15.2 Tree Balancing: AVL trees
Order of insertion into binary search tree greatly affects balance
best order results in balanced tree
worst order results in linked list (lopsided tree)
AVL trees are a solution
named for creators, Russian mathematicians in the 1960s
Georgii Maksimovich Adel'son-Vel'skii
Evgenii Mikhailovich Landis
height-balanced tree
specialized binary search tree that has a balance factor
balance factor reflects the height difference of a node's
subtrees
balance factor is calculated by taking height of left subtree
and subtracting height of right subtree
balance factor is only allowed to be -1, 0 or 1
keeps height difference to at most 1
tree must be rebalanced when balance factor exceeds
these values
AVL Tree ADT
Member variables
a binary search tree that maintains the balance factor
Basic Operations
use the constructor, empty(), search() and traversals from
BST
insert an item & rebalance if needed
delete an item & rebalance of needed
AVL tree node
need to add a member variable for balance factor
so have data, balance factor and pointers to left & right children
Example trees w/ balance factors

Rebalance Rotations
4 rotations to restore balance factor

Right Rotation

Left Rotation

Left-Right Rotation

2 rotations needed

Restores balance factor

Right-Left Rotation

Again, 2 rotations
Rotation Details - Insertion case
Apply rotation when node's balance factor is +2 or -2 & is nearest ancestor to inserted node
Cases:
 Right rotation
 inserted node is in left subtree of left child of unbalanced node (+2)
 Left rotation
 inserted node is in right subtree of right child of unbalanced node (-2)
 Left-right rotation
 inserted node is in right subtree of left child of unbalanced node (+2)
 Right-left rotation
 inserted node is in left subtree of right child of unbalanced node (-2)
Rotation Pseudocode
Right Rotation
A is unbalanced node
B is left child
set parent of B to A's parent
set parent of A to B
set A's left to B's right
(value in B's right is between value of A & value of B)
set B's right to A
Left Rotation
A is unbalanced node
B is right child
set parent of B to A's parent
set parent of A to B
set A's right to B's left
set B's left to A

Left Right Rotation

via two steps

rotate left at B (node A's left child)
rotate right at node A
Alternate Method:
set C's parent to A's parent
set A's parent to C
set B's parent to C
set B's right to X (C's left)
set A's left to Y (C's right)
set C's left to B
set C's right to B

Right-left rotation
 rotate right at B (node A's right child)
 rotate left at node A

Rotation on Deletion
 more difficult notations than on insertion
 can delete nodes & leaves
Runtime
 since tree is balanced, searches are O(log2n)
 overhead to rebalance
 increases inserts delete runtime
 studies show 45% of inserts require rotations
 approx half are double rotations
 if searching is primary operation, fast search outweighs slower insert