participation for work_shift but partial participation for

employees. In general it will appear as if employees are total, but there are situations in

43

which an employee will never appear in the relationship. If an employee is added to the

store but they quit before being given a work shift they will never appear in work_shift.

1.2.3 Related Entity Types

Specialization is to essentially take an already existing entity and then create another

entity from the one you have that has all the same attributes, in addition to its own set of

attributes. In our own conceptual database model we have an Entity for payments, and

we have two entities extending this for product payments and supply payments.

Performing generalization on entities is to do the opposite. Generalization is when you

have multiple entities that have some of the same attributes, so you take the similar

attributes and you create an entity to hold these same attributes. The entities before

combination will still have their unique attributes, but they will inherit the attributes they

shared from this new generalized entity. We considered making multiple entities for the

different types of products that will be sold by Bakersfield Flowershop, like a Rose

entity, Daisy entity, and Bouquet entity, then generalizing them to inherit from the

Flower Product table. During the course of our design we decided it simplified our

design to have fields for length, color, and name of flower within the products table

instead of splitting them up in this way.

Specializations and generalizations can also be discussed in terms of a “IS-A”

relationship. In our database an instance of a Product Payment “IS-A” instance of a

Payment, but payments for products have sales tax so it required a separation. Not

every transaction that occurs in Bakersfield Flowershop has sales tax, only the sale of

products to our customers.

There are two kinds of constraints on specialization and generalizations, which are

participation and disjointedness. The disjointedness constraint specifies entities that

share attributes with their parent entity, aside from a unique attribute that is not shared

44

with the parent entity. Participation is a constraint that specifies if an entity must be a

child entity. The possible values for participation are total and partial, where total means

that the entity must also be one of the children entities, and partial means that it may

also be a child entity but it does not have too.

Aggregation is an abstraction concept where you build an object from component

objects. This can be used to describe attributes combining to define an entity, a

relationship between two entities that are tightly coupled, or also describe how multiple

entities interact when they work together to describe one thing. This can also be

described as a “HAS-A” relationship. In our design we have entities Order and Order

Status, and payment. An order HAS-A order status, and an order HAS-A payment. This

all describes an order at Bakersfield Flowershop being completed, but each entity is

responsible for describing one part of the process.

1.2.4 E-R Diagram

An E-R Diagram is used to visually represent entities and the relationships between

them. Entities are represented by the boxes with light blue headers. The relationship is

denoted by the lines between entities.

The cardinality of a relationship is described by “1” and “M.” “1” next to an entity denotes

the entity on the other end of the relationship is related to one instance of that entity. An

“M” next to an entity denotes that there could be multiple instances of this entity related

to the entity on the other side of the relationship. Each relationship is described by a

combination of these two: 1:1 (one-to-one), 1:M (one-to-many), M:1 (many-to-one), M:M

(many-to-many). Between each of these relationships is a description for the way these

entities interact.

See next page for diagram.

45

46

Phase 2: Conceptual and Logical

Database
Phase two focuses on the conversion of the Flower Shop database from the ER model

to the Relational model. The relational model is another useful modeling tool for

database design. Converting from the ER model to the Relational model helps ensure

that a DBMS will be able to function with its data when the relational model is converted

to an actual database.

Section 2.1 will give introductory information on these models, and will document the

common techniques for the conversion of the ER model to the Relation model and

presents our own database using relations. Section 2.2 will go over the conversion of

entities and relations in our ER model to a Relational Model. Section 2.3 will focus on

defining the relations in the Flower Shop with examples of those relations and their

data. Section 2.4 will cover our database relations with ten sample queries.

2.1 E-R Model and Relational Model

An E-R model is used to show the relation between entities in our database in a

conceptual way. A relational model represents our entities in tuple format and how the

data within tables interact in a more direct way. [Probably need 1 more sentence]

Section 2.1.1 will go into detailed descriptions of E-R Model and Relational Models.

Section 2.1.2 is going to discuss the similarities and differences between these two

models. They are both tools to show the design of a database but each one is better at

conveying different ideas in databases. Section 2.1.2 will go over the trade-offs of using

one versus the other.

47

2.1.1 Description of E-R Model and Relational Model

Understanding the background of the models we use in database design is important to

understanding why we use them. Prior to the ER model and Relational model there

were many ways companies designed databases. The models they used may have

made sense for their company only, but they did not have as strong of a foundation as

the ER and relational models do.

This section will be about the background of the ER model and the Relational model. It

will go over their history, what they are, their major features, and for what purposes they

can be used for.

History

Dr. Peter Pin-Shan Chen first introduced the E-R model in 1976 in a paper titled “The

Entity-Relationship Model: Toward a Unified View of Data” with the goal of defining a

way to represent real world objects, ideas, and their relations in a natural way that could

be translated to a database. His paper goes into details about how entity sets and value

sets those entities contain, as well as defining the cardinality relations can take on; such

as one-to-one, one-to-many, many-to-many, ect.

The relational model was invented by Edgar F. Codd in 1970 while he was working at

IBM. Prior to Codd’s invention of the relational model databases did not have set

standards for implementation. With his idea representing data in databases could be

approached using principles of logic and mathematics. Codd’s model provided a way to

design databases that could then be translated almost directly to any database

management system.

What the Model Is

48

Chen’s E-R model idea is primarily concerned with the visual representation of entities

and relations. It can be used to easily explain how data interacts to people who do not

work on databases everyday. The appeal of his model is it’s simplicity and readability

and makes designing a database accessible for non-technically inclined people.

The relational model is mainly for designing a database prior to implementing it into a

database management system. The relational model can have the operations defined in

relational mathematics done to them the same way a database management system

can. It is a useful tool for those who plan to implement a database.

Major Features

The major features of the ER model are Entities, relations described by their

cardinalities, and descriptions of the relation between entities. The ER model represents

these visually to help describe a database in the planning phase of it’s design. It is not

concerned with the allowed values of data types, as it leaves that to the relational

model.

Major features of the relational model are relations. Relations are essentially a table of

values, or a flat file of data. Using relations you can model a full database. A relation is

made up of attributes and tuples, with attributes being constrained by a domain of

values. Attributes describe data found within the relation and a tuple is a collection of

attributes.

Purpose of the Models

The purpose of these models is to give ways to describe databases. An ER model helps

create a bridge for a business owner to understand what their database needs, and a

relational model is a way to model what the database will look like prior to implementing

it into a database management service. ER model is simple and easy to understand,

49

and a relational model is descriptive enough to model a database, but generalized

enough to be translated to any database management service.

2.1.2 Comparison of Two Different Models

Both the ER model and Relational model are useful, but they have different strengths.

The ER model is used primarily for its ease to understand. It provides a visual medium

for business people to see how the entities in the database relate to each other. It’s a

useful design tool that can map a database quickly and be understood easily. It’s best to

use as a first step in database design as the designer does not have to be concerned

with implementation details and can focus on creating entities and mapping out how

they relate. The disadvantage of the ER model is that it does not directly translate to a

database as easily as the relational model. It is easily understood by humans, but it’s

method of modeling does not translate perfectly to the strict logic of computers.

The relational model is also a useful tool for designing databases but has different

strengths. It is more strict than the ER model in what it allows to be modeled using it, as

it’s end goal is to be able to be translated to a DBMS. Modeling a database using the

relational model constrains the designer into ensuring the database can be modeled

using principles of logic and mathematics. Doing this allows query languages to perform

operations on relations. The disadvantage of using the relational model is it is hard to

understand for people not already familiar with the model. It is easily translated to any

DBMS, but difficult for the general human to understand.

The models do have similarities. They can both express ideas of a database, but do so

in different ways. The ER model has entities and relationships, while the relational

model only has the relation. The relationships described by the ER model can be

expressed in the relational model, it is just not as easy to understand. The ways you can

convert the ER model’s relationships and entities will be discussed in the next few

50

subsections. They are similar enough that one model can be converted to the other and

vice versa.

2.2 From Conceptual Database to Logical Database

In this section, entity types and relation type from the E.R. model will be converted into

relations for use in a logical database. Many different methods can be used to complete

this process depending on the mappings.

This section will cover methods used to convert Entities to relations 2.2.1. It will also go

over how to convert the different relationship types that exist in the ER model into

relations in 2.2.2. The last section 2.2.3 will go over the different constraints that

databases must follow.

2.2.1 Converting Entity Types to Relations

The ER model helped to set the groundwork of the business our database needs to

represent and can easily be converted to the relational model. The ER model uses

entities and relationships to model data and how the data interacts. The relational model

uses only relations to represent a database.

Every entity from the ER model will be converted into a relation. Every attribute in an

entity from the ER model will be an attribute in the corresponding relation in the

relational model. Each relation will contain a primary key to uniquely identify it. This

section will go over the ways Entities from the ER model can be converted to relations.

Strong Entity Type Conversion

To convert a strong entity type E from an ER model to relational model create a relation

R that includes all the simple, single value, attributes from E. An attribute in R that can

be used to uniquely identify each tuple should be designated as the primary key

51

attribute for R. If the converted entity E had a multi-value attribute the attribute must be

converted to multiple simple attributes in the relation.

Weak Entity Type Conversion

Weak entity conversion follows much of the same principles of the strong entity

conversion. For each weak entity type W from the ER model with the owner entity type

E create a relation R with all the simple attributes (including composite attributes broken

down into simple attributes) of E. Choose an attribute in R that can uniquely identify

each tuple and designate it as the partial key. The primary key of R is the combination

of the primary key from the owner entity E and the partial key chosen.

Mapping of Simple and Composite Attributes

Mapping simple attributes from the ER model to the relational model involves

designating an attribute field for each of the simple attributes in the ER model.

Composite Attributes must be broken down into simple attributes and then they follow

the same path as simple attributes and are converted to their attribute fields.

Mapping of Single and Multi-valued Attributes

Single value attributes directly translate to simple attributes of a relation in the relational

model as described in the previous section. For multi-valued attributes there is a more

involved method. For each multi-valued attribute, A, create a new relation R. R will have

a unique attribute as part of it’s primary key to describe its relation to A. R will also

contain the primary key of A as a foreign key. The unique attribute chosen in R and the

foreign key from A will form the primary key of this relation.

2.2.2 Converting Relationship Types to Relations

In the ER model relationships can be described with a line connecting entities with the

cardinality of the relationship expressed along the line. This is easy to understand, but

the same cannot be done with the relational model. The relational model can describe

52

relationships but it has to be done in relations already existing or by creating a relation

to describe the relationship.

This section will go over how the relationships between entities described by an ER

model can be converted to the relational model. Most conversions involve using a

foreign key in another relation or creating a relation to describe the relationship. This

section will compare the ways that work best for the relationship cardinality to be

converted.

Mapping of Binary 1:1 (one-to-one) Relationships

For every binary 1:1 relationship type, referred to as R, in an ER diagram identify the

relations A and B that correspond to the entity types participating in R. The three

methods to convert are as follows:

1. Foreign Key Approach

To achieve this you choose A or B, and make the primary key of A a foreign key

in B. The best way to do this is to make the entity type with total participation in R

the role of B.

2. Merged Relation Approach

To achieve this you take the 1:1 relationship type and merge them into one

relation. This can be done when both relations' participations in R are total, as

they will always have the same number of tuples at all times.

3. Cross-Reference or relationship relation approach

The final way to convert involves creating a third relation to cross reference A

and B we will call C. This is also referred to as a relationship relation or a lookup

table. To accomplish this C will contain the primary keys of A and B as foreign

keys. The primary key of C may be one of the foreign keys from A or B.

53

The ​Foreign Key Approach​ is best used when one relation in the 1:1 relationship has

total participation in the other relation. If one relation does not then the ​cross-reference

approach ​should be used, as the relations will be able to reference each other without

requiring total participation. The ​merged relation approach​ is best done in the design

phase prior to mapping the ER model to the relational model, but is a good choice if at

this point the designer is trying to decrease the number of relations in their model.

Mapping of 1:M (one-to-many) Relationships

For each regular binary 1:M relationship type in R, identify the relation A that represents

the participating entity type at the M-side of the relationship type, and B will be the

relation that represents the 1-side. The ways to convert these relationship types are as

follows:

1. Foreign Key Approach

To accomplish this conversion take A and include the primary key of B as a

foreign key in A. The entity that is A or B matters here because the M-side of this

conversion is related to at most one entity instance to the 1-side.

2. Cross Reference Approach

Similar to the way described in binary relationship conversions create a relation

C that includes the primary key of A and B as foreign keys. The primary key of C

should be the foreign key obtained from including A.

The ​foreign key approach ​is best used when most of the tuples in the A participate in

R. If few tuples from A participate in R then the ​cross reference approach​ is better as

it avoids excessive NULL values.

Mapping of M:M (many-to-many) Relationships

54

This can only be accomplished using the ​Cross Reference Approach​ described in

previous relationship conversions. For each M:M relationship R, create a relation to

represent the relationship, which will call C. In C include the participating entities

primary keys, and their combination will represent the primary key of C.

Mapping of Superclass and Subclass for “IsA” relationship

Entities that are disjointed from one parent entity only are described with the “IsA”

relationship type. Essentially they are a more specialized version of the parent entity.

We will refer to the superclass in these relationship types as C, and a subclass as S {

}. The methods for converting this relationship type from the ER model to, , ..., SS1 S2 m

the relational model are as follows:

1. Multiple Relations - superclass and subclasses

To convert these types create a relation, L, for the superclass, C, and set the

primary key of L as the primary key of C. For each subclass of C create a relation

for each and set their primary keys to be the primary key of L.

2. Multiple Relations - subclass only

This method only works for the disjointness constraint. Create relations only for

the subclasses and not the superclass, but each of the relations in the subclass

contain the attributes of the superclass. The primary key of each of the

subclasses is the primary key from the superclass.

3. Single relation with one type attribute

This method is achieved by creating a single relation L with the attributes in C, all

the attributes from , and another attribute t denoting the ​type ​or, , ..., SS1 S2 m

discriminating ​attribute of the relation. The ​type​ attribute specifies which

subclass the relation belongs to.

55

4. Single relation with multiple type attributes

Not recommended for “IsA” relationship types but it is possible. The method to do

these will be discussed in the “HasA” section where it is more useful for the

relationship type.

The ​multiple relations - superclass and subclasses​ is the best option if the

specializations involved are disjoint partial. If the specialization is disjoint total then it is

better to use ​multiple relations - subclass only​. The ​single relation with one type

attribute​ is better than the previous two methods only when there are not many specific

attributes defined for the subclass.

Mapping of Superclass and Subclass for “HasA” relationship

Relationships described by a “hasA” relationship type contain entities that can be

described with and belong to multiple subclasses. The same as the previous section;

we will refer to the superclass in these relationship types as C, and a subclass as S {

} and can convert them with the methods following:, , ..., SS1 S2 m

1. Multiple Relations - superclass and subclasses

Refer to the method used for “IsA” relationship type, as it is the same procedure.

2. Single relation with multiple type attributes

Create a single relation L containing all the attributes of C, every attribute from

and the attributes The attributes are, , ..., S ,S1 S2 m , t , ..., t .t1 2 m , t , ..., tt1 2 m

boolean types that denote whether or not the relation belongs to a subclass.

The ​multiple relations - superclass and subclasses ​mapping should be used when

there are many specific attributes defined for a subclass. If there are not, the ​single

relation with multiple type attributes ​method should be used instead.

56

Mapping Relationship types involving other Relationship Types

This conversion can be accomplished using what is most similar to the ​foreign key

approach ​discussed in earlier sections. After converting the entities participating in this

relationship type, the entity involved in all the relationship types will have a foreign key

from each of the participating relations but will also contain its own attributes. You treat

the relationships as an attribute that can be referenced by using the foreign keys from

the relation the foreign key originated from.

Mapping Recursive Relationships

A recursive relationship in an ER diagram is an entity that has a relationship with itself.

To convert these relationship types there are two options:

1. Create a field for the foreign key referenced (foreign key approach)

This is achieved by creating an attribute in the relation set up to hold the foreign

key of another tuple in the relation. An example would be a relation called

“employee” with a “works for” attribute containing the primary key of another

employee as a foreign key to denote that an employee reports to another

employee.

2. Cross Reference Approach

To do this conversion create a new relation L. L will be named to define the

relation relationship. L will contain multiple foreign keys from a single table that

denote their relationship. An example would be a “works for” relation with

attributes of “supervisor” and “employee” where the relation exists only to define

their connection.

The ​foreign key approach​ is sufficient if the primary key and foreign key only need to

be defined once in the tuple, or if there is not a need to keep a record of previous

primary and foreign key connections. If this approach is used the foreign key field is

57

going to be overwritten. If this is not allowed the ​cross reference approach​ should be

used instead.

Mapping of Relationships involving more than 2 entity types

To accomplish this conversion create a relation A to represent an entity created to

connect all entity types. After converting all entity types within A to relations include their

primary keys as foreign keys in A and also include attributes that are important to

describing the relationship. The primary key of A will be the combination of foreign keys

from all relations A is meant to connect except in cases where a relations cardinality

constraint is 1.

Mapping of Category (or union) Types

A category, also called union, type relationship involves a subclass of the union of two

or more superclasses. To map these relationship types from an ER model to relational

model we have to specify a new attribute in the relation as a ​surrogate key. ​The

surrogate key is a primary key of a relation that is created to uniquely identify a tuple

and is not derived from any existing information. To make use of the surrogate key here

the entities related to the category relationship type will have a foreign key attribute for

the created relation. Tuples that are part of the same category will have the value from

the same surrogate key, and if they belong to none of the values from the surrogate key

the field will be set to NULL.

2.2.3 Database Constraints

A constraint in a database is a restriction used to make the database perform efficiently

and provides a strong framework to ensure data’s integrity is maintained. There are

constraints implicitly and explicitly defined in the database design and in the

applications that use the database.

58

Constraints are important to ensure queries can be performed efficiently on the data in a

database. This section will discuss some of the constraints that the designer of a

database must follow.

Entity Constraints

Also called the entity integrity constraint. This specifies that a primary key attribute of a

tuple cannot have the value of NULL. A primary key is used to uniquely identify a tuple

in the relational model, so if NULL values were allowed the tuples who have it as the

value in their primary key’s field would not be identifiable.

Primary Key and Unique Key Constraints

In the relational model each set of tuples in a relation must be distinct, meaning the

combination of one tuple’s attributes cannot be the same as another tuple within the

same relation. The primary key constraint ensures that there is an attribute within a

tuple that makes it uniquely identifiable. A primary key with a unique value for each

tuple in a relation ensures that a tuple’s combination of attributes is also unique, fulfilling

this constraint.

Referential Constraints

The referential integrity constraint ensures that if a tuple in a relation refers to a tuple in

another relation, the tuple being referenced must exist. In practice this means that a

primary key in a tuple in relation A can exist as a foreign key in a tuple in relation B, with

the foreign key of the tuple in relation B being the same value as the primary key from

the tuple in relation A. Doing this allows the tuple in relation B to reference the tuple in

relation A.

Check Constraints and Business Rules

A check constraint is a check on data being inserted or modified into a tuple to ensure

that it fulfills a condition before being allowed to be inserted into a database. Business

59

rules are additional constraints that must be implemented into application programs

connecting to a database to make a business function. An example of one would be “a

customer can only have an account if they have an email,” which would mean the tuple

with the email field cannot be NULL in a database when the front end of an application

takes the user through account creation.

2.3 Convert E-R Model to Relational Database

Section 2.3 focuses on defining the relations in the Flower Shop database and provides

an example of a single state relation. Each relation table specifies each attribute and its

domain and the primary key of each relation. After the table will be a list of each

relation’s constraints.

2.3.1 Relation Schema for our Local Database

Contains

p_order_number Integer

product_id Integer

quantity_item Integer

point_of_sale_price decimal
Primary Key: ​p_order_number, product_id combination key

Primary Key Constraint: ​No two tuples can share the value of the combination of

p_order_number and product_id together.

Entity Integrity Constraint: ​p_order_number and product_id cannot be null.

Not Null Constraint: ​The attributes quantity_item and point_of_sale_price cannot be

null.

Customer

Customer_id Integer

60

fName Varchar(255)

lName Varchar(255)

street Varchar(255)

city Varchar(255)

state Varchar(255)

zip Integer, 00000-99999

Username Varchar(50)

Password Varchar(255)

Email Varchar(255)

Acc_creation_date Datetime

Phone_number Varchar(10)
Primary Key: ​“Customer_id”

Primary Key Constraint: ​No two tuples can have the same values for Customer_id.

Entity Integrity Constraint: ​The Customer_id attribute must not be null.

Not Null Constraint: ​The fName, lName, Username, Password, and Email attributes

cannot be null.

Delivery Address

address_id Integer

city Varchar(255)

street Varchar(255)

state Varchar(255)

zip Integer, 00000-99999
Primary Key: “​address_id”

Primary Key Constraint: ​No two tuples can have the same values for address_id.

61

Entity Integrity Constraint: ​address_id must not be null.

Not Null Constraint: ​The attributes city, street, state, and zip cannot be null.

Package

Package_id Integer

Expected_time Datetime

Message Text

p_order_num Integer

employee_id Integer
Primary Key:​ Package_id

Primary Key Constraint:​ No two tuples can have the same values for Package_id.

Entity Integrity Constraint:​ The Package_id attribute must not be null.

Not Null Constraint:​ The Expected_time attribute cannot be null.

Employee

Employee_id Integer

fName Varchar(255)

lName Varchar(255)

Street Varchar(255)

City Varchar(255)

State Varchar(255)

Zip Integer, 00000-99999

Phone_number Varchar(10)
Primary Key:​ Employee_id

Primary Key Constraint:​ No two tuples can have the same values for Employee_id.

Entity Integrity Constraint:​ The Employee_id attribute must not be null.

Not Null Constraint:​ None of the attributes should be null.

62

Flower Product

Product_id Integer

Product_name Varchar(255)

Sell_price decimal

Purchase_price decimal

Color Varchar(50)

Length Varchar(15)

Product_image Varchar(255)

Description Text

supply_purchase_id Integer
Primary Key:​ Product_id

Primary Key Constraint:​ No two tuples can have the same values for Product_id.

Entity Integrity Constraint:​ The Product_id attribute must not be null.

Not Null Constraint:​ The Product_name, Sell_price, Purchase_price, Color, and

Length attribute must not be null.

Incoming Payment

Incoming_id Integer

Sales_tax Float, 0.0-100.0
Primary Key:​ Incoming_id

Primary Key Constraint:​ No two tuples can have the same values for incoming_id.

Entity Integrity Constraint:​ The incoming_id cannot be null.

Not Null Constraint:​ The integer attribute cannot be null.

Needs

Supplier_purchase_id Integer

63

payment_id Integer
Primary Key:​ Supplier_purchase_id, payment_id combination

Primary Key Constraint:​ No two tuples can have the same values for

Supplier_purchase_id with payment_id.

Entity Integrity Constraint:​ The Supplier_purchase_id and payment_id cannot be null.

Not Null Constraint: ​The Supplier_purchase_id and payment_id cannot be null.

Order Status

Status_id Integer

Status Varchar(255)
Primary Key:​ Status_id

Primary Key Constraint:​ No two tuples can have the same values for Status_id.

Entity Integrity Constraint:​ The Status_id must not be null.

Not Null Constraint:​ The Status attribute must not be null.

Payment

Payment_id Integer

Payment_time Datetime

Amount decimal

payment_type_id Integer
Primary Key:​ Payment_id

Primary Key Constraint:​ No two tuples can have the same values for Payment_id.

Entity Integrity Constraint:​ Payment_id cannot be null.

Not Null Constraint:​ The amount attribute cannot be null.

Payment Type

Payment_type_id Integer

Description Text

64

Primary Key:​ Description

Primary Key Constraint:​ No two tuples can have the same values for Description.

Entity Integrity Constraint:​ The Description cannot be null.

Not Null Constraint: ​Payment_type_id attribute cannot be null.

Product Order

P_order_number Integer

Order_time Datetime

customer_id Integer

status_id Integer

employee_id Integer

address_id Integer
Primary Key:​ P_order_number

Primary Key Constraint:​ No two tuples can have the same values for

p_order_number.

Entity Integrity Constraint:​ The p_order_number cannot be null.

Not Null Constraint:​ Order_time attribute cannot be null.

Recipient

Recipient_id Integer

fName Varchar(255)

lName Varchar(255)

Phone_number Varchar(10)

package_id Integer
Primary Key:​ Recipient_id

Primary Key Constraint:​ No two tuples can have the same values for recipient_id.

Entity Integrity Constraint:​ The recipient_id cannot be null.

65

Not Null Constraint:​ The fname, lname, city, street, state, zip, and phone_number

attributes cannot be null.

Refills

supply_purchase_id Integer

product_id Integer

quantity_item Integer

supply_price decimal
Primary Key:​ Supply_purchase_id, product_id combination

Primary Key Constraint:​ No other combination of supply_purchase_id and product_id

can have the same combined value as these tuples.

Entity Integrity Constraint:​ Neither Supply_purchase_id and product_id can be null.

Not Null Constraint:​ The attributes quantity_item and supply price cannot be null.

Requires

p_order_number Integer

payment_id Integer
Primary Key:​ p_order_number, payment_id

Primary Key Constraint:​ No other p_order_number and payment_id combination can

have the same value as the combination of this tuple.

Entity Integrity Constraint:​ Neither p_order_number or payment_id can be null.

Not Null Constraint: ​Neither p_order_number or payment_id can be null.

Supplier

Supplier_id Integer

Vendor_name Varchar(255)

street Varchar(255)

66

city Varchar(255)

state Varchar(255)

zip Integer, 00000-99999

Phone_number Varchar(10)
Primary Key:​ Supplier_id

Primary Key Constraint: ​No two tuples can have the same values for supplier_id.

Entity Integrity Constraint:​ The supplier_id cannot be null.

Not Null Constraint:​ The vendor_name, street, city, state, zip, phone_number

attributes cannot be null.

Outgoing Payment

Outgoing_id Integer

Supplier_invoice_id Integer
Primary Key:​ Outgoing_id

Primary Key Constraint:​ No two tuples can have the same values for outgoing_id.

Entity Integrity Constraint:​ The outgoing_id cannot be null.

Not Null Constraint:​ The supplier_invoice_id attribute cannot be null.

Supply Purchase Order

Supply_purchase_id Integer

Supply_purchase_time Datetime

employee_id Integer

supplier_id Integer
Primary Key:​ Supply_purchase_id

Primary Key Constraint:​ No two tuples can have the same values for

supply_purchase_id.

Entity Integrity Constraint:​ Supply_purchase_id cannot be null.

67

Not Null Constraint:​ The supply_purchase_time attribute cannot be null.

Work History

History_id Integer

Start_date Datetime

End_date Datetime

Job_title Varchar(255)

Pay_rate decimal

employee_id Integer
Primary Key:​ History_id

Primary Key Constraint:​ No two tuples can have the same values for history_id.

Entity Integrity Constraint:​ The history_id cannot be null.

Not Null Constraint:​ The start_date, job_title, and pay_rate attributes cannot be null.

Work Shift

Shift_ID Integer

Start_date date

Begin_time time

End_time time

employee_id Integer
Primary Key:​ shift_id

Primary Key Constraint:​ No two tuples can have the same values for history_id.

Entity Integrity Constraint:​ The shift_id cannot be null.

Not Null Constraint:​ No fields in this relation may contain null values.

2.3.2 Sample Data of Relation

Customer

68

Customer Id fName lName Street city

1000921412 Seymour Skinner 1234 Belle
Terrace

Bakersfield

1000974562 Charlie Day 999
Philadelphia St
CA

Bakersfield

1000974125 Michael Scott 5453 Business
Park Blvd.

Bakersfield

1000452337 Jim Halpert 91910 Quarry
Way

Bakersfield

1000684362 Dwight Schrute 1111 Farm
Ave.

Shafter

1098784321 Dennis Reynolds 5678
Pennsylvania
Ct.

Bakersfield

1007096011 Charles Boyle 34353 New
York Ave.

Bakersfield

1004342343 Terry Jeffords 7871 Justice
Ct.

Bakersfield

1032442344 Andrew Dwyer 1245 Indiana
St.

Bakersfield

1934838822 Tom Haverford 3432 Cologne
Way

Bakersfield

state zip username

CA 93305 PrincipalS

CA 93314 Dayman111

CA 93311 MichaelGaryScott

CA 93301 Prankster80

69

CA 93263 BeetFarmer

CA 93315 GoldenGod

CA 93305 CookingLvr

CA 93311 TerryLovesYogurt

CA 93304 Champion1

CA 93312 TommyTom

Password Email Acc_creation_date Phone_number

hdQw1mgW81H SgtSeymour@gmail.com 02/13/2017
11:34:09

6615550001

S8hg62jJimwZ Nightmancometh@gmail.
com

06/19/2016
22:59:27

6615555079

g0HD4k8cEk Worldsbestboss@gmail.c
om

12/29/2016
13:41:53

6615551214

9cB0vXehY71C Prankster80@gmail.com 08/07/2017
10:19:35

6615558963

b9Kls4HP1cw0 Beetfarmer@gmail.com 10/15/20/17
05:01:06

6615554183

9Pc8Hw37Xz Goldengod@gmail.com 01/19/2016
12:36:44

6615554862

Uf9ws71dGKq Foodandwine@gmail.co
m

04/22/2018
09:16:29

6615552846

D1g13T7s2bvO yogurtterry@gmail.com 07/28/2017
15:41:11

6615559712

pH1kA4jHh82Z fellinthepit@yahoo.com 02/14/2016
14:48:56

6615551948

kJj4UaIP3I tommyfresh@gmail.com 08/02/2017
10:55:13

6615551436

70

Delivery Address

address_id street city state zip

45678945 2042
Washington
Way

Bakersfield CA 93307

45687865 2100 Jump St. Bakersfield CA 93304

12312332 4178
Evergreen
Terrace

Bakersfield CA 93311

12312313 3333 Elm St. Oildale CA 93308

456456456 76129 Baker
St.

Bakersfield CA 93307

123489545 22256 Paper
Ct.

Bakersfield CA 93305

212345654 1011 Sesame
St.

Shafter CA 93263

156845651 5144 Wisteria
Ln

Bakersfield CA 93307

144845212 7712 Rainey
St.

Bakersfield CA 93307

012140548 4389 Power St. Bakersfield CA 93305

Employee

Employee_id fName lName Street

01515494 Michael Scott 5453 Business
Park Blvd.

01598487 Jim Halpert 91910 Quarry Way

19887871 Dwight Schrute 1111 Farm Ave.

71

01877987 Pam Beesley 91910 Quarry Way

00018077 Creed Bratton 90010 Quarry Way

01984770 Stanley Hudson 5908 Pacific St.

19848770 Ryan Howard 8542 Stonetree
Way

18800870 Kelly Kapoor 98721 Windmill Ct.

28747462 Meredith Palmer 1235 Decatur St.

54411223 Kevin Malone 546 Christmas Tree
Ln.

City State Zip Phone_number

Bakersfield CA 93311 6615551214

Bakersfield CA 93301 6615558963

Shafter CA 93263 6615554183

Bakersfield CA 93301 6615558964

Bakersfield CA 93311 6615550000

Bakersfield CA 93314 6615551778

Bakersfield CA 93305 6615551478

Bakersfield CA 93309 6615557532

Oildale CA 93308 6615551117

Bakersfield CA 93306 6615559879

Flower Product

Product_id Product_name Sell_price Purchase_price

72

00125441 Rose 9.99 6.99

00185812 Tulip 4.49 1.99

00188987 Baby’s Breath 1.99 0.49

00121141 Hydrangea 6.99 4.99

00177989 Daffodil 3.99 1.49

00178781 Lily 5.49 3.99

00117079 Chrysanthemum 1.49 0.49

00978740 Gerbera 4.49 3.49

00987112 Carnation 2.49 1.49

00185580 Carnation 3.49 1.99

Color Length Product_imag
e

Description supply_purch
ase_id

Red 12 in redrose.png A beautiful,
thornless red
rose.

01984770

Yellow 10 in yellowtulip.png A beautiful tulip
with a large
yellow bulb.

12312345

White 6 in whitebreath.pn
g

A common
flower filler with
small flowers
coming off its
branches.

12315489

Light Blue 8 in bluehydrangea
.png

Contains small
flowers in
bunches at the
end of a long
stem.

12313152

Yellow 10 in yellowdaffodil.p
ng

Contains a
trumpet
shaped petal

15654568

73

surrounded by
a star shaped
petal.

White 8 in whitelily.png Big flowers
with a large
petal span.

12354984

Yellow 10 in yellowchrsanth
emum.png

Blooms into a
large beautiful
flower.

78954654

Pink 8 in pinkgerbera.pn
g

A part of the
sunflower and
daisy family.
Appears to
look like a
colorful
sunflower.

12321434

Pink 6 in pinkcarnation.p
ng

A commonly
known flower
with branched
or forked
clusters.

00321422

Orange 8 in orangebirdofpa
radise.png

Known for its
distinct exotic
look.

10320000

Incoming Payment

Incoming_id Sales_tax

2003584124 0.0725

2349021343 0.0525

1234162132 0.0750

3143214532 0.0550

3512134643 0.0750

4321213554 0.0800

74

5231432143 0.0800

4321315123 0.0550

3123125321 0.0600

5321432143 0.0625

Order Status

Status_id Status

01 new order

02 checked availability

03 credits checked

04 packed

05 out for delivery

06 delivered

07 delivery attempted - not received

08 contact customer

09 cancelled

-1 in store purchase

Outgoing Payment

Outgoing_id Supplier_invoice_id

2000584534 26323452342

2045430345 234532

3494594333 32442345432

4060593054 4543234

0000012343 643243643

75

1234543233 462345454334

1234353234 64328676

1234232343 3234345

6432543223 2345432345

2345432123 3262454335

Package

Package_id Expected_delivery_time Message

2000587246 02/14/2020 11:30:00 “Happy Valentine’s Day”

2000587247 02/14/2020 11:40:00 “Happy Valentine’s Day”

2000541479 02/14/2020 08:00:00 null

2004688787 04/01/2020 13:05:00 “Happy Birthday!”

2008787997 09/04/2019 14:45:00 “Sorry for your loss”

2000148631 05/28/2018 11:25:00 “Congratulations!”

2000357498 08/04/2018 12:30:00 null

2007854123 11/22/2018 10:45:00 “Happy Thanksgiving”

2008569871 12/24/2018 12:50:00 “Merry Christmas”

2001547112 12/30/2017 13:15:00 “Happy New Year”

p_order_num employee_id

45645645 01598487

07907011 00018077

45645678 28747462

45645678 01984770

76

09770454 01598487

45645645 28747462

45645677 01984770

44567895 54411223

11234595 01598487

45677785 00018077

Payment

Payment_id Payment_time Amount employee_id payment_type
_id

017787700 02/09/2020
10:34:43

49.99 01598487 02

017787701 02/09/2020
10:36:18

34.99 00018077 01

017789781 02/12/2020
15:01:56

74.49 28747462 03

017988711 02/13/2020
16:58:08

64.24 01984770 02

017998712 02/14/2020
03:04:33

58.67 01598487 04

018000701 03/05/2020
12:14:48

33.58 28747462 05

018018070 04/18/2020
13:45:29

44.49 01984770 08

018070101 08/20/2020
09:18:45

14.44 54411223 07

018070711 09/01/2020
00:30:54

99.99 01598487 09

77

018870702 12/20/2020
19:54:06

128.53 00018077 01

Payment Type

Payment_type_id Description

01 Cash

02 Credit Card - In store

03 Debit Card - In store

04 Check

05 Gift Card - In store

06 Coupon

07 Instore Credit

08 Credit Card - Online

09 Debit Card - Online

10 Gift Card - Online

Product Order

P_order_number Order_time customer_id

09098970 02/09/2020 10:34:43 1000921412

08970078 02/09/2020 10:36:18 1000974562

07907011 02/12/2020 15:01:56 1000974125

09877001 02/13/2020 16:58:08 1000452337

01264684 02/14/2020 03:04:33 1000684362

09770454 03/05/2020 12:14:48 1098784321

07061004 04/18/2020 13:45:29 1007096011

08987001 08/20/2020 09:18:45 1004342343

78

08899011 09/01/2020 00:30:54 1032442344

09870331 12/20/2020 19:54:06 1934838822

status_id employee_id address_id

02 01598487 45687865

04 00018077 12395651

06 28747462 45678954

02 01984770 12456545

06 01598487 78945623

04 28747462 12324532

02 01984770 45678954

06 54411223 12355545

02 01598487 11123548

06 00018077 44456458

Recipient

Recipient_id fName lName

00079456 Deandra Reynolds

00045997 Liam McPoyle

00012345 Maureen Ponderosa

00787845 Matthew Mara

00365556 Barbara Reynolds

00148755 Margaret McPoyle

00123545 Squilliam Fancyson

79

00015154 Patrick Star

01212154 Robert Trousers

10000078 Sandy Chi

Phone_Number package_id

6614545875 01378970

6614548784 01537014

6619875642 01377755

6617842542 01256743

6614874525 01388132

6612354874 01837539

6616875309 01389166

6611234567 01160714

6612564897 01561986

6618975451 01221498

Supplier

Supplier_id Vendor_name Street City

78945648 Kern Roses 12343 Taft Hwy, Taft

78956123 Taft Daisies 15888 Taft Hwy, Taft

78954562 Bakersfield Tulips 23453 Weedpatch
Rd.

Bakersfield

78954452 Sun Valley Group 53243 Sycamore
Rd.

Bakersfield

35489545 Luffa Farm 54324 Panama Rd. Bakersfield

80

85462152 Rose Story Farm 13241 Ribier Rd. Lamont

78954562 Kendall Farms 53234 Edmundson
Acres

Arvin

12345678 Kilcoyne Lilac Farm 45453 E Bear
Mountain Blvd.

Arvin

78945623 Ori’s Orchid’s 12343 Old River
Rd.

Bakersfield

12345858 Mary’s Marigold’s 45434 Millux Rd Bakersfield

State Zip Phone_number

CA 93268 6615889898

CA 91231 6612342343

CA 93312 6612345643

CA 93308 6619873452

CA 93234 6615837294

CA 90001 6612839219

CA 90012 6612727383

CA 90321 6612342322

CA 93312 6615555555

CA 93305 6615893275

Supply Purchase Order

Supply_purchase
_id

Supply_purchase
_time

employee_id supplier_id

100000005 01/05/2010
08:00:01

54411223 100000069

81

100000234 12/05/2011
09:32:23

01984770 100000420

100005432 03/12/2012
10:33:12

28747462 100000656

100006443 04/12/2014
09:45:11

28747462 123456789

100007543 07/12/2015
08:40:54

01598487 105454585

100008625 11/12/2016
10:30:35

28747462 012345654

100009750 09/12/2017
11:20:45

28747462 001224555

100010800 06/12/2018
12:25:55

01984770 001215544

100011901 03/12/2019
14:34:59

54411223 012124545

100012925 02/12/2020
16:50:23

54411223 100450001

Work History

History_id Start_date End_date Job_title Pay_rate employee_i
d

00043 10/12/2010
08:00:00

null Florist 14.00 01692945

00323 01/23/2011
12:00:00

01/23/2014
16:00:00

Delivery
Driver

13.00 01668596

00323 11/25/2015
14:00:00

null Cashier 13.00 01431928

00142 10/12/2008
08:00:00

10/03/2010
16:00:00

Florist 10.00 01538090

00321 10/12/2008
08:00:00

05/20/2011
14:00:00

Delivery
Driver

13.25 01353823

82

00334 11/23/2018
08:00:00

05/20/2019
14:00:00

Florist 13.50 01610434

00343 11/15/2007
08:00:00

null Manager 18.00 01985315

00456 05/10/2018
08:00:00

null Cashier 13.50 01135503

00123 02/12/2017
14:00:00

null Delivery
Driver

14.00 01473241

00212 01/12/2016
07:00:00

01/12/2016
20:30:00

Florist 13.75 01595995

Work Shift

shift_id shift_date start_time end_time employee_id

00043 10/12/2010 11:00:00 16:00:00 01692945

00323 01/23/2011 08:00:00 18:00:00 01668596

00323 11/25/2015 11:00:00 16:00:00 01431928

00142 10/12/2008 08:00:00 14:00:00 01538090

00321 10/12/2008 14:00:00 16:00:00 01353823

00334 11/23/2018 11:00:00 15:00:00 01610434

00343 11/15/2007 16:00:00 16:00:00 01985315

00456 05/10/2018 08:00:00 11:00:00 01135503

00123 02/12/2017 11:00:00 15:00:00 01473241

00212 01/12/2016 08:00:00 15:00:00 01595995

Contains

p_order_number product_id quantity_item point_of_sale_pric
e

83

78945648 00000301 6 40.22

12345678 00000300 1 31.69

45682184 00000303 4 52.12

48754125 00000307 8 56.23

12315652 00000312 9 85.23

15648954 00000314 5 56.23

21235489 00000324 7 26.45

21562126 00000345 4 45.22

21564556 00000325 5 32.11

12312348 00000354 8 45.12

45654123 00000356 5 15.25

00012154 00000375 6 12.02

15615645 00000380 3 22.35

12320151 00000396 6 32.56

00121445 00000401 4 12.25

00012102 00000411 2 45.20

00012789 00000402 44 96.45

00124555 00000423 46 65.23

00789545 00000425 42 80.23

00121455 00000430 21 50.21

00121547 00000423 15 45.60

00154578 00000467 5 45.50

20515456 00000445 4 32.65

10515651 00000470 7 32.12

01564895 00000475 9 60.12

84

01561546 00000480 5 50.12

08984512 00000578 6 45.21

01564895 00000534 8 45.62

01564895 00000562 4 12.12

01565456 00000402 5 45.12

01564891 00000502 6 21.30

20156489 00000702 9 30.12

30156785 00000802 8 40.52

30156546 00000734 5 25.41

40012105 00000750 1 9.99

01516456 00000800 10 24.12

01564898 00000802 15 30.23

90944452 00000890 16 40.25

45787895 00000902 45 60.65

10263542 00000913 45 30.21

12654895 00000945 8 21.45

45678954 00000950 30 60.23

84745621 00000952 20 45.21

04515654 00001051 15 30.25

89456123 00001053 14 23.12

12345678 00000345 11 20.45

21345621 00000502 3 16.25

47895462 00000804 6 23.45

12345621 00000325 4 20.12

47895456 00000450 8 40.56

85

12345678 00000202 9 70.65

01204574 00000043 8 40.25

11445545 00000001 5 45.23

66998545 00000443 1 13.23

74158852 00000342 2 15.23

15648954 00000524 5 20.45

01456521 00000414 10 60.25

01548795 00000415 13 70.25

01565489 00000412 14 73.25

01215645 00000490 20 50.23

Refills

supply_purchase_
id

product_id quantity_item supply_price

12456212 00000412 60 300.00

45021548 00001262 45 200.00

45602456 00000012 80 325.00

01548795 00000456 60 350.00

45689051 00000490 50 200.00

21565456 00000500 70 125.00

15654565 00000512 90 300.00

15156512 00000812 56 250.00

51545621 00000912 90 300.00

26545621 00000402 60 200.00

26212421 00000415 50 250.00

15987985 00000416 65 225.00

86

15951945 00000420 75 300.00

54954954 00000500 80 350.00

15648954 00000985 45 225.00

89462154 00000789 60 300.00

48975466 00000812 90 350.00

78978456 00000905 60 325.00

12448454 00000900 80 325.00

48784545 00000995 90 350.00

11156788 00001000 60 375.00

14774441 00000412 65 400.00

45151489 00000789 70 425.00

14489545 00000800 100 400.00

11456545 00000812 90 320.00

15654895 00000850 75 330.00

11234595 00000950 80 312.00

49489789 00001000 90 333.00

98784561 00000500 70 325.00

49415652 00000612 75 225.00

15648985 00000712 80 325.00

45654562 00000234 60 300.00

77789545 00000789 65 300.00

77895456 00008456 90 225.00

11145987 00000500 85 250.00

47895456 00000601 90 400.00

12456897 00000705 60 332.00

87

48954652 00000800 75 325.00

48795456 00000850 60 400.00

12346578 00000900 65 425.00

45678954 00000412 70 325.00

41145687 00000500 90 352.00

12364568 00006004 100 400.00

55595789 00004564 150 400.00

11154895 00007895 120 425.00

44447895 00045685 125 400.00

44456898 00078954 130 400.00

66998545 00047895 145 400.00

44489789 00060078 150 425.00

44487895 00074589 165 450.00

11156785 00048789 75 325.00

11156489 00078954 80 225.00

54546845 00004567 90 300.00

17895545 00054895 95 325.00

00123459 00000789 100 350.00

45641235 00045685 90 300.00

48978955 00045654 65 325.00

11145685 00405689 60 300.00

21567895 00045687 120 325.00

Requires

88

p_order_number payment_id

01154885 00089967

00273109 00000524

50706593 00053981

42118781 00000385

82758239 00078970

01444092 00005471

01555534 00037014

46252404 00003774

30402172 00031174

00672471 00000798

06822989 00000999

72801991 00038184

06809341 00009841

16683911 00003918

13356307 00033177

04763679 00009385

58007373 00000102

25841699 00090194

70960440 00000431

03650103 00058892

34595198 00000819

17245099 00007890

03628812 00064804

02953380 00005918

89

51515614 00008760

23010099 00001823

06508100 00000490

29294845 00002097

89078779 00000775

78345273 00003728

36618043 00007347

18418033 00000959

72828203 00030855

45169966 00000386

06849768 00003292

79450957 00022753

11294349 00000230

25792127 00003454

52331780 00011595

96427525 00000313

05070272 00001748

65345488 00051213

47402655 00000793

17571516 00001104

34135700 00016902

23047965 00000157

42264189 00009621

07904002 00035125

11423471 00093830

90

05059014 00000734

96899183 00009734

48199083 00095038

05564523 00000186

72275806 00005739

03904705 00036333

11665370 00000242

02775592 00033116

13399409 00009876

12884495 00045263

Needs

payment_id supply_purchase_id

44487895 00000895

52870128 00001995

42956775 00004652

43265380 00001219

88767226 00000830

50694627 00004898

03223264 00006273

01363692 00004328

29908550 00002521

31963428 00001610

72932329 00000537

91

33095363 00017091

41612477 00023930

87026834 00009042

29128746 00045546

91995701 00007091

47866227 00001807

38789436 00000998

66887163 00009444

17340937 00005502

80138058 00004131

40917255 00000178

99478788 00034603

10965503 00000220

69150139 00003638

61277560 00005480

93282735 00008861

44222702 00000713

85349223 00002348

62871288 00011137

43073255 00022129

98378602 00000263

57881841 00068101

92951147 00000620

33946750 00074382

45818244 00000378

92

46026598 00004211

45598572 00006899

85345308 00031891

58789606 00018845

35146304 00071199

36657559 00002170

30964915 00004805

29820344 00015002

40427714 00064461

83006157 00000202

80125694 00000498

41194749 00008603

13271489 00029158

87008154 00006567

18089890 00005428

70724171 00007000

90772528 00090376

74015760 00001435

90184792 00094130

68321105 00000749

53716319 00032145

10931456 00005489

86980245 00009899

93

2.4 Sample Queries to Our Database

Section 2.4 will focus on a few sample queries that can be used to retrieve certain data

and information from our database. Our sample queries will be presented as relational

algebra, tuple relational calculus, and domain relational calculus.

The sample queries provided will demonstrate a couple of operations. For example,

operations such as select, project, cartesian product, and join will be used in relational

algebra. We’ll also show examples of the division operation used in relational algebra

2.4.1 Design of Queries

We will discuss the three main formal query languages: relational algebra and relational

calculus. Relational calculus consists of two calculi which are tuple relational calculus

and domain relational calculus. We will be using relational algebra, tuple and domain

relational calculus to express our sample queries.

There will be a total of ten sample queries. In the following three sections, we will

express all ten samples in the three main formal query languages as explained

previously.

2.4.2 Relational Algebra for Queries of 4.1

Relational algebra is an algebra whose operations are designed to retrieve tuples from

our database. A tuple is one record (a row). A relational algebra expression combines

fundamental operations to return a set of tuples and describes the process of doing so

from a relational database. This language is procedural, so the order and how these

expressions are nested matters.

Some operations for relational algebra are as follows: select (), project (), cartesianσ Π

product (X), set different (-), union (), and join(⋈). Selection picks rows. Projection⋃

94

picks columns. Cartesian products join two relations. Union can only be used if two

relations are union compatible to give a relation with tuples which are either in one

relation or in the other. Join operation allows joining variously related tuples from

different relations. There are different types of joins.

1. List customers who have made at least 2 product orders between 1/18/20 and

2/18/20.

P1 ← order_time >= 1/18/20 order_time <= 2/18/20​(Product Order)σ ⋀

P2 ← order_time >= 1/18/20 order_time <= 2/18/20​(Product Order)σ ⋀

customer_id, name​(Customers ​* ​(P1.p_order_number P2.p_order_number ​(P1 x P2))Π σ =/

2.​ ​List customers with accounts on our website that have not made a product

order in the past 6 months.

P1 ← order_time >= currentDate - 6 months ​(Product Order)σ

customer_id, name​(username != NULL​ Customers * (product_order_number​(Product Order - P1)))Π σ Π

3. List employees who purchased flower products from every supplier.

employee_id, employee_name​(Employee ​* ​(supply_purchase_id​Supply Purchase Order Π Π ÷ Π

supplier_id​Supplier))

4. List product orders with a payment greater than $100 that have been delivered.

product_order_number​ (status = ‘delivered’ ​(Product Order * Order Status) * payment_id​(amount > 100Π σ Π σ

Payment))

5. List current employees who have processed all John Doe’s purchases.

empolyee_id, employee_name ​(end_date = NULL​ (Employee * Work History) p_order_number​(name =Π σ ÷ Π σ

‘John Doe’ ​(Product Orders * Customers)

6. List the package(s) that has the second least expensive product order.

P​2 ​ ← (Payment - p1.* ​(p1.amount > p2.amount​(Payment x Payment))Π σ

95

Package ​* ​(product_order_number​Product Order * (p2.amount != p3.amount​P​2​ - (Payment - p1.* ​(Π σ Π σ

p1.amount > p3.amount​(Payment x Payment))))

7. List recipients who have never received red roses.

P1 ← Packages ​* ​(product_name = ‘Red Roses’ ​(Flower Product * Product Orders)))σ

recipient_id, R.name ​(Recipients * (Packages - P1))Π

8. List the suppliers that have no supply purchase order with more than 1 flower

product.

F1 ← f1.product_id, f2.product_id​(f1.product_name != f2.product_name​(Flower Product x Flower Product))Π σ

Supplier * (supply_purchase_id​Supply Purchase Order - (suppy_purchase_id​(Supply PurchaseΠ Π

Order * F1))

9. List customers who have purchased all flower products.

customers_id, c.name​(Customers * (product_order_number ​Product Order product_name​ (FlowerΠ Π ÷ Π

Product)))

10. List the cheapest package delivered by John Doe.

package_id​ (name = ‘John Doe’​ Employee * (Package * p1.* ​(p1.amount < p2.amount p1.payment_id !=Π σ Π σ ⋀

p2.payment_id ​(Payment x Payment))))

2.4.3 Tuple Relational Calculus Expressions for Queries

Tuple relational calculus depends on the use of tuple variables. The language is

non-procedural. This means the order of operations needed to retrieve a set of tuples

does not matter. It is declarative, so it does not explain how to solve a query, instead it

only provides a description. It uses existential and universal quantifiers in the

declarative expressions to check if a condition is true or false. It will check if every

possible tuple meets the conditions to make the declarative expression true or false.

96

An example as to how a query in tuple relational calculus is expressed is as follows: { t |

P(t) }. A variable associated with a existential () and universal variables () are∃ ∀

known as bounded variables. Bounded variables are any tuple variable with a “for all” or

“there exists” condition. Free variables are any tuple variable without or .∃ ∀

1.​ ​List customers who have made at least 2 product orders between 1/18/20 and

2/18/20.

{ c | Customers(c) (p​1​) (Product Order (p​1​) (p​2​) (Product Order (p​2​) ⋀ ∃ ⋀ ∃

p​1​.product_order_number != p​2​.product_order_number ⋀

p​1​.customer_id = c.customer_id p​2​.customer_id = c.customer_id ⋀ ⋀

p​1​.order_time <= 2/18/20 p​1​.order_time >= 1/18/20 ⋀ ⋀

p​2​.order_time <= 2/18/20 p​2​.order_time >= 1/18/20)) ⋀ ⋀

}

2.​ ​List customers with accounts on our website that have not made a product

order in the past 6 months.

{ c | Customers(c) c.username != NULL (po​1​)(Product Order(po) ⋀ ⋀ ∃

po​1​.customer_id = c.customer_id ⋀

(po​2​)(Product Order(po​2​) po​2​.order_time >= currentDate - 6months)) ⋀ ¬ ∃ ⋀

}

3. List employees who purchased flower products from every supplier.

{ e | Employees(e) (s)(Supplier (s) → (sp)(Supply Purchase Order (sp) ⋀ ∀ ∃

(f) Flower Products (f) sp.supply_purchase_order = ⋀ ∃ ⋀

f.supply_purchase_order sp.employee_id = e.employee_id ⋀

s.supply_id = sp.supply_id)) ⋀

}

4. List product orders with a payment greater than $100 that have been delivered.

{ po | Product Order(po) (os)(p)(Payment(p) Order Status (os) ⋀ ∃ ∃ ⋀

po.p_order_number = os.p_order_number ⋀

po.payment_id = p.payment_id ⋀

97

os.status = ‘delivered’ p.amount > 100) ⋀ ⋀

}

5. List current employees who have processed all John Doe’s purchases.

{ e | Employee(e) (po)(c) (Product Orders(po) ⋀ ∀ ∃

 Customers(c) c.name = ‘John Doe’ c.customer_id = po.customer_id ⋀ ⋀ ⋀

→ (w)(Work History(w) e.employee_id = w.employee_id∃ ⋀

w.end_date = NULL)) ⋀

}

6. List the package(s) that has the second least expensive product order.

{ p | Package(p) (po)(pt​1​)(Product Order(po) Payment(pt​1​) ⋀ ∃ ∃ ⋀

po.p_order_number = pt​1​.p_order_number ⋀

p.package_id = po.package_id ⋀

(pt​2​)(Payment (pt​2​) pt​2​.amount < pt​1​.amount ⋀ ∃ ⋀

(pt​3​) (Payment(pt​3​) pt​3.​amount < pt​1​.amount ⋀ ¬ ∃ ⋀

pt​2​.amount pt​3​.amount))) ⋀ =/

}

7. List recipients who have never received red roses.

{ r | Recipient(r) (p​1​) (Packages(p​1​) ⋀ ∃ ⋀

(p​2​)(Packages(p​2​) (f)(po) (Flower Product(f) Product Orders(po) ⋀ ¬ ∃ ⋀ ∃ ∃ ⋀

po.p_order_number = f.p_order_number ⋀

p​2​.package_id = r.package_id ⋀

f.product_name = ‘red roses’)) ⋀

}

8. List suppliers that have no supply purchase order with more than 1 flower

product.

{ s | Supplier (s) (sp)(Supply Purchase Order(sp) ⋀ ∃

sp.supplier_id = s.supplier_id ⋀

(f​1​)(f​2​) (Flower Product(f​1​) Flower Product(f​2​) ⋀ ¬ ∃ ∃ ⋀

98

f​1​.product_name != f​2​.product_name)) ⋀

}

9. List customers who have purchased all flower products.

{ c | Customers(c) (f) (Flower Products (f) → (po) (Product Order(po) ⋀ ∀ ∃

po.customer_id = c.customer_id ⋀

po.product_id = f.product_id)) ⋀

}

10. List the cheapest package delivered by John Doe.

{ p | Package(p) (pt​1​)(pt​2​) (Payment(pt​1​) Payment(pt​2​) ⋀ ∃ ∃ ⋀

pt​1​.amount < pt​2​.amount pt​1​.payment_id != pt​2​.payment_id ⋀ ⋀

p.package_id = pt.package_id ⋀

(e) (Employee(e) e.name = ‘John Doe’ ⋀ ∃ ⋀

p.employee_id = e.employee_id)) ⋀

}

2.4.4 Domain Relational Calculus Expressions for Queries

Domain relational calculus uses variables that will take their values from domains of

attributes rather than tuples of relations like in tuple relational calculus. Each variable

represents a single value with a tuple instead of a list of values. It is also non-procedural

and uses existential and universal quantifiers. It gives a description of the query but

does not give ways to solve it.

Domain relational calculus has the following format: { d​1​, d​d​, …, d​n​ | F(d​1​, d​2​, …, d​n​) }.

The < d​1​, d​d​, …, d​n ​> represents resulting domains variables. The F(d​1​, d​2​, …, d​n​)

represents the condition equivalent to the Predicate calculus - a boolean expression

over d​1​, d​2​, …, d​n​. The predicate has a set of comparison operators, connectives, and

quantifiers.

99

1.​ ​List customers who have made at least 2 product orders between 1/18/20 and

2/18/20.

{ <c, nm> | Customers(c, nm, _, _, _, _, _, _)

(pn​1​)(pn​2​)(Product Order(pn​1​, >= 1/18/20) Product Order(pn​2​, <= ⋀ ∃ ∃ ⋀

2/18/20) Product Order(pn​2​, >= 1/18/20) Product Order(pn​2​, <= 2/18/20) pn​1 ⋀ ⋀ ⋀

!= pn​2​)

}

2.​ ​List customers with accounts on our website that have not made a product

order in the past 6 months.

{<c, nm> | Customers(c, nm, _ ,!=NULL , _, _, _, _)

(pn​1​)(Product Order(pn, _) ⋀ ∃

(pn​2​)(ot) (Product Order(pn​2​, ot) ot >= currentDate - 6 months) ⋀ ¬ ∃ ∃ ⋀

}

3. List employees who have purchased flower products from every supplier.

{ < e, nm > | Employee(e, nm, _, _) (s) (Supplier(s,_ ,_ ,_) ⋀ ∀

→ (f) Flower Products(f, _, _, _, _, _, _, _)∃

(sp)(Supply Purchase Order (sp, _,))) ⋀ ∃

}

4. List product orders with a payment greater than $100 that have been delivered.

{ <pn> | Product Orders (pn, _) Payment(_, > 100, _) ⋀

Order Status(_, ‘delivered’) ⋀

}

5. List current employees who have processed all John Doe’s purchases.

{ <e, nm> | Employee(e, nm, _, _) (pn)(Product Order(pn, _) ⋀ ∀

Customers(_, ‘John Doe’, _, _, _, _, _, _) ⋀

→ (h)(Work History (h, _, NULL, _, _)))∃

}

6. List the package(s) that has the second least expensive product order.

{ <pi> | Package(pi, _, _) Order Status(_ , ‘delivered’) ⋀

100

(pn)(Product Order(pn, _) ⋀ ∃

(a​1​)(Payment(_, a​1​, _) (a​2​)(Payment(_, a​2​, _) a​1​ > a​2 ⋀ ∃ ⋀ ∃ ⋀

(a​3​)(Payment(_ , a​3​, _) a​1​ > a​3​ a​2​ != a​3​)))) ⋀ ¬ ∃ ⋀ ⋀

}

7. List recipients who have never received red roses.

{ <r, nm> | Recipient(r, nm, _)

(pi)(Package(pi, _, _) (pn) (Product Order(pn, _) ⋀ ∃ ⋀ ¬ ∃

Flower Product(_, ‘red roses’, _, _, _, _, _, _))) ⋀

}

8. List suppliers that have no supply purchase order with more than 1 flower

product.

{ <i, vn> | Supplier (i, vn, _ , _) (sp)(f​1​)(Supply Purchase (sp, _) ⋀ ¬ ∃ ∃

Flower Product (f​1​, _, _, _, _, _, _, _) ⋀

(f​2​) Flower Product (f​2​, _, _, _, _, _, _, _)) ⋀ ¬ ∃

}

9. List customers who have purchased all flower products.

{ <c, nm> | Customers(c, nm, _, _, _, _, _, _)

(p) (Flower Product(p, _, _, _, _, _, _, _) ⋀ ∀

 → (o) (Product Order(o, _)))∃

}

10. List the cheapest package delivered by John Doe.

{ < p> | Package(p, _, _) (a​1​)(Payment(_, a​1​, _) ⋀ ∃

(a​2​)(Payment(_, a​2​, _) (a​1​< a​2​) ⋀ ∃ ⋀

Employee (_, ‘John Doe’, _, _, _))) ⋀

}

101

Phase 3: Relational Database

Normalization and Implementation
Up to this point we have only defined our database in conceptual terms and have not

implemented it into a physical database. Using what we have learned from making a

102

conceptual database using the ER model and honing it’s logical design using the

relational model we will now implement it into a physical database.

This first section of this phase will go over the ways we ensure our data is normalized.

The next section will go over the DBMS we are using postgres and some of the

advantages it offers. The next section will discuss the schema object allowed by

postgres. The last section will display the results of the queries we designed in phase 2

and how we translated them into SQL queries.

3.1 Normalization of Relations

Normalization is the method of arranging the data in a database to prevent data

duplication or redundancy. Redundancy is where information in a database is being

stored in more than one place. Eliminating data repetition helps improve the data

integrity of a database. Useless data should be removed and only related data is stored

in each table. There is a series of normal forms used to achieve normalization.

3.1.1 Normalization and Anomalies

The concept of normalization will be discussed prior to analyzing the quality of the

relation schemas in the Bakersfield Flower Shop database. In this section, we will be

determining how to measure normalization using the following normal forms: First

Normal Form, Second Normal Form, Third Normal Form, and Boyce-Codd Normal

Form. It is critical that we find relations that may not be normalized before implementing

our physical database. A poorly designed database will lead to additional problems

called update anomalies.

Update anomalies can be classified into three types: insert anomaly, delete anomaly,

and modification anomaly. Modification anomaly is also known as update anomaly.

Satisfying the series of normal forms will help us avoid these anomalies we may

encounter when we would want to modify our physical database. If there is such a

103

relation that does not satisfy up to the Third Normal Form and/or Boyce-Codd Normal

Form, we would have to “break apart” the relation schemas so that this redundancy is

removed. Oftentimes, we can resolve normalization issues by using NULL .It can waste

space at storage level and may cause some misunderstanding with the meaning of

attributes as well with specifying JOIN operations at the logical level. However, there

are times where NULLs will be unavoidable.

Description of Normal Forms

As mentioned previously, we can’t implement our logical database as a physical

database until we check the quality of the relations. Each relation must be normalized

and go through a number normal form tests. There are four normal forms and we will be

redesigning our database, if necessary, to ensure that it satisfies those four. The higher

the normal form a relation schema satisfies, the more normalized it is.

First Normal Form

A relation in First Normal Form, or 1NF, satisfies the following two conditions: the

domain of each attribute contains only atomic values, and the value of each attribute

contains only a single value from that domain. An atomic value is a value that can’t be

split into smaller pieces. In other words, a column can’t be broken down into sections

with more than one type of data, therefore, one part is dependent on another part of the

same column. A relation in 1NF allows there to be no repeating groups in individual

tables, seperate table for each set of related data can be created, and each set of

related data with a primary key can be identified.

Let’s make the table Customer have attributes Customer ID, First Name, Last Name,

and Phone Number. Let Phone Number be a multi-value attribute in this case. That

means there exists more than one phone number separated by a comma for each

customer. Column values are not atomic. To comply with 1NF, customers can be

duplicated each associated with only one phone number, but that would make

104

Customer ID no longer unique. To resolve this so it may satisfy both 1NF requirements,

Customer may be split into two tables: Customer Name and Customer Phone Number

Table. Customer Name would have Customer ID, First Name, and Last Name as

attributes. Meanwhile, Customer Phone Number would have an ID, the Customer ID

and Phone Number as attributes.

Second Normal Form

A relation in its Second Normal Form, or 2NF, satisfies the following two requirements: it

is in First Normal Form and all non-prime attributes are not functionally dependent on

any proper subset of any candidate key of the relation. A non-prime attribute of a

relation is an attribute that isn’t part of any candidate key of the relation. If attribute B is

functionally dependent on A but not functionally dependent on a proper subset of A,

then B is considered fully functional dependent on A. All non-key attributes can’t be

dependent on a subset of the primary key.

Let’s make the table Flower Product consist of Supplier, Product Name, Product Full

Name, and Supplier Country as attributes. Candidate key is {Supplier, Product Name}.

The table is not in 2NF since Supplier Country is a non-prime attribute functionally

dependent on a part of a candidate key which is Supplier. To conform to 2NF, the table

can be split into two. One table named Flower Product Suppliers with Suppliers and

Supplier country as attributes. The other table is named Flower Product Name with

Supplier, Product Name, and Product Full Name as attributes.

Third Normal Form

A relation in its Third Normal Form, or 3NF, satisfies the following two conditions: it is in

Second Normal Form and there can’t be any non-prime attributes of R that are

transitively dependent on every key of R. A non-prime attribute of R is an attribute or

column that doesn’t belong to any candidate key of R. Transitive dependency in simple

terms means that a column’s value is dependent on another column through a second

105

intermediate column. To achieve 3NF, a relation schema can be broken down into

relations where the left side of a functional dependency is always a primary key

attribute.

Let’s make the table Employee consist of the following attributes: Employee ID, Name,

Street, City, State, Zip. The candidate key, in this case, is {Employee ID} as it will help

uniquely identify a row. Although this table satisfies one of the conditions for 3NF, it

does not satisfy the second condition. The non-prime attributes Street, City, and State

are transitively dependent on the candidate key through the non-prime attribute Zip. The

table can then be split into two to satisfy 3NF. Table Employee can consist of ID, Name,

and Zip, while the second table Employee Zip can consist of Street, City and State.

Boyce-Codd Normal Form

Boyce-Codd Normal Form is a simpler form of Third Normal Form, but stricter. It is an

extension of 3NF where a relation must satisfy the following two conditions: it is in Third

Normal Form and any existing dependencies (A → B) A cannot be a non-prime

attribute and B is a prime-attribute. In other words, A being on the left side of the

functional dependency is a primary key. BCNF does not allow any prime attributes to be

dependent on non-prime attributes. A BCNF table is also in 3NF, but a 3NF table can’t

be in BCNF.

Let us make the table Product Order consist of attributes Product Order ID, Order Time,

Payment No, Payment Type, and Payment Type Description. Candidate keys are

Product ID, Payment No. Functional dependencies are Product Order ID to Order Time,

as well as Payment No. to Payment Type and Payment Description. This is not in BCNF

because neither Payment No and Product ID alone are keys. To convert the table into

BCNF, tables must be decomposed for the left side of both the functional dependencies

is a key.

106

Anomalies due to Poor Normalization

Insertion anomaly, update anomaly, and deletion anomaly are the three types of

anomalies that can occur when a database is not normalized and poorly designed.

There may exist tuples that contain redundant data and if we are to ever change that

data, inconsistencies can happen. Normalization allows us to remove these anomalies

and avoid running into these issues with our physical database.

Update Anomalies

Updating a table won’t be possible if a table is not normalized. If we are to update one

copy of such repeated data, an inconsistency is created unless all copies are similarly

updated. If two copies of the same data do not match, wanting to update all copies we

would be unable to decide which copy is correct. The data is said to become

inconsistent. It essentially defeats the reason for one of the benefits of a database over

a spreadsheet if we update one entry and copy this update to possibly many other

fields.

For example, Employee information for the Employee table would have to be duplicated

to avoid having the attribute phone number be a multi-value which would not satisfy

1NF. If we look into changing the address for a particular employee, this change would

have to be applied to multiple records in the case where the employee has more than

one phone number listed. If this update is only partially successful, the employee’s

address is updated on only some records but not others. The relation is left in an

inconsistent state which provides conflicting answers to the question of what this

particular employee’s address is.

Insertion Anomalies

In a table that is not normalized, it won’t be possible to insert new data due to existing

dependencies in the table. We cannot store data unless some other information is

stored well. This is an insert anomaly. If a tuple is inserted in referencing relation and

107

referencing attribute value is not present in referenced attribute, it will not allow inserting

in referencing relation.

For example, there is a table called Work History. It lists Employee ID, name, start date,

job title code. It has the ability to record any employee that has at least one job.

However, a newly hired employee’s work history cannot be recorded until they are

assigned a job title except by setting the job title to null.

Deletion Anomalies

Deletion of data that represents certain facts may require deleting other data that may

represent different facts. It won’t be possible to delete certain information without

deleting other information too in a non-normalized table.

For instance, let’s recall the Work History table. If an employee temporarily stops being

assigned to any work, the last of the records on which that employee appears must be

deleted. This means not just deleting or setting the job title code to null but also deleting

the employee’s ID, name, and start date in the case where the table was not

normalized.

3.1.2 Normal Forms for Bakersfield Flower Shop

We will now be checking and documenting each of every of our relations to see if it at

least satisfies Third Normal Form or Boyce-Codd Normal Form. This will help us

determine any anomalies that may occur within each of our relations if they are not

normalized. We will also be listing the original relation and updating those that were not

in 3NF or in BCNF.

Customer

Functional Dependencies​:

108

FD1: {customer_ID} → {fName, lName, street, city, state, zip, username, password,

email, acc_creation_date, phone_number}

FD2: {username} → {password, email, acc_creation_date}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because all non-prime attributes are not functionally dependent on any

proper subset of any candidate.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because the left side of all functional dependencies is a candidate

key.

Since the BCNF is satisfied, there should be no modification anomalies.

Delivery Address

Functional Dependencies​:

FD1: {address_id} → {city, street, state, zip}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Package

Functional Dependencies​:

FD1: {package_id} → { expected_delivery_time, message}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

109

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Employee

Functional Dependencies​:

FD1: {employee_id} → {fname, lname, street, city, state, zip, phone_number}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Flower Product

Functional Dependencies

FD1: {product_id} → {product_name, sell_price, purchase_price, color, length,

product_image, description}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Incoming Payment

Functional Dependencies​:

FD1: {incoming_id} → {sales_tax}

Normal Form​:

110

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Order Status

Functional Dependencies​:

FD1: {status_id} → {status}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Payment

Functional Dependencies​:

FD1: {payment_id} → {amount, payment_time}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Payment Type

Functional Dependencies​:

FD1: {description} → {payment_type_id}

111

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because the left side of all dependencies are a candidate key.

Since the BCNF is satisfied, there should be no modification anomalies.

Product Order

Functional Dependencies​:

FD1: {p_order_number} → {order_time}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Recipient

Functional Dependencies​:

FD1: {recipient_id} → {fName, lName, phone_number}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Supplier

Functional Dependencies​:

112

FD1:​ ​{supplier_id} → {vendor_name, street, city, state, zip, phone_number}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Outgoing Payment

Functional Dependencies​:

FD1: {outgoing_id} → {supplier_invoice_id}

FD2: {supplier_invoice_id} → {outgoing_id}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Supply Purchase Order

Functional Dependencies​:

FD1: {supply_purchase_id} → {supply_purchase_time}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

113

Work History

Functional Dependencies​:

FD1: {work_history} → {start_date, end_date, job_title, pay_rate}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Work Shift

Functional Dependencies​:

FD1: {work_shift} → {shift_date, begin_time, end_time}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because the primary key consists of only a single attribute.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Contains

Functional Dependencies​:

FD1: {p_order_number, product_id} → {quantity_item, point_of_sale_price}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because all non-prime attributes are not functionally dependent on any

proper subset of any candidate.

114

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Needs

Functional Dependencies​:

FD1: {supplier_purchase_id} → {payment_id}

FD2: {payment_id} → {supply_purchase_id}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because all non-prime attributes are not functionally dependent on any

proper subset of any candidate.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

Refills

Functional Dependencies​:

FD1: {supply_purchase_id, product_id} → {quantity_item, supply_price}

Normal Form​:

1NF is satisfied ​because all attributes are single value, atomic domains.

2NF is satisfied ​because all non-prime attributes are not functionally dependent on any

proper subset of any candidate.

3NF is satisfied ​because no non-prime attributes depend on other non-prime attributes.

BCNF is satisfied​ because our dependency has the primary key on the left-hand side.

Since the BCNF is satisfied, there should be no modification anomalies.

115

3.2 Postgres Main Purpose and Functionality

Given that we have analyzed and ensured our relations will not cause any modification

anomalies, we can begin discussing the process of implementing our physical

database. PostgreSQL is a general and object-relational database management system

that supports SQL querying. Psql is a terminal-based front-end to PostgreSQL. It allows

users to issue queries to PostgreSQL which will then output the query result. The

overall main purpose of a database management system like PostgreSQL is to give it’s

users the tools and power to effectively and efficiently handle the flow of data, giving

them control of how data can be inserted, deleted, and modified.

PostgreSQL contains multiple types of functionality within its language that have come

from the SQL standards such as: Data Types, Data Integrity, Concurrency,

Performance, Reliability, Disaster Recovery, Security, Extensibility, Internationalisation,

Text Search, and various others. Additionally, it contains many commands that allow for

inserting, updating, and deleting data. With these sorts of tools at the disposal of its

users, it lets users create and efficiently maintain databases while being able to query

and search through tons of information to solve problems.

3.3 Schema Objects Allowed in Postgres

This section outlines the different objects that are in the Postgres Database

Management System. Some of the topics covered in this section are tables, views, and

drops and insertion of data.

Tables

Tables are the main construct for representing data in a database. They are similar to

the relation from the relational model but do not have a perfect equivalence. A database

116

table is similar to the relation, a database row is similar to a relation tuple, and a

database column is similar to a relations attribute. Tables can also theoretically contain

duplicate rows, which is not allowed in a relations tuple.

Tables are used to store data in a database and for establishing relationships between

data sets. A relationship between tables is established through primary key and foreign

key references. The syntax to create a table is as follows:

CREATE​ ​TABLE​ table_name (
 column_name ​TYPE​ column_constraint,
 table_constraint table_constraint

);

Tables in this database:

Contains

Customer

Delivery Address

Employee

Flower Product

Incoming Payment

Needs

Order Status

Package

Payment

Payment Type

Recipient

Refills

Requires

Supplier

117

Outgoing Payment

Supply Purchase Order

Work History

Work Shift

Insert

To add tuples to our table, we will use the INSERT command. For example, we will

insert a new employee into our database. To insert into a specific table we must use the

command “INSERT INTO” followed by the table name, followed by “VALUES(attribute1,

attribute2, …);”

Ex:

INSERT INTO employee VALUES(

‘John’, ‘Doe’, ‘Bakersfield’, ‘CA’, ‘123 Main St.’, 93301, ‘JDoe1’, ‘rAnDoMpAsS’,

‘JDoe@mail.com’, to_date(‘04/12/2020’,’MM/DD/YYYY’), phone_number);

Select

Now if we want to see what tuples are contained within our table, we can use the

“SELECT” command. To view all the tuples we can use “SELECT * FROM

<tablename>”. This will select all the tuples from the specific table.

Ex:

118

Views

In a database a view is the result of a stored query. Views act similar to tables in that

they can be queried and information can be gathered from them. Except for the case of

materialized view they do not store information but instead are a representation of data

from underlying tables.

Views are useful for simplifying complex queries, adding security to databases, and

providing faster access to data than directly querying the tables that built the view. The

syntax for creating a view is as follows:

CREATE​ ​OR​ ​REPLACE​ VIEW name_of_view
AS

[selectStatement or query];

119

Stored Procedures

Stored procedures are subroutines for manipulating data and help in carrying out

business logic in a database. Stored procedures and functions are similar, but stored

procedures can perform their logic without returning any data.

Stored procedures allow an application to perform more efficiently if done correctly, as

more can be accomplished in one call to the procedure than executing a series of

queries from the application. The syntax to create a stored procedure is as follows:

CREATE​ [OR REPLACE] ​PROCEDURE​ ​procedure_name​(parameter_list)
AS​ $varName$
 stored_procedure_body;

$varName$;

Functions

In postgreSQL there are user defined functions and built in functions. Built in functions

include aggregate functions, date functions, string manipulation, and window functions.

These are common functions between most database applications so they are included

in postgreSQL.

User defined functions are similar to stored procedures, as they are subroutines in a

database. The key difference between a stored procedure and a user defined function is

a user defined function​ ​must return data. The syntax for a user defined function is as

follows:

CREATE​ ​FUNCTION​ function_name(p1 ​type​, p2 ​type​)
 ​RETURNS​ ​type​ ​AS
BEGIN

 ​-- logic
END​;

120

Trigger

A Trigger in postgreSQL is a user-defined function invoked automatically when an event

occurs involving a table in a database. Triggers help maintain consistency between data

that is related to each other. If a record in one table depends on the value in another

table a trigger can automatically update the data involved in it’s defined routine. The

syntax for a trigger is as follows:

CREATE​ TRIGGER trigger_name
{​BEFORE​ | ​AFTER​ | ​INSTEAD​ OF} {​event​ [OR ...]}
 ​ON​ table_name
 [FOR [EACH] {​ROW​ | ​STATEMENT​}]
 ​EXECUTE​ ​PROCEDURE​ trigger_function

3.4 Displaying Relations with SQL Commands

In this section, SQL commands will be used to display every relation and its data within

the physical database. Command “\dt” will display a list of all tables within our database.

Command “\d [table name]” will display every column, their types, tablespace, defaults,

as well as any indexes, constraints, rules and triggers of that said table. Command

“SELECT * FROM [table_name]” obtains rows from specified tables and retrieves all

available fields in the table.

All Tables

121

Contains

122

Customer

123

124

Delivery Address

Employee

125

Flower Product

126

Incoming Payment

127

Needs

128

Order Status

129

Outgoing Payment

130

Package

131

Payment

132

Payment Type

133

Recipient

134

Refills

135

136

Requires

Supplier

137

Supply Purchase Order

138

Work History

139

140

Work Shift

3.5 Queries in SQL

We will now present the SQL implementation for queries from section 2.4.

1. List customers who have made at least 2 product orders between 1/18/20 and

2/18/20.

141

2.​ ​List customers with accounts on our website that have not made a product

order in the past 6 months.

142

143

3. List employees who purchased flower products from every supplier.

144

4. List product orders with a payment greater than $100 that have been delivered.

5. List current employees who have processed all John Doe’s purchases.

6. List the package(s) that has the second least expensive product order.

145

7. List recipients who have never received red roses.

146

147

148

8. List the suppliers that have no supply purchase order with more than 1 flower

product.

9. List customers who have purchased all flower products.

149

10. List the cheapest package delivered by John Doe.

150

Phase 4: DBMS Procedural Language &

Stored Procedures and Triggers
Database Management System or DBMS is a system that manages a collection of

databases. There exist different types of DBMS in the world. Some DBMS examples

include PostgreSQL, MySQL, Oracle, and others. Every DBMS has similar yet different

data structures and query language. Because there exists so many DBMS available, it

is essential that there is a way that they can communicate with one another.

For various DBMS to communicate with each other, they have allowed one database to

integrate with other databases meaning common SQL statements are translated from

one program’s syntax into a syntax that other databases can understand. In this phase,

we will discuss the syntax of stored procedures and triggers for different DBMS

including PostgreSQL. Similarities and differences among different DBMS procedural

languages will be explained.

4.1 Postgres PL/pgsql

PL/pgSQL is known as Procedural Language/PostgreSQL and is a procedural

programming language supported by the PostgreSQL DBMS that allows for much more

procedural control than a standard SQL language. It is very similar to Oracle’s own

language, Procedural Language/SQL (PL/SQL). The overall goal of this language was

to allow PostgreSQL users to be able to perform more complex operations and

computations than SQL, while being easy to use and not cumbersome to the user.

151

4.1.1 Introduction to PL/pgsql

For PL/pgsql, its design goals are to construct a loadable procedural language that can

be used to create functions and trigger procedures which run within Postgres. These

functions are also known as stored procedures in other databases. PL/pgsql is a

block-structured language for PostgreSQL. That would mean that a PL/pgSQL function

is organized into blocks. With more procedural control than SQL, PL/pgSQL has the

ability to use loops and other control structures.

4.1.2 Advantages of PL/pgsql

One of the benefits of using PL/pgSQL is that it has unique features built into the

language to aid in managing the database. These features are used in the form of

stored procedures/functions. The purpose of stored procedures is to perform actions

without returning any result, this can include operations where data is inserted or

updated. A few purposes of functions are to return one or more scalar values as OUT

parameters or to return one or more results sets. The purpose of user-defined functions

in PL/pgSQL is to process input parameters while returning new values.

There are many benefits of using stored procedures over sending SQL statements from

front-end/client software to DBMS. These benefits include maintainability, testing can be

independent of the application, stored procedures are already compiled on the server

allowing the database to have increased speed, utilization of set-based processing and

better security over sending SQL statements.

4.1.3 Control Statements and their Syntax

Control structure statements allow us to manipulate PostgresQL data in a very flexible

way. These control statements include if-else, case, and loops. If and case are two

conditional statements that can execute alternative commands under certain conditions.

152

There are three forms of IF: if-then, if-then-else, and if-then-elsif. There are two forms of

CASE: simple and searched.

Loops can arrange a PL/pgSQL function to repeat a series of commands. They can be

used to repeat a number of different ways to achieve a certain task through repetition.

One of those tasks can be executing a block of statements repeatedly until a condition

becomes true. Loops can call conditional statements thus controlling the function’s flow.

PL/pgSQL provides us three forms of LOOPS: basic loop, while loop, and for loop.

Syntax of Conditional Statements

153

Syntax of Loops

154

4.1.4 PL/pgSQL Syntax of VIEW, FUNCTION, PROCEDURE, TRIGGER

This section will go over the generalized syntax of views, functions, procedures, and

trigger operations of PL/pgSQL. The following sections will provide examples of

implementations of how we used these constructs in Bakersfield Flowershops database.

Syntax of View

Syntax of Function

Syntax of Procedure

Syntax of Trigger

155

4.2 Views and Stored Subprograms of our Database

Views and stored subprograms allow a programmer to define more specific actions they

would like the data in their database to interact. Views allow a programmer to create

virtual tables that can simplify interacting with data. Stored subprograms can allow the

programmer to define actions that need to take place in contexts of data entering the

world the database represents.

The first subsection will show the views we are using in Bakersfield Flowershop’s

Database. The second subsection will show the procedures, functions, and triggers that

we have built into our database. The last subsection will display the results of our

procedures, functions, and triggers from our tables and views in our database.

4.2.1 Views

Views allow programmers to abstract away some of the complexity of their database.

They are built from underlying tables into a virtual table. They are useful for simplifying

complex queries and adding security to a database. A programmer can build views for

user groups that only allow the user groups to interact with the data they need to.

The user groups of our database are customers visiting our online store, an in store

employee, and a manager for the database. This section will display the contents of the

views in Bakersfield Flower Shops Database.

156

View_manager_scheduling

View_manager_revenue

View_positive_revenue

157

View_expenditure

View_number_employees_working

158

Payments_view

159

4.2.2 Stored Procedures and/or Functions

This section will contain three user defined procedures/functions and three triggers for

Bakersfield Flowershop’s database. The first procedure involves a procedure to insert a

new product the shop will sell. The second deletes a customer from the customer table

by their primary key.The last function will take the average of n number of cheapest

products prices that Bakersfield Flowershop sells.

The three triggers following delete every record associated with a customer when the

DELETE operation is called on them. The next trigger will update all tables where an

employee's primary key appears if UPDATE is called altering the primary key of an

existing employee. The last trigger involves a view in our database, and when data is

altered in the view it will redirect the update in the underlying tables the view is pulling

it’s information from.

Insert Procedure
CREATE​ ​OR​ ​REPLACE​ ​PROCEDURE
insert_new_flower_product (

varchar​,
decimal​(​12​,​2​),
decimal​(​12​,​2​),
VARCHAR​(​50​),
DECIMAL​(​4​,​2​),
VARCHAR​(​24​),
VARCHAR​(​255​))
LANGUAGE​ plpgsql
AS​ $$
BEGIN

 ​insert​ ​into​ flower_product(product_name, purchase_price,
 sell_price, color, ​length​, product_image, ​description​)
 ​values​ ($​1​, $​2​, $​3​, $​4​, $​5​, $​6​, $​7​);
 ​COMMIT​;
END​;
$$;

160

Delete Procedure
CREATE​ ​OR​ ​REPLACE​ ​PROCEDURE
remove_customer_record(

 ​Integer
)

LANGUAGE​ plpgsql
AS​ $$
BEGIN

 ​DELETE​ ​FROM​ customer
 ​WHERE​ customer_id = $​1​;
END​;
$$;

Average Function
CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ average_of_products(​integer​)
RETURNS​ ​DECIMAL​(​4​,​2​) ​AS​ $average$
DECLARE

 average ​DECIMAL​(​4​,​2​);
BEGIN

 ​SELECT​ ​AVG​ (a.sell_price) ​INTO​ average ​FROM​ (
 ​SELECT​ sell_price ​FROM​ flower_product ​ORDER BY​ sell_price ​ASC
LIMIT​ $​1
) ​AS​ a;
 ​RETURN​ average;
END​;
$average$ ​LANGUAGE​ plpgsql;

Deletion Trigger
CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ remove_customer_records()
RETURNS​ TRIGGER ​as​ $BODY$
BEGIN

 ​DELETE​ ​FROM​ requires
 ​WHERE​ p_order_number = ANY(
 ​SELECT​ requires.p_order_number
 ​FROM​ requires

161

 ​INNER JOIN​ product_order ​ON​ product_order.p_order_number =
requires.p_order_number

 ​WHERE​ product_order.customer_id = OLD.customer_id
);

 ​DELETE​ ​FROM​ recipient
 ​WHERE​ package_id = ANY(
 ​SELECT​ package.package_id
 ​FROM​ package
 ​INNER JOIN​ product_order ​ON​ product_order.p_order_number =
package.p_order_number

 ​INNER JOIN​ customer ​ON​ customer.customer_id =
product_order.customer_id

 ​WHERE​ product_order.customer_id = OLD.customer_id
);

 ​DELETE​ ​FROM​ contains
 ​WHERE​ p_order_number = ANY(
 ​SELECT​ contains.p_order_number
 ​FROM​ contains
 ​INNER JOIN​ product_order ​ON​ contains.p_order_number =
product_order.p_order_number

 ​INNER JOIN​ customer ​ON​ customer.customer_id =
product_order.customer_id

 ​WHERE​ product_order.customer_id = OLD.customer_id
);

 ​DELETE​ ​FROM​ package
 ​WHERE​ p_order_number = ANY(
 ​SELECT​ package.p_order_number
 ​FROM​ package
 ​INNER JOIN​ product_order ​ON​ product_order.p_order_number =
package.p_order_number

 ​WHERE​ product_order.customer_id = OLD.customer_id
);

 ​DELETE​ ​FROM​ product_order ​WHERE​ customer_id = OLD.customer_id;
 ​RETURN​ OLD;
END​;
$BODY$ ​LANGUAGE​ plpgsql;

162

DROP​ TRIGGER ​IF​ ​EXISTS​ remove_customer ​ON​ customer;
CREATE​ TRIGGER remove_customer
BEFORE​ ​DELETE​ ​ON​ customer
FOR EACH ​ROW​ ​EXECUTE​ ​PROCEDURE​ remove_customer_records();

Update Trigger
CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ update_employee_everywhere()
RETURNS​ trigger ​AS​ $BODY$
BEGIN

 ​-- Disable FK constraint just for trigger
 ​-- Not good idea normally
 ​ALTER​ ​TABLE​ product_order ​ALTER​ ​CONSTRAINT​ fk_order_employee
DEFERRABLE;

 ​ALTER​ ​TABLE​ package ​ALTER​ ​CONSTRAINT​ fk_package_employee_id
DEFERRABLE;

 ​ALTER​ ​TABLE​ work_history ​ALTER​ ​CONSTRAINT​ fk_employee_history
DEFERRABLE;

 ​ALTER​ ​TABLE​ supply_purchase_order ​ALTER​ ​CONSTRAINT
fk_purchase_order_employee DEFERRABLE;

 ​ALTER​ ​TABLE​ work_shift ​ALTER​ ​CONSTRAINT​ fk_employee_id DEFERRABLE;
 ​SET​ CONSTRAINTS fk_order_employee, fk_package_employee_id,
 fk_employee_history, fk_purchase_order_employee, fk_employee_id

DEFERRED;

 ​IF​ NEW.employee_id <> OLD.employee_id ​THEN
 ​UPDATE​ product_order ​SET​ employee_id = NEW.employee_id ​WHERE
 employee_id = OLD.employee_id;

 ​UPDATE​ package ​SET​ employee_id = NEW.employee_id ​WHERE
 employee_id = OLD.employee_id;

 ​UPDATE​ work_history ​SET​ employee_id = NEW.employee_id ​WHERE
 employee_id = OLD.employee_id;

 ​UPDATE​ supply_purchase_order ​SET​ employee_id = NEW.employee_id
WHERE

163

 employee_id = OLD.employee_id;

 ​UPDATE​ work_shift ​SET​ employee_id = NEW.employee_id ​WHERE
 employee_id = OLD.employee_id;

 ​END​ ​IF​;
 ​RETURN​ NEW;
 ​-- Fix FK constraint
 ​ALTER​ ​TABLE​ product_order ​ALTER​ ​CONSTRAINT​ fk_order_employee ​NOT
DEFERRABLE;

 ​ALTER​ ​TABLE​ package ​ALTER​ ​CONSTRAINT​ fk_package_employee_id ​NOT
DEFERRABLE;

 ​ALTER​ ​TABLE​ work_history ​ALTER​ ​CONSTRAINT​ fk_employee_history ​NOT
DEFERRABLE;

 ​ALTER​ ​TABLE​ supply_purchase_order ​ALTER​ ​CONSTRAINT
fk_purchase_order_employee ​NOT​ DEFERRABLE;
 ​ALTER​ ​TABLE​ work_shift ​ALTER​ ​CONSTRAINT​ fk_employee_id ​NOT​ DEFERRABLE;
END​;
$BODY$ ​LANGUAGE​ plpgsql;

DROP​ TRIGGER ​IF​ ​EXISTS​ update_employee ​ON​ employee;
CREATE​ TRIGGER update_employee
BEFORE​ ​UPDATE​ ​ON​ employee
FOR EACH ​ROW​ ​EXECUTE​ ​PROCEDURE​ update_employee_everywhere();

Instead of Trigger
CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ update_employee_name()
RETURNS​ trigger ​AS​ $BODY$
BEGIN

 ​IF​ NEW.employee_name <> OLD.employee_name ​THEN
 ​UPDATE​ employee ​set​ fname = split_part(NEW.employee_name, ​' '​, ​1​),
 lname = split_part(NEW.employee_name, ​' '​, ​2​)
 ​WHERE​ employee_id = OLD.employee_id;
 ​END​ ​IF​;

 ​RETURN​ NEW;
END​;

164

$BODY$ ​LANGUAGE​ plpgsql;

DROP​ TRIGGER ​IF​ ​EXISTS​ edit_employee_name ​ON​ view_manager_scheduling;
CREATE​ TRIGGER edit_employee_name
INSTEAD​ OF ​UPDATE​ ​ON​ view_manager_scheduling
FOR EACH ​ROW
 ​EXECUTE​ ​PROCEDURE​ update_employee_name();

4.2.3 Testing Results of Views, Functions and/or Procedures

This section will display the results of the altering of data using procedures and

functions in the tables and views from the previous section. In the insert procedure we

added a new product to our store that we sell. The delete procedure deletes an

employee named ‘Fake Name’ by their primary key. The average function we pass in 6,

which averages the price of the 6 cheapest products in our database.

In our update trigger we change the primary keys of three employees in our database

and cascade that update down to update all tables to match the new primary keys. The

deletion trigger will remove all records associated with a customer when a DELETE is

performed on a customer. The INSTEAD OF trigger we write takes an update to a view

that changes an employee's name and redirects the update to change the name in our

underlying employees table. The results of the instead of trigger affect the tables the

view reads data from so the change will still be reflected in the view.

Insert Procedure Results

165

Delete Procedure Results

Average Function Results

Deletion Trigger Results

Update Trigger Results

166

167

Instead of Trigger Results

4.3 Stored Function, Procedures, and Triggers of Three

DBMS (Microsoft SQL, MySQL, and Oracle)

As we discussed in the beginning of this phase, there exists numerous Database

Management Systems. Microsoft SQL Server, MySQL, and Oracle are just three of

many. Microsoft SQL Server is developed by Microsoft which uses Transact-Structured

Query Language or T-SQL. MySQL uses Structured Query Language or SQL. Oracle

uses Procedural Language-Structured Query Language or PL/SQL.

The first subsection will cover the major differences in T-SQL, SQL, and PL/SQL. The

next subsection will go over the ways in which these three are similar. The last section

will go over the generalized syntax of how to do procedures, triggers, and functions in

all three DBMS.

168

4.3.1 Differences between languages T-SQL, SQL, PL/SQL

There are a number of key differences between languages T-SQL, SQL, and PL/SQL.

SQL defines what needs to be done while PL/SQL defines how things need to be done

and mainly used to create an application. SQL, on the other hand, is mainly used to

manipulate data. Triggers in SQL do not allow two triggers with the same trigger timing,

event or statement to be defined on a table. As for PL/SQL triggers, it allows multiple

triggers with the same trigger timing and event to be defined on a table.

T-SQL provides more functionality than SQL. It has functions for mathematical

operations. It provides much more control over how the application works. It also allows

for multiple rows to be inserted into a table using the BULK INSERT statement. In

regards to statements, PL/SQL uses INSERT INTO while T-SQL uses SELECT INTO

statement. Important to also note that T-SQL is only supported in Microsoft SQL Server.

Same applies to PL/SQL which is supported only in Oracle.

4.3.2 Similarities between T-SQL, SQL, and PL/SQL

While T-SQL and PL/SQL are only supported by Microsoft SQL Server and Oracle

respectively, there exists similarities among both languages and SQL. SQL is supported

across all databases management systems like Oracle and MySQL. PL/SQL and T-SQL

are both propietary extensions to SQL and allow grouping of SQL statements. Both

languages also provide storage and execution of their code inside a database. They are

convenient to create or write applications for their database vendors. In addition, SQL,

T-SQL and PL-SQL are all capable of running on Windows and LInux.

4.3.3 Syntax of Stored Functions, Procedures, and Triggers of the

Three DBMS

All three DBMS’s have similarities and differences in their implementations and

functionality that they provide. This extends to the syntax of the ways in which they

169

define functions, stored procedures, and triggers. This section will provide the

generalized syntax of the languages used in Microsoft SQL, MySQL, and Oracle.

Microsoft SQL server

Stored Function

Procedure

Trigger

170

MySQL

Stored Function

Procedure

171

Trigger

Oracle

Stored Function

Procedure

172

Triggers

173

Phase 5: Graphic User Interface Design

and Implementation
The final phase of this document will go over the GUI for a manager of Bakersfield

Flower Shops and the way it interacts with the database. The first section will discuss

some of the functionality and the usergroup I designed the database for, the second

section will go the code I used to create the database, and the final section will go over

how I feel I performed and how much I learned in this class.

5.1 Functionalities and User group of the GUI application

To make this front end website application I used HTML, CSS with the bootstrap library,

Javascript with the JQuery design library, Postgres, and Node.js with the Express.js

Framework. HTML, CSS, and JQuery were used to design the front end application and

implement various ways that the front end could interact with the backend. Node.js is a

server side web development framework that allows queries to databases to be

executed using javascript, massively simplifying the developments of applications that

use a backend because a developer can use javascript for both front end and back end

code. Express.js is a framework for Node.js that makes using node even simpler and

allows for rapid development of full-stack web apps.

The user group for this application is for managers of a local flower shop. The part of a

manager's job I designed to interact with our database is a dashboard for managers that

will allow them to schedule staff to calendar days, and to print out reports for the current

revenue and expenditures of Bakersfield Flowershop.

174

5.1.1 Itemized descriptions of GUI application, and reports generated

I will provide brief descriptions for various sections featured in my applications. Because I

developed the application all on one page I’ll give a broad overview here, but in the following

section alongside screenshots I’ll include more detail for different parts of the database

alongside the screenshot.

Dashboard overview
Dashboard where a manager can control the schedule of the employees for Bakersfield

Flowershop. Features a clickable list of employees, buttons increasing the starting time and

ending time, an insertion button to input that employee and time into the database, a row of

buttons for the calendar week along the bottom. Also has buttons that allow for auto scheduling

for a day and activating two modals to generate the reports I’ve chosen.

Scheduling modal
Activated by a button on the dashboard. Features a menu where you can select what job types

you want featured on an employee schedule report.

Scheduling Report
The schedule for the current work week. Each day has 4 sections by default showing Managers,

Cashier, Florists, and Delivery Drivers and their hours they work for the day.

Revenue Model
Activated by a button on the Manager dashboard. Features a button to randomly generate

ingoing and outgoing payments.

Revenue Report
Revenue report that shows twelve customers, total amount paid to the store, and the date they

last paid. Also shows the totals paid out to Suppliers of Bakersfield Flowershop. The shows total

revenue and total expenditure, then another section showing total profit.

175

5.1.2 Screenshots of the application

Dashboard overview

Broad look at the interface, shows all sections of interface talked about in previous

section.

176

Active Employees

This list is filled by a query that returns a list of the employees and their names and job titles. By

only showing employees without an end date in the database it ensures only active employees

can be assigned to work a shift.

Set hours for selected employee

177

The employee selected by the list on the left list can then have their hours and then inserted into

the database.

Select Day to edit schedule

The date boxes here are able to be clicked and they will change the date of current focus for the

list on the right. When box is chosen it executes a query to get the employees for the chosen

day which then fills up a list on the right hand side with employees names and hours set for the

day.

178

Daily schedule and links to modals

179

List of employees working that day is populated by the query discussed from the previous

screen shot. The date shown changes and the employees for the day update when selected.

There are also 3 buttons here that allow you to randomly generate employees in the schedule

for the week, and the other two bring up modals that let you generate reports from data in the

database.

Schedule Report Modal

Modal allows you to choose which job types you want to show in the schedule then produces

that report showing who is working what days by day, job type, and hours.

180

Revenue Report Modal

This modal allows the user to generate a revenue report from data in the database, and allows

the user to randomly add payments into the database.

Revenue Report

181

Revenue Report showing some of the customers and their most recent payment, some of the

payments out to suppliers, and the net profit for the store.

Schedule Report

182

Shows the days and job types of each of the scheduled employees of the store.

183

5.1.3 Tables, Views, Stored Subprograms, and Triggers Used

All the code for the tables, views, functions, and tables used in the database. In 5.2.1 I’ll

go over the purpose of the views and procedures I used. This section will only contain

the code.

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ customer (
 customer_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 fname ​VARCHAR​(​50​) ​not​ ​null​,
 lname ​VARCHAR​(​50​) ​not​ ​null​,
 city ​VARCHAR​(​50​) ​not​ ​null​,
 ​state​ ​char​(​2​) ​not​ ​null​,
 street ​VARCHAR​(​50​) ​not​ ​null​,
 zip ​integer​ ​not​ ​null​,
 username ​VARCHAR​(​50​),
 ​password​ ​VARCHAR​(​50​),
 email ​VARCHAR​(​50​),
 acc_creation_date ​timestamp​,
 phone_number ​bigint​ ​not​ ​null

);

 ​CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ employee (
 employee_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 fname ​VARCHAR​(​50​) ​not​ ​null​,
 lname ​VARCHAR​(​50​) ​not​ ​null​,
 city ​VARCHAR​(​11​) ​not​ ​null​,
 ​state​ ​VARCHAR​(​50​) ​not​ ​null​,
 street ​VARCHAR​(​50​) ​not​ ​null​,
 zip ​INT​ ​not​ ​null​,
 phone_number ​bigint​ ​not​ ​null
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ delivery_address (
 address_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 city ​VARCHAR​(​50​) ​not​ ​null​,

184

 street ​VARCHAR​(​50​) ​not​ ​null​,
 ​state​ ​VARCHAR​(​50​) ​not​ ​null​,
 zip ​INT​ ​not​ ​null
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ flower_product (
 product_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 product_name ​VARCHAR​(​50​) ​not​ ​null​,
 purchase_price ​decimal​(​12​,​2​) ​not​ ​null​,
 sell_price ​decimal​(​12​,​2​) ​not​ ​null​,
 color ​VARCHAR​(​50​) ​not​ ​null​,
 ​length​ ​DECIMAL​(​4​,​2​) ​not​ ​null​,
 product_image ​VARCHAR​(​24​) ​not​ ​null​,
 ​description​ ​VARCHAR​(​255​) ​not​ ​null
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ order_status (
 status_id ​INT​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 ​status​ ​VARCHAR​(​50​) ​not​ ​null
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ payment_type (
 payment_type_id ​INT​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 ​description​ ​VARCHAR​(​50​) ​not​ ​null
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ supplier (
 supply_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 vendor_name ​VARCHAR​(​50​) ​not​ ​null​,
 city ​VARCHAR​(​50​) ​not​ ​null​,
 ​state​ ​VARCHAR​(​50​) ​not​ ​null​,
 street ​VARCHAR​(​50​) ​not​ ​null​,
 zip ​INT​ ​not​ ​null​,
 phone_number ​bigint​ ​not​ ​null
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ product_order (

185

 p_order_number ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 order_time ​timestamp​ ​not​ ​null​,

 customer_id ​integer​ ​not​ ​null​,
 status_id ​integer​ ​not​ ​null​,
 employee_id ​integer​ ​not​ ​null​,
 address_id ​integer​ ​not​ ​null​,

 ​CONSTRAINT​ fk_order_customer ​FOREIGN KEY​ (customer_id)
 ​REFERENCES​ customer(customer_id),
 ​CONSTRAINT​ fk_order_status ​FOREIGN KEY​ (status_id)
 ​REFERENCES​ order_status(status_id),
 ​CONSTRAINT​ fk_order_employee ​FOREIGN KEY​ (employee_id)
 ​REFERENCES​ employee(employee_id),
 ​CONSTRAINT​ fk_order_address ​FOREIGN KEY​ (address_id)
 ​REFERENCES​ delivery_address(address_id)
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ incoming_payment (
 incoming_payment_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 sales_tax ​DECIMAL​(​10​,​4​) ​not​ ​null

);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ outgoing_payment (
 outgoing_payment_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 supplier_invoice_id ​INT

);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ payment(
 payment_time ​timestamp​ ​not​ ​null​,
 amount ​decimal​(​12​,​2​) ​not​ ​null​ default ​0​,
 payment_type_id ​integer​ ​not​ ​null​,
 incoming_payment_id ​integer​ ​references
incoming_payment(incoming_payment_id) UNIQUE,

186

 outgoing_payment_id ​integer​ ​references
outgoing_payment(outgoing_payment_id) UNIQUE,

 ​CONSTRAINT​ ck_pay_amount ​CHECK​ (amount > ​0​)
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ package (
 package_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 expected_time ​timestamp​ ​not​ ​null​,
 ​message​ ​VARCHAR​(​19​) ​not​ ​null​,
 p_order_number ​INT​ ​not​ ​null​,
 employee_id ​INT​ ​not​ ​null​,

 ​CONSTRAINT​ fk_package_order_number ​FOREIGN KEY​ (p_order_number)
 ​REFERENCES​ product_order(p_order_number),
 ​CONSTRAINT​ fk_package_employee_id ​FOREIGN KEY​ (employee_id)
 ​REFERENCES​ employee(employee_id)
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ recipient (
 recipient_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 fname ​VARCHAR​(​50​) ​not​ ​null​,
 lname ​VARCHAR​(​50​) ​not​ ​null​,
 phone_number ​bigint​ ​not​ ​null​,
 package_id ​integer​ ​not​ ​null​,

 ​CONSTRAINT​ fk_recipient_package ​FOREIGN KEY​ (package_id)
 ​REFERENCES​ package(package_id)
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ requires (
 p_order_number ​integer​ ​not​ ​null​,
 incoming_payment_id ​integer​ ​not​ ​null​ UNIQUE,

187

 ​CONSTRAINT​ pk_supply_product_order
 ​PRIMARY​ ​KEY​ (p_order_number, incoming_payment_id),

 ​CONSTRAINT​ fk_requires_order_number ​FOREIGN KEY​ (p_order_number)
 ​REFERENCES​ product_order(p_order_number),
 ​CONSTRAINT​ fk_requires_payment ​FOREIGN KEY​ (incoming_payment_id)
 ​REFERENCES​ incoming_payment(incoming_payment_id)

);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ work_history (
 history_id ​serial​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 ​start_date​ ​timestamp​ ​not​ ​null​,
 end_date ​timestamp​,
 job_title ​VARCHAR​(​50​) ​not​ ​null​,
 pay_rate ​decimal​(​12​,​2​) ​not​ ​null​,
 employee_id ​INT​ ​not​ ​null​,

 ​CONSTRAINT​ fk_employee_history ​FOREIGN KEY​ (employee_id)
 ​REFERENCES​ employee(employee_id)
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ contains (
 p_order_number ​integer​ ​not​ ​null​,
 product_id ​integer​ ​not​ ​null​,
 quantity_item ​integer​ ​not​ ​null​,
 point_of_sale_price ​decimal​(​12​,​2​),

 ​CONSTRAINT​ pk_contains
 ​PRIMARY​ ​KEY​ (p_order_number, product_id),

 ​CONSTRAINT​ fk_contains_order_number ​FOREIGN KEY​ (p_order_number)
 ​REFERENCES​ product_order(p_order_number),

 ​CONSTRAINT​ fk_contains_product ​FOREIGN KEY​ (product_id)
 ​REFERENCES​ flower_product(product_id)

188

);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ supply_purchase_order (
 supply_purchase_id ​SERIAL​ ​PRIMARY​ ​KEY​ ​not​ ​null​,
 supply_purchase_time ​timestamp​ ​not​ ​null​,
 employee_id ​int​ ​not​ ​null​,
 supply_id ​int​ ​not​ ​null​,

 ​CONSTRAINT​ fk_purchase_order_employee ​FOREIGN KEY​ (employee_id)
 ​REFERENCES​ employee(employee_id),
 ​CONSTRAINT​ fk_purchase_order_supplier ​FOREIGN KEY​ (supply_id)
 ​REFERENCES​ supplier(supply_id)
);

 ​CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ needs (
 supply_purchase_id ​INT​ ​not​ ​null​,
 outgoing_payment_id ​INT​ ​not​ ​null​ UNIQUE,

 ​CONSTRAINT​ pk_supply_needs_payment
 ​PRIMARY​ ​KEY​ (supply_purchase_id, outgoing_payment_id),

 ​CONSTRAINT​ fk_needs_supply_purchase ​FOREIGN KEY​ (supply_purchase_id)
 ​REFERENCES​ supply_purchase_order(supply_purchase_id),
 ​CONSTRAINT​ fk_needs_payment ​FOREIGN KEY​ (outgoing_payment_id)
 ​REFERENCES​ outgoing_payment(outgoing_payment_id)
);

 ​CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ refills (
 supply_purchase_id ​integer​ ​not​ ​null​,
 product_id ​integer​ ​not​ ​null​,
 quantity_item ​integer​ ​not​ ​null​,
 supply_price ​decimal​(​12​,​2​) ​not​ ​null​,

 ​CONSTRAINT​ pk_refills_supply_purchase_product
 ​PRIMARY​ ​KEY​ (supply_purchase_id, product_id),

189

 ​CONSTRAINT​ fk_supply_purchase ​FOREIGN KEY​ (supply_purchase_id)
 ​REFERENCES​ supply_purchase_order(supply_purchase_id),
 ​CONSTRAINT​ fk_product ​FOREIGN KEY​ (product_id)
 ​REFERENCES​ flower_product(product_id)
);

CREATE​ ​TABLE​ ​IF​ ​NOT​ ​EXISTS​ work_shift (
 shift_id ​serial​ ​not​ ​null​,
 employee_id ​integer​ ​not​ ​null​,
 shift_date ​date​ ​not​ ​null​,
 begin_time ​time​ ​not​ ​null​,
 end_time ​time​ ​not​ ​null​,

 ​CONSTRAINT​ pk_employee_shift
 ​PRIMARY​ ​KEY​ (shift_id, employee_id),

 ​CONSTRAINT​ fk_employee_id ​FOREIGN KEY​ (employee_id)
 ​REFERENCES​ employee(employee_id),
 ​-- make sure employee doesn't work same day twice business rule
 ​CONSTRAINT​ id_day_check UNIQUE(employee_id, shift_date)
);

CREATE​ VIEW view_manager_scheduling ​AS
SELECT​ employee.employee_id, employee.fname || ​' '​ || employee.lname ​AS
employee_name,

work_history.pay_rate, work_history.job_title, work_shift.shift_date ​as
day​,
work_shift.begin_time ​as​ shift_start, work_shift.end_time ​as​ shift_end
FROM​ employee
INNER JOIN​ work_history ​ON​ work_history.employee_id = employee.employee_id
INNER JOIN​ work_shift ​ON​ work_shift.employee_id = employee.employee_id
WHERE​ work_history.end_date ​IS​ ​NULL
order by​ employee_id, shift_start
;

CREATE​ VIEW view_number_employees_working ​AS

190

SELECT​ work_history.job_title, ​COUNT​(work_history.job_title)
count_of_job_type, work_shift.shift_date ​as​ ​day
FROM​ employee
INNER JOIN​ work_history ​ON​ work_history.employee_id = employee.employee_id
INNER JOIN​ work_shift ​ON​ work_shift.employee_id = employee.employee_id
GROUP BY​ work_history.job_title, work_shift.shift_date
ORDER BY​ work_shift.shift_date
;

CREATE​ VIEW view_positive_revenue ​AS
SELECT​ customer.fname || ​' '​ || customer.lname ​as​ customer_name,
to_char(​MAX​(payment.payment_time::​date​), ​'MM-DD-YYYY'​) last_bought,
SUM​(payment.amount) revenue
FROM​ incoming_payment
INNER JOIN​ payment ​ON​ incoming_payment.incoming_payment_id =
payment.incoming_payment_id

INNER JOIN​ requires ​ON​ requires.incoming_payment_id =
incoming_payment.incoming_payment_id

INNER JOIN​ product_order ​ON​ requires.p_order_number =
product_order.p_order_number

LEFT JOIN​ customer ​ON​ product_order.customer_id = customer.customer_id
GROUP BY​ customer_name
ORDER BY​ customer_name
;

CREATE​ VIEW view_expenditure ​AS
SELECT​ supplier.vendor_name, to_char(​MAX​(payment.payment_time::​date​),
'MM-DD-YYYY'​) last_paid_to, ​SUM​(payment.amount) expenditure
FROM​ outgoing_payment
INNER JOIN​ payment ​ON​ outgoing_payment.outgoing_payment_id =
payment.outgoing_payment_id

INNER JOIN​ needs ​ON​ needs.outgoing_payment_id =
outgoing_payment.outgoing_payment_id

INNER JOIN​ supply_purchase_order ​ON
supply_purchase_order.supply_purchase_id = needs.supply_purchase_id

LEFT JOIN​ supplier ​ON​ supply_purchase_order.supply_id = supplier.supply_id
GROUP BY​ supplier.vendor_name

191

;

CREATE​ ​OR​ ​REPLACE​ ​PROCEDURE​ fill_work_shift(
 startDate ​timestamp
)

LANGUAGE​ plpgsql
AS​ $$
DECLARE

startTime ​time​ := ​'8:00 AM'​;
endDate ​date​ := startDate + ​'7 Days'​;
chosen_emp_id ​int​ := ​1​;
BEGIN

 FOR ​COUNTER​ ​IN​ ​1​..​30​ ​LOOP
 chosen_emp_id := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*) ​FROM
employee))));

 ​IF​ chosen_emp_id = ​0​ ​THEN
 chosen_emp_id := ​1​; ​-- EDGE CASE RANDOM PK-0
 ​END​ ​IF​;

 startTime := date_trunc(​'hour'​, (​select​ ​time​ ​' 8:00:00'​ +
 random() * (​time​ ​' 18:00:00'​ -
 ​time​ ​'8:00:00'​)));

 ​INSERT​ ​INTO​ work_shift(employee_id, shift_date, begin_time,
end_time) ​values
 (chosen_emp_id,

 (​select​ startDate +
 random() * (endDate -

 startDate)),

 startTime,

 startTime + ​'4 hours'​)
 ​ON​ CONFLICT ​ON​ ​CONSTRAINT​ id_day_check DO NOTHING;
 ​END​ ​LOOP​;
END​;
$$;

192

CREATE​ ​OR​ ​REPLACE​ ​PROCEDURE​ fillOutgoingPaymentsRandomly()
LANGUAGE​ plpgsql
AS​ $$
DECLARE

outgoing_payment_insert ​integer​ := ​1​;
supply_order_num ​integer​ := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*)
FROM​ supply_purchase_order) + ​1​)));
BEGIN

 FOR ​COUNTER​ ​IN​ ​1​..​70​ ​LOOP
 supply_order_num := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*)
FROM​ supply_purchase_order))));
 ​IF​ supply_order_num = ​0​ ​THEN
 supply_order_num := ​1​; ​-- EDGE CASE RANDOM PK-0
 ​END​ ​IF​;

 ​insert​ ​into​ outgoing_payment(supplier_invoice_id) ​values
((​floor​(random() * ​1000000​ + ​1​)::​int​));

 outgoing_payment_insert := ((​SELECT​ ​count​(*) ​FROM
outgoing_payment));

 ​insert​ ​into​ needs(supply_purchase_id, outgoing_payment_id) ​values
(supply_order_num, outgoing_payment_insert);

 ​insert​ ​into​ payment(payment_time, amount, payment_type_id,
outgoing_payment_id)

 ​values​ ((​select​ ​timestamp​ ​'2000-01-10 20:00:00'​ +
 random() * (​timestamp​ ​'2020-01-20 20:00:00'​ -
 ​timestamp​ ​'2000-01-10 10:00:00'​)), (​SELECT
floor​(random() * ​10​ + ​15​)), (​SELECT​ ​floor​(random() * ​10​ + ​1​)),
outgoing_payment_insert);

 ​END​ ​LOOP​;
END​;
$$;

CREATE​ ​OR​ ​REPLACE​ ​PROCEDURE​ fillIncomingPaymentsRandomly()

193

LANGUAGE​ plpgsql
AS​ $$
DECLARE

incoming_payment_insert ​integer​ := ​1​;
product_order_num ​integer​ := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*)
FROM​ product_order) + ​1​)));
BEGIN

 FOR ​COUNTER​ ​IN​ ​1​..​100​ ​LOOP
 product_order_num := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*)
FROM​ product_order))));
 ​IF​ product_order_num = ​0​ ​THEN
 product_order_num := ​1​; ​-- EDGE CASE RANDOM PK-0
 ​END​ ​IF​;

 ​insert​ ​into​ incoming_payment(sales_tax) ​values​ (.​0700​);

 incoming_payment_insert := ((​SELECT​ ​count​(*) ​FROM
incoming_payment));

 ​insert​ ​into​ requires(p_order_number, incoming_payment_id) ​values
(product_order_num, incoming_payment_insert);

 ​insert​ ​into​ payment(payment_time, amount, payment_type_id,
incoming_payment_id)

 ​values​ ((​select​ ​timestamp​ ​'2000-01-10 20:00:00'​ +
 random() * (​timestamp​ ​'2020-01-20 20:00:00'​ -
 ​timestamp​ ​'2000-01-10 10:00:00'​)), (​SELECT
floor​(random() * ​10​ + ​15​)), (​SELECT​ ​floor​(random() * ​10​ + ​1​)),
incoming_payment_insert);

 ​END​ ​LOOP​;
END​;
$$;

CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ check_work_shift()
RETURNS​ TRIGGER ​AS​ $BODY$
DECLARE

194

placehold ​time​ := ​'8:00 AM'​;
BEGIN

 ​IF​ OLD.begin_time > OLD.end_time ​THEN
 placehold := end_time;

 ​UPDATE​ work_shift ​set​ begin_time = end_time, end_time = placehold
 ​WHERE​ work_shift.shift_id = NEW.shift_id;
 ​END​ ​IF​;
 ​RETURN​ NEW;
END​;
$BODY$ ​LANGUAGE​ plpgsql;

DROP​ TRIGGER ​IF​ ​EXISTS​ time_switch ​ON​ work_shift;
CREATE​ TRIGGER time_switch
before​ ​insert​ ​ON​ work_shift
FOR EACH ​ROW​ ​EXECUTE​ ​PROCEDURE​ check_work_shift();

5.2 Programming Sections

This section will go over the server side, middle-tier-and and client-side programming I used

when implementing my application. My server side programming was done with Node.js with the

express framework, the middle tier programming was done using a package for node called pg

that allows node.js to connect to postgres and do sql queries. My client side programming was

complete using HTML, CSS, Bootstrap, JQuery, and javascript.

5.2.1 Server-side Programming

This section is the same code as the previous section, but I will go into more detail over the

views and subprograms purposes as it relates to our database.

CREATE​ VIEW view_manager_scheduling ​AS
SELECT​ employee.employee_id, employee.fname || ​' '​ || employee.lname ​AS
employee_name,

work_history.pay_rate, work_history.job_title, work_shift.shift_date ​as
day​,
work_shift.begin_time ​as​ shift_start, work_shift.end_time ​as​ shift_end
FROM​ employee

195

INNER JOIN​ work_history ​ON​ work_history.employee_id = employee.employee_id
INNER JOIN​ work_shift ​ON​ work_shift.employee_id = employee.employee_id
WHERE​ work_history.end_date ​IS​ ​NULL
order by​ employee_id, shift_start
;

This view was used to abstract away a join between the work_shift, employee, and work history
for the front end calendar. I built several of the sections of the manager interface by querying
the view rather than having to join all 3 everytime I queried postgres.

CREATE​ VIEW view_number_employees_working ​AS
SELECT​ work_history.job_title, ​COUNT​(work_history.job_title)
count_of_job_type, work_shift.shift_date ​as​ ​day
FROM​ employee
INNER JOIN​ work_history ​ON​ work_history.employee_id = employee.employee_id
INNER JOIN​ work_shift ​ON​ work_shift.employee_id = employee.employee_id
GROUP BY​ work_history.job_title, work_shift.shift_date
ORDER BY​ work_shift.shift_date
;

This view allows a manager to see the number of employees working by job type each day.

CREATE​ VIEW view_positive_revenue ​AS
SELECT​ customer.fname || ​' '​ || customer.lname ​as​ customer_name,
to_char(​MAX​(payment.payment_time::​date​), ​'MM-DD-YYYY'​) last_bought,
SUM​(payment.amount) revenue
FROM​ incoming_payment
INNER JOIN​ payment ​ON​ incoming_payment.incoming_payment_id =
payment.incoming_payment_id

INNER JOIN​ requires ​ON​ requires.incoming_payment_id =
incoming_payment.incoming_payment_id

INNER JOIN​ product_order ​ON​ requires.p_order_number =
product_order.p_order_number

LEFT JOIN​ customer ​ON​ product_order.customer_id = customer.customer_id
GROUP BY​ customer_name
ORDER BY​ customer_name
;

196

This view shows all positive payments that are incoming to the store from customer orders. My
revenue report was partially generated from the view here.

CREATE​ VIEW view_expenditure ​AS
SELECT​ supplier.vendor_name, to_char(​MAX​(payment.payment_time::​date​),
'MM-DD-YYYY'​) last_paid_to, ​SUM​(payment.amount) expenditure
FROM​ outgoing_payment
INNER JOIN​ payment ​ON​ outgoing_payment.outgoing_payment_id =
payment.outgoing_payment_id

INNER JOIN​ needs ​ON​ needs.outgoing_payment_id =
outgoing_payment.outgoing_payment_id

INNER JOIN​ supply_purchase_order ​ON
supply_purchase_order.supply_purchase_id = needs.supply_purchase_id

LEFT JOIN​ supplier ​ON​ supply_purchase_order.supply_id = supplier.supply_id
GROUP BY​ supplier.vendor_name
;

This view shows all outgoing payments to suppliers and their names. My revenue report
generation also used this view.

CREATE​ ​OR​ ​REPLACE​ ​PROCEDURE​ fill_work_shift(
 startDate ​timestamp
)

LANGUAGE​ plpgsql
AS​ $$
DECLARE

startTime ​time​ := ​'8:00 AM'​;
endDate ​date​ := startDate + ​'7 Days'​;
chosen_emp_id ​int​ := ​1​;
BEGIN

 FOR ​COUNTER​ ​IN​ ​1​..​30​ ​LOOP
 chosen_emp_id := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*) ​FROM
employee))));

 ​IF​ chosen_emp_id = ​0​ ​THEN
 chosen_emp_id := ​1​; ​-- EDGE CASE RANDOM PK-0
 ​END​ ​IF​;

197

 startTime := date_trunc(​'hour'​, (​select​ ​time​ ​' 8:00:00'​ +
 random() * (​time​ ​' 18:00:00'​ -
 ​time​ ​'8:00:00'​)));

 ​INSERT​ ​INTO​ work_shift(employee_id, shift_date, begin_time,
end_time) ​values
 (chosen_emp_id,

 (​select​ startDate +
 random() * (endDate -

 startDate)),

 startTime,

 startTime + ​'4 hours'​)
 ​ON​ CONFLICT ​ON​ ​CONSTRAINT​ id_day_check DO NOTHING;
 ​END​ ​LOOP​;
END​;
$$;

This function takes a day as a parameter then randomly generates shifts to be input into the
work_shift table.

CREATE​ ​OR​ ​REPLACE​ ​PROCEDURE​ fillOutgoingPaymentsRandomly()
LANGUAGE​ plpgsql
AS​ $$
DECLARE

outgoing_payment_insert ​integer​ := ​1​;
supply_order_num ​integer​ := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*)
FROM​ supply_purchase_order) + ​1​)));
BEGIN

 FOR ​COUNTER​ ​IN​ ​1​..​70​ ​LOOP
 supply_order_num := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*)
FROM​ supply_purchase_order))));
 ​IF​ supply_order_num = ​0​ ​THEN
 supply_order_num := ​1​; ​-- EDGE CASE RANDOM PK-0
 ​END​ ​IF​;

198

 ​insert​ ​into​ outgoing_payment(supplier_invoice_id) ​values
((​floor​(random() * ​1000000​ + ​1​)::​int​));

 outgoing_payment_insert := ((​SELECT​ ​count​(*) ​FROM
outgoing_payment));

 ​insert​ ​into​ needs(supply_purchase_id, outgoing_payment_id) ​values
(supply_order_num, outgoing_payment_insert);

 ​insert​ ​into​ payment(payment_time, amount, payment_type_id,
outgoing_payment_id)

 ​values​ ((​select​ ​timestamp​ ​'2000-01-10 20:00:00'​ +
 random() * (​timestamp​ ​'2020-01-20 20:00:00'​ -
 ​timestamp​ ​'2000-01-10 10:00:00'​)), (​SELECT
floor​(random() * ​10​ + ​15​)), (​SELECT​ ​floor​(random() * ​10​ + ​1​)),
outgoing_payment_insert);

 ​END​ ​LOOP​;
END​;
$$;

This function randomly generates outgoing payments in the store over a range of 20 years. On
the front end there is a button that calls this function to help show that my reports were dynamic.

CREATE​ ​OR​ ​REPLACE​ ​PROCEDURE​ fillIncomingPaymentsRandomly()
LANGUAGE​ plpgsql
AS​ $$
DECLARE

incoming_payment_insert ​integer​ := ​1​;
product_order_num ​integer​ := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*)
FROM​ product_order) + ​1​)));
BEGIN

 FOR ​COUNTER​ ​IN​ ​1​..​100​ ​LOOP
 product_order_num := ((​SELECT​ ​floor​(random() * (​SELECT​ ​count​(*)
FROM​ product_order))));
 ​IF​ product_order_num = ​0​ ​THEN
 product_order_num := ​1​; ​-- EDGE CASE RANDOM PK-0
 ​END​ ​IF​;

199

 ​insert​ ​into​ incoming_payment(sales_tax) ​values​ (.​0700​);

 incoming_payment_insert := ((​SELECT​ ​count​(*) ​FROM
incoming_payment));

 ​insert​ ​into​ requires(p_order_number, incoming_payment_id) ​values
(product_order_num, incoming_payment_insert);

 ​insert​ ​into​ payment(payment_time, amount, payment_type_id,
incoming_payment_id)

 ​values​ ((​select​ ​timestamp​ ​'2000-01-10 20:00:00'​ +
 random() * (​timestamp​ ​'2020-01-20 20:00:00'​ -
 ​timestamp​ ​'2000-01-10 10:00:00'​)), (​SELECT
floor​(random() * ​10​ + ​15​)), (​SELECT​ ​floor​(random() * ​10​ + ​1​)),
incoming_payment_insert);

 ​END​ ​LOOP​;
END​;
$$;

This procedure randomly generates incoming payments and inserts them into the payments
table. It is called by a button on my front end.

CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ check_work_shift()
RETURNS​ TRIGGER ​AS​ $BODY$
DECLARE

placehold ​time​ := ​'8:00 AM'​;
BEGIN

 ​IF​ OLD.begin_time > OLD.end_time ​THEN
 placehold := end_time;

 ​UPDATE​ work_shift ​set​ begin_time = end_time, end_time = placehold
 ​WHERE​ work_shift.shift_id = NEW.shift_id;
 ​END​ ​IF​;
 ​RETURN​ NEW;
END​;
$BODY$ ​LANGUAGE​ plpgsql;

DROP​ TRIGGER ​IF​ ​EXISTS​ time_switch ​ON​ work_shift;

200

CREATE​ TRIGGER time_switch
before​ ​insert​ ​ON​ work_shift
FOR EACH ​ROW​ ​EXECUTE​ ​PROCEDURE​ check_work_shift();

This is a trigger I used to make my randomly generated work shifts be consistent. If a end time
of a shift appears between a beginning time of a shift it will switch the two times so that the data
going into the database is consistent.

5.2.2 Middle Tier Programming

The middle tier of my database was done using node.js with the express framework, and a
package for node called pg. PG is a package for node that allows for an easy connection
between postgres and allows queries to be performed easily.

Code for connecting to database
With Node and a package in it called PG connecting to a database is really simple to get setup
and started.
The Code:
const​ { ​Client​ } = ​require​(​'pg'​);
const​ ​client​ = ​new​ ​Client​({
 ​user:​ ​'joey'​,
 ​password:​ ​'password'​,
 ​host:​ ​'localhost'​,
 ​port:​ ​5432​,
 ​database:​ ​'flowershop'​,
 });

 ​client​.​connect​();

Essentially what this does is creates an object constructor that can be used to create objects of
the client type associated with the pg library. I then create a client object that holds the
information of my database that can be queried to.

Code sections which use view

router​.​post​(​'/getEmployeeForDay'​, (​req​, ​res​) ​=>​ {
 ​let​ ​shift_day​ = ​req​.​body​.​day​;
 ​console​.​log​(​shift_day​);
 ​client​.​query​(​`

201

 SELECT employee_id, employee_name, to_char(shift_start, 'FMHH:MI AM')

shift_start, to_char(shift_end, 'FMHH:MI AM') shift_end

 from view_manager_scheduling

 WHERE day = $1

 ORDER BY job_title

`​, [​shift_day​], (​err​, ​queryRes​) ​=>​ {
 ​if​ (​err​) {
 ​console​.​log​(​err​.​stack​)
 ​res​.​end​()
 } ​else​ {
 ​console​.​table​(​queryRes​.​rows​);
 ​res​.​send​(​queryRes​.​rows​);
 }

 }

)

})

router​.​post​(​'/allEmployeesThisMonth'​, ​function​ (​req​, ​res​) {
 ​console​.​log​(​req​.​body​);
 ​client​.​query​(
 ​`
 SELECT employee_id, employee_name, day, shift_start, shift_end

 FROM view_manager_scheduling

 WHERE EXTRACT(MONTH from day::DATE) = EXTRACT(MONTH from $1::DATE)

 ORDER BY shift_start

 `​,
 [​req​.​body​.​thismonth​],
 (​err​, ​QueryRes​) ​=>​ {
 ​if​ (​err​) {
 ​console​.​log​(​err​.​stack​);
 ​res​.​send​(​'allEmployeesThisMonth Post Error'​);
 } ​else​ {
 ​console​.​table​(​'Shift Post Success'​);
 ​console​.​table​(​QueryRes​.​rows​);
 ​res​.​send​(​JSON​.​stringify​(​QueryRes​.​rows​));
 }

202

 }

);

});

router​.​get​(​'/getRevenue'​, (​req​, ​res​) ​=>​ {
 ​client​.​query​(​`select * from view_positive_revenue LIMIT 12`​,
 (​err​, ​queryRes​) ​=>​ {
 ​if​ (​err​) {
 ​console​.​log​(​err​.​stack​)
 ​res​.​end​()
 } ​else​ {
 ​console​.​table​(​queryRes​.​rows​);
 ​res​.​send​(​JSON​.​stringify​(​queryRes​.​rows​))
 }

 }

)

})

router​.​get​(​'/getTotalRevenue'​, (​req​, ​res​) ​=>​ {
 ​client​.​query​(​`SELECT SUM(revenue) as total_revenue FROM
view_positive_revenue`​,
 (​err​,​queryRes​) ​=>​ {
 ​if​ (​err​){
 ​console​.​log​(​err​.​stack​)
 ​res​.​end​()
 } ​else​ {
 ​res​.​send​(​JSON​.​stringify​(​queryRes​.​rows​[​0​]))
 }

 }

)

})

router​.​get​(​'/getExpenses'​, (​req​, ​res​) ​=>​ {

 ​client​.​query​(​`SELECT * FROM view_expenditure`​,

203

 (​err​, ​queryRes​) ​=>​ {
 ​if​ (​err​) {
 ​console​.​log​(​err​.​stack​)
 ​res​.​end​()
 } ​else​ {
 ​res​.​send​(​JSON​.​stringify​(​queryRes​.​rows​))
 }

 }

)

})

router​.​get​(​'/getTotalExpenses'​, (​req​, ​res​) ​=>​{
 ​client​.​query​(​` select SUM(expenditure) as total_expenses
 FROM view_expenditure `​,
 (​err​, ​queryRes​) ​=>​{
 ​if​ (​err​) {
 ​console​.​log​(​err​.​stack​)
 ​res​.​end​()
 } ​else​ {
 ​res​.​send​(​JSON​.​stringify​(​queryRes​.​rows​[​0​]))
 }

 }

)

})

router​.​get​(​'/getProfit'​, (​req​, ​res​) ​=>​ {
 ​client​.​query​(​`
 SELECT SUM(revenue) - (

 select SUM(expenditure)

 FROM view_expenditure

) AS total

 FROM view_positive_revenue

 ;

 `​, (​err​, ​queryRes​) ​=>​ {
 ​if​ (​err​) {
 ​console​.​log​(​err​.​stack​)

204

 ​res​.​end​()
 } ​else​ {
 ​res​.​send​(​JSON​.​stringify​(​queryRes​.​rows​[​0​]))
 }

 }

)

})

5.2.3 Client-side programming

My client side code was pretty extensive and there is a lot of interaction on the interface with the

user. I’ll provide a few snippets showing the interaction but not all could fit here reasonably.

 ​$​(​'#dateRightArrow'​).​click​(​function​ () {
 ​let​ ​currentMonday​ = ​$​(​"#day-text-Monday"​).​html​();
 ​console​.​log​(​currentMonday​);
 ​let​ ​mondayMonth​ = ​$​(​'#month-text'​).​html​()
 ​let​ ​queryString​ = ​mondayMonth​ + ​" "​ + ​currentMonday​ + ​" "​ +
"2020"​;
 ​console​.​log​(​queryString​);
 ​// console.log('got to here')
 ​fetch​(​'/getCalendarBlock'​, {
 ​method:​ ​'POST'​,
 ​headers:​ {
 ​'Content-Type'​:​ ​'application/json'​,
 },

 ​body:​ ​JSON​.​stringify​({ ​sentDay:​ ​queryString​, ​timeDiff:​ ​7
})

 })

 .​then​((​res​) ​=>​ ​res​.​json​())
 .​then​((​res​) ​=>​ {
 ​$​(​'#day-text-Monday'​).​html​(​res​[​0​].​weekday​)
 ​$​(​'#day-text-Tuesday'​).​html​(​res​[​1​].​weekday​)
 ​$​(​'#day-text-Wednesday'​).​html​(​res​[​2​].​weekday​)
 ​$​(​'#day-text-Thursday'​).​html​(​res​[​3​].​weekday​)

205

 ​$​(​'#day-text-Friday'​).​html​(​res​[​4​].​weekday​)
 ​$​(​'#day-text-Saturday'​).​html​(​res​[​5​].​weekday​)
 ​$​(​'#day-text-Sunday'​).​html​(​res​[​6​].​weekday​)

 ​if​ (​res​[​0​].​weekday​ < ​currentMonday​) {
 ​let​ ​oldMonth​ = ​dateObj​.​getMonth​()
 ​let​ ​monthChange​ = ​dateObj​.​setMonth​(​oldMonth​ + ​1​)
 ​let​ ​monthNum​ = ​dateObj​.​getMonth​()
 ​$​(​'#month-text'​).​html​(​monthNames​[​monthNum​])
 }

 })

 .​catch​(​err​ ​=>​ ​console​.​log​(​err​))
})

This is a function that gets called whenever the right arrow on the front end gets clicked.

Essentially it shifts all the shown days over by one. I discovered postgres handles date and time

manipulation significantly better than javascripts built in options, so I bound this button to a

query that gets the days of the week and returns them to the front end.

 ​function​ ​updateList​() {

 ​$​(​'.chosen-day-text'​).​html​(​dateObj​.​toDateString​())

 ​fetch​(​'getEmployeeForDay'​, {
 ​method:​ ​'POST'​,
 ​headers:​ {
 ​'Content-Type'​:​ ​'application/json'​,
 },

 ​body:​ ​JSON​.​stringify​({ ​day:​ ​dateObj​.​toDateString​() })
 })

 .​then​(​response​ ​=>​ ​response​.​json​())
 .​then​(​response​ ​=>​ {
 ​$​(​'#DaySchedule'​).​html​(​''​);
 ​//console.log(response);
 ​for​ (​reply​ ​in​ ​response​) {
 ​$​(​'#DaySchedule'​).​append​(​`

206

 <a class="right-side-emp-list"

id="emp-id-right-column-​${​response​[​reply​].​employee_id​}​"
style="text-decoration: none;" href="#">

 <div class="col justify-content-between py-1">

 <h3

class="text-dark">​${​response​[​reply​].​employee_name​}​</h3>
 <h3

class="text-dark">​${​response​[​reply​].​shift_start​}​ -
${​response​[​reply​].​shift_end​}​</h3>
 </div>

 `​)
 }

 })

 }

This is a function that gets called everytime one of the calendar days along the bottom

of my interface is clicked. I use a “template literal” that lets me write html inside of a

javascript function and insert a query response into a page. This allows my page to be

fairly dynamic, as every time a day is clicked it destroys the old list of names shown on

the right and then inserts the new list of names scheduled for the day instead.

5.3 Survey Questions

Of the outcomes I would put the order of knowledge from best to worst as 2, 1, 3, 4 but

all were improved upon in this class. I genuinely feel I learned all of these well enough

to put a 10 for each, but there’s always room for improvement.

Outcome Joseph Shafer’s Answers

An ability to analyze a problem, and identify

and define the computing requirements and

10

207

specifications appropriate to its solution.

An ability to design, implement and evaluate

a computer-based system, process,

component, or program to meet desired

needs. An ability to understand the analysis,

design, and implementation of a

computerized solution to a real-life problem.

10

An ability to communicate effectively with a

range of audiences. An ability to write a

technical document such as a software

specification white paper or a user manual.

10

An ability to apply mathematical foundations,

algorithmic principles, and computer science

theory in the modeling and design of

computer-based systems in a way that

demonstrates comprehension of the tradeoffs

involved in design choices.

10

208

