686 Chapter 12 Advanced Implementations of Tables

(a)

FIQURE 12-42

(a) Before; (b) during; and (c) after a double rotation

Before rotation After rotation

FIGQURE 12-43

Before and after a double rotation that decreases the tree’s height

12.2 Hashing

The binary search tree and its balanced variants, such as 2-3, 2-3-4, red-black,
and AVL trees, provide excellent implementations of the ADT table. They
allow you to perform all of the table operations quite cificiently. If, for exam-
ple, a table contains 10,000 items, the operations tableRetrieve, tableln-
sert, and tableDelete cach require approximately log, 10,000 = 13 steps. As
impressive as this efficiency may be, situations do oceur for which the search-
tree implementations are pot adequate.

As you know, time can be vital. For example, when a person calls the 911
emergency system, the system detects the caller’s telephone number and

scarches a database for the caller’s address. Similarly, an air traffic control
system scarches a database of flight information, given a flight number. Clearly
these searches must be rapid.

A radically different strategy is necessary to locate (and insert or delete) an Table operations
item virtually instantaneously, Imagine an array table of N items—with cach without searches
array slot capable of holding a single table item—and a scemingly magical box

tableInsert (in newItem: TableItemType)

i = the array index that the address calculator
gives you for newItem’'s search key
tablef(i] = pewItem

An insertion is O(1); that is, it requires constant time.

You also use the address calculator for the tableRetrieve and
tableDelete operations, If you want to retrieve an item thar has a particular
search key, you simply ask the address calculator to tell you where it would
insert such an item. Because you would have inscrted the item carlier by using
the tablernsert algorithm just given, if the desired item is present in the
table, it will be in the array location thar the address calculator specifies,

0

Address

Search key calculator

Py
§E

n-1

Array table

[FIGURE 12-a4 B8

Address calculator

Thus, the retrieval operation appears in pseudocode as follows:

tableRetrieve(in searchKey:KeyType,
out tablo.rtm:mblortutypg)
throw TableException

Hashing 687

688 Chapter 12 Advanced Implementations of Tables

i = the array index that the address calculator
gives you for an item whose search key
equals searchKey

if (table[i].getKey() != searchKey)
Throw a TableException

else
tableItem = table(i]

Similarly, the pseudocode for the deletion operation is

tableDelete(in searchKey:KeyType)
throw TableException

i = the array index that the address calculator
gives you for an item whose search key
equals searchKey

if (table[i).getKey() != searchKey)
Throw a TableException

else
Delete the item from tableji]

It thus appears that you can perform the operations tableRetrieve,
tableInsert, and tableDelete virtually instantancously. You never have to
scarch for an item; instead, you simply let the address calculator determine
where the item should be. The amount of time required to carry out the oper-
ations is O(1) and depends only on how quickly the address calculator can
perform this compurtation.

If you are to implement such a scheme, vou must, of course, be able 10
construct an address calculator that can, with very little work, tell you where a

A hash function tells &iven item should be. Address calculators are actually not as mysterious as they

you where to place Seemy in fact, many exist that can approximate the idealized behavior just

an item in an array described. Such an address calculator is usually referred to as a hash function.

called a hashtable The scheme just described is an idealized description of a technique known as
hashing, and the array table is called the hash table.

To understand how a hash function works, consider the 911 emergency
system mentioned carlier. If, for cach person, the system had a record whose
search key was the person’s telephone number, it could store these records in a
search tree. Although searching a tree would be fast, faster access to a particu-
lar record would be possible by storing the records in an array table, as fol-
lows, You store the record for a person whose telephone number is 7 into
tableft]. Retrieval of the record, then, is almost instantancous given its scarch
key . For example, you can store the record for the telephone number 123-
4567 in table[1234567). If you can spare 10 million memory locations for
table, this approach is fine. You nced not use memory so extravagantly, how-
ever, because 911 systems are regional. If you consider only one relephone

Hashing 689

exchange, for example, you can store the record for the number 123-4567 in
table[4567) and get by with an array table of 10,000 locations.

The transformation of 1234567 into an array index 4567 is a simple
cxample of a hash function. A hash function & must take an arbitrary integer ¥
and map it into an integer that you can usc as an array index. In our example,
such indexes would be in the range 0 through 9999. That is, & is a function
such that for any integer X,

b x) = i, where £ is an integer in the range 0 through 9999 A hash function

3 . maps an integer into
Because the database contains records for every telephone number in 3 an array index

particular exchange, the array table is completely full. In this sense, our
example is not typical of hashing applications and scrves only to illustrate the
idea of a hash function. What if many fewer records were in the array? Con-
sider, for example, an air traffic control system that stores a record for cach
current flight according to its four-digit flight number. You could store a
record for Flight 4567 in table[4567], but you still would need an array of
10,000 locations, even if only 50 flights were current.

A different hash function would save memory. If you allow space for a
maximum of 101 flights, for example, so that the array table has indexes 0
through 100, the necessary hash function # should map any four-digit flight
number into an integer in the range 0 through 100,

If you have such a hash function h—and you will see several suggestions
for hash functions later—the table operations are ¢asy 1o write. For example, in
the tableretrieve algorithm, the step

i = the array index that the address calculator
gives you for an item whose search key
equals searchKey

is implemented simply as
i = h(searchKey)

In the previous example, searchKey would be the flight number.

The table operations appear to be virtually instantancous. But is hashing
really as good as it sounds? If it really were this good, there would have been
fittle reason for developing all those other rable implementations. Hashing
would beat them hands down!

Why is hashing not quite as simple as it scems? You might first notice that
since the hashing scheme stores the items in an array, it would appear to suffer
from the familiar problems associated with a fixed-size implementation. Obvi-
ously, the hash rable must be large enough to contain all of the items that you
want to store. This requirement is not the crux of the implementation’s diffi-
culty, however, for—as you will see later—there are ways to allow the hash
table to grow dynamically. The implementation has a major pitfall, cven given
the assumption that the number of items to be stored will never exceed the

e 2 e

690 Chapter 12

A perfect hash func-
tion maps each
search key into a
unique location of
the hash table

A perfect hash func-
tion is possible if you
know all the search
keys

Collisions occur
when the hash func-
tion maps more than
one item into the
same array location

Requirements for &
hash function

it 1s sufficient for
hash functions to
operate on integers

Advanced Implementations of Tables

Ideally, vou want the hash function to map cach x into a unique integer §,
The hash function in the ideal situation is called a perfect hash function. Iy
fact, it is possible to construct perfect hash functions if you know all of the
possible search keys that acrnally occur in the table. You have this knowledge
for the 911 example, since everyone is in the database, but not for the air
traffic control example. Usually, you will not know the values of the search
keys in advance.

In practice, a hash function can map two or more scarch keys x and yinto
the same integer. That is, the hash function tells you to store two or more
items in the same array location tablefi]. This occurrence is called 2
collision. Thus, even if fewer than 101 items were present in the hash table
table[0..100], b could very well tell you to place more than onc item into
the same array location. For example, if two items have scarch keys 4567 and
7597, and if

h(4567) = b(7597) =22

B will tell you to place the two items into the same array location, table(22).
That is, the search keys 4567 and 7597 have collided.

Even if the number of items that can be in the array at any one time is
small, the only way to avoid collisions completcly is for the hash rable to be
large enough that each possible search-key value can have its own location. If,
for example, Social Security numbers were the scarch keys, you would need an
array location for each integer in the range 000000000 through 999999999
This situation would certainly require a good deal of storage! Because reserving
vast amounts of storage is usually not practical, collision-resolution schemes are
necessary to make hashing feasible, Such resolution schemes usually require
that the hash function place items evenly throughout the hash table.

To summarize, a typical hash function must

m Be casy and fast to compute
m Place items evenly throughout the hash table

Note that the size of the hash table affects the ability of the hash function 1o
distribute the items evenly throughout the table. The requirements of a hash
function will be discussed in more detail later in this chapter.

Consider now several hash functions and collision-resolution schemes.

Hash Functions

It is sufficient to consider hash functions that have an arbitrary integer as an
argument. Why? If a scarch key is not an integer, you can simply map the
search key into an integer, which you then hash. At the end of this section, you
will see one way to convert a string into an integer.

There are many ways to convert an arbitrary integer into an integer within
a certain range, such as 0 through 100. Thus, there are many ways to con-
struct a hash function. Many of these functions, however, will not be suitable.
Here are several simple hash functions that operate on positive integers.

Hashing

Sclecting digits. If vour scarch key is the nine-digit emplovee ID number
001364825, you could sclect the fourth digit and the last digit, to obtain 35 as
the index to the hash table. That is,

hO01364825) = 35 (select the fourth and last digits)

Thercfore, you would store the item whose scarch key is 001364825 in
table[(35].

You do need to be careful about which digits you choose in a particular
sitwation. For example, the first three digits of a Social Security number are
based on the geographic region in which the number was assigned. If you
sclect only these digits, you will map all people from the same state into the
same location of the hash rable.

Digit-selection hash functions are simple and fast, but generally they do
not evenly distribute the items in the hash table. A hash funcrion really should
utilize the entire scarch key.

Folding. One way to improve on the previous approach of sclecting digits is 1o
add the digits. For example, vou can add all of the digits in 001364825 to obtain

0+04+143+46+448+24+5«29 (addthedigits)

Therefore, you would store the item whose search key is 001364825 in
table(29]. Notice that if you add all of the digits from a nine-digit scarch key,

0 < biscarch key) < 81

That is, you would usc only table[0) through table[81) of the hash table. To
change this situation or to increase the size of the hash table, vou can group the
digits in the search key and add the groups. For example, you could form three
groups of three digits from the scarch key 001364825 and add them as follows:
001 + 364 + 825 = 1,190
For this hash function,
0 < biscarch key) € 3 » 999 « 2 997

Clearly, if 2,997 is larger than the size of the hash table that you want, you can
alter the groups that you choose. Perhaps not as obvious is that you can apply
more than one hash function to a scarch key. For example, you could sclect
some of the digits from the scarch key before adding them, or you could either
select digits from the previous result 2,997 or apply folding to it once again by
adding 29 and 97.

Modulo arithmetic. Modulo arithmetic provides a simple and effective hash
function that we will use in the rest of this chapter, For example, consider the
funcrion®

h(x) = x mod tableSize

6. Remember that this book uses *mod™ as an abbreviation for the mathematical oper-
ation modulo, In C+4, the modulo operator is &,

Digit setection does
not distribute items
evenly in the hash
table

Applying more than
one hash function 10
a single search key

692 Chapter 12 Advanced Implementations of Tables

where the hash table table has tableSize clements. In particular, if rableSize is
101, b(x) = x mod 101 maps any integer x into the range 0 through 100. For
example, & maps 001364825 into 12,

For b(x) = x mod tableSize, many ¥'s map into table[0], many ¥'s map
into tablef1}, and so on. That is, collisions occur. However, vou can distrib-
ute the table items evenly over all of table—thus reducing collisions—by

The table size choosing a prime number as tableSize. For instance, 101 in the previous

should be prime example is prime. The choice of table size will be discussed in more detail larer
in this chapter. For now, realize that 101 is used here as a simple example of 5
prime table size. For the typical table, it is much too small.

Converting a character string to an integer. If vour scarch key is a character
string—such as a name—you could convert it into an integer before applyving
the hash function b(x). To do so, you could first assign cach character in the
string an integer value. For example, for the word “NOTE” you could assign
the ASCIT values 78, 79, 84, and 69, to the letters N, O, T, and E, respec-
tively. Or, if you assign the values 1 through 26 to the letters A through Z, vou
could assign 14 to N, 15t0 O, 20 to T, and 5 1o E.

If vou now simply add these numbers, you will get an integer, but it will
not be unique to the character string. For example, the string “TONE™ will
give you the same result. Instead, write the numenic value for each character in
binary and concatenate the results. If you assign the values 1 through 26 to the
letters A through Z, you obtain the following for the string “NOTE™:

Nis 14, or 01110 in binary
Ois 15,0r 01111 in binary
T is 20, or 10100 in binary
Eis 5, or 00101 in binary

Concatenating the binary values gives vou the binary integer
0L110011111010000101

which is 474,757 in decimal. You can apply the hash function x mod tableSize
for x = 474,757,

Now consider a more efficient way to compute 474,757, Rather than con-
verting the previous binary number to decimal, you can evaluate the
cxpression

14 %323 4 15+ 3224200 32V 454+ 320

This computation is possible because we have represented cach character as a
5-bit binary number, and 27 is 32.
By factoring this expression, you can minimize the number of arithmetic
Horner's rule mini- operations, This technique is called Horner's rule and results in
mizes the number of
computations (14 % 32+15)«32+420)« 3245

Hashing

Although both of these expressions have the same value, the result in either
case could very well be larger than a typical computer can represent; that is, an
overflow can occur.

Because we plan to use the hash function

hx) = x mod tableSize

you can prevent an overflow by applying the modulo operator after comput-
ing cach parenthesized expression in Horner’s rule. The implementation of
this algorithm is left as an exercise.,

Resolving Collisions

Consider the problems caused by a collision. Suppose that you want to insert
an item whose search key is 4567 into the hash table table, as was described
previously, The hash function hix) = x mod 101 tells you to place the new item
in table[22], because 4567 mod 101 is 22. Suppose, however, that
tabler22] already contains an item, as Figure 12-45 illustrates. If carlicr you
had placed 7597 into tablef22) becanse 7597 mod 101 equals 22, where do
you place the new item? You certainly do not want to disallow the insertion on
the grounds that the table is full: You could have a collision even when insert-
ing into a table that contains only one item!

Two general approaches to collision resolution are common. One
approach allocates another location within the hash table to the new item. A
second approach changes the structure of the hash table so that cach location

h(4567) ——» 22 7597 table(22) is occupled

..

100

table

A collision

Two approaches 10
collision resolution

694 Chapter 12 Advanced Implementations of Tabies

Begin at the hash
location and
search the table
sequentially

22 7597 h = 7597 mod 101 =22
23 4567 h+1
24 0628 h+2
25 3658 h+3

-.

table

FIGURE 12-46

Linear probing with ix) = x mod 101

table[i) can accommodate more than one item. The collision-resolution
schemes described next exemplify these two approaches.

Approach 1: Open addressing, During an attempt to insert a new item into a
table, if the hash function indicates a location in the hash table that is already
oceupied, you probe for some other empty, or open, location in which to place
the item. The sequence of locations that you examine is called the probe
sequence.

Such schemes are said to use open addressing. The concern, of course, s
that you must be able to find a table item efficiently after vou have inserted it
That is, the tablepelete and tableRetrieve operations must be able
to reproduce the probe sequence that tableInsert used and must do so
efficiently.

The difference amonyg the various open-addressing schemes is the tech-
nique used to probe for an empty location. We briefly describe three such
techniques.

Linear probing. In this simple scheme to resolve a collision, you scarch the
hash table sequentially, starting from the original hash location. More specifi-
cally, if table[h(searchKey))] is occupied, you check the table locations
table(h(searchKey)+1), table[h(searchKey)+2], and so on until you
find an available location, Figure 12-46 illustrates the placement of four items
that all hash into the same location tablef22) of the hash table, assuming a

Hashing

hash function h(x) = x mod 101, Typically, you wrap around from the last
table location to the first table location if necessary.

In the absence of deletions, the implementation of tableRetrieve under
this scheme is straightforward. You need only follow the same probe sequence
that tableInsert uscd until you cither find the item yvou are scarching for,
reach an empty location, which indicates that the item is not present, or visit
every table location.

Deletions, however, add a slight complication. The tableDelete opera-
ton itself is no problem. You merely find the desired item, as in
tableRetrieve, and delete it, making the location empty, But what happens
to tableRetrieve after deletions? The new empty locations that tableDe-
lete created along a probe sequence could cause tableRetrieve to stop pre-
maturely, incorrectly indicating a failure, You can resolve this problem by
allowing a table location to be in one of three states: occupied (currently in
use), empty (has not been used), or delered (was once occupied but is now
available). You then modify the tableRetrieve operation to continue
probing when it encounters a location in the deleted state. Similarly, vou
modify tableInsert toinsert into either empty or deleted locations.

One of the problems with the lincar-probing scheme is that table items
tend to cluster together in the hash table. That is, the table contains groups of
consecutively occupied locations. This phenomenon is called primary cluster-
ing. Clusters can get close to one another and, in fact, merge into a larger clus-
ter, Large clusters tend to get even larger, (*'The rich get richer.,™) Thus, one
part of the table might be quite dense, even though another part has relatively
few items. Primary clustering causes long probe scarches and thercfore
decreases the overall efficiency of hashing,

Quadratic probing. You can virtually climinate primary clusters simply by
adjusting the lincar probing scheme just described. Instead of probing consecu-
tive table locations from the original hash location table[h(searchKey)],
you check locations table[h(searchKey)+1°], tableh(searchKey)+2°},
table(h(searchKey)+3%], and so on until you find an available location.
Figure 12-47 illustrates this open-addressing scheme—which s called
quadratic probing—for the same items that appear in Figure 12-40.

Unfortunately, when two items hash into the same location, quadratic
probing uses the same probe sequence for each item. This phenomenon—called
secondary clustering—dclays the resolution of the collision. Although the analy-
sis of quadratic probing remains incomplete, it appears that secondary cluster-
ing is not a problem,

Double hashing. Double hashing, which is vet another open-addressing
scheme, drastically reduces clustering. The probe sequences that both lincar
probing and quadratic probing use are key independent. For example, lincar
probing inspects the table locations sequentially no matter what the hash key
is. In contrast, double hashing defines key-dependent probe sequences. In this
scheme the probe sequence still searches the table in a lincar order, starting at

Three states: occu-
pled, empty, deleted

Clustering can be a
problem

696 Chapter 12 Advanced Implementations of Tables

A hash address and
a step size deter-
mine the probe
sequence

Guidelines for the
step-size function hy

Primary and sec-
ondary hash
functions

22 7597 h = 7597 mod 101 =22
23 4567 h+1?

24
25
26 0628 h+2?

N 3658 b3t

table

Quadratic probing with A(x) = x mod 101

the location By key), but a second hash function b, determines the size of the
steps taken.
Although you choose &y as usual, vou must follow these guidelines for by:

hatkey) = 0
llz = bl

Clearly, vou need a nonzero step size byl key) to define the probe sequence. In
addition, /i, must differ from by to avoid clustering.

For example, let by and by be the primary and secondary hash functions
defined as

Iy(key) = keymod 11
Iy(key) = 7 — (key mod 7)

where a hash table of only 11 items is assumed, so that you can readily sec the
effect of these functions on the hash table. If key = 58, Jy hashes key 1o table
location 3 (58 mod 11), and b, indicates that the probe sequence should take
steps of size 5 (7 - 58 mod 7). In other words, the probe sequence will be 3,
8, 2 (wraps around), 7, 1 (wraps around), 6, 0, 5, 10, 4, 9. On the other hand,
if key = 14, by hashes key to table location 3 (14 mod 11), and b, indicates that
the probe sequence should take steps of size 7 (7 < 14 mod 7), and so the
prabe sequence would be 3, 10,6, 2,9,5, 1, 8,4, 0.

Each of these probe sequences visits all the table locations. This phenome-
non always occurs if the size of the table and the size of the probe step are rela-
tvely prime, that is, if their greatest common divisor is 1. Because the size of
a hash table is commonly a prime number, it will be relatively prime to all
step sizes.

Hashing

Figurc 12-48 illustrates the insertion of 58, 14, and 91 into an initially
empty hash table. Because #(58) is 3, you place 58 into table(3]. You then
find that fy(14) is also 3, so to avoid a collision, you step by In(14) = 7 and
place 14 into table(3 + 7], or table[10]. Finally, l4(91) is 3 and 5y(91) is 7.
Because table(3] is occupied, you probe tablef10) and find that it, too, is
occupied. You finally store 91 in table[(10 +7) % 11],0r table[6].

Using more than one hash function is called rehashing. While more than
rwo hash functions can be desirable, such schemes are difficult to implement.

Increasing the size of the hash table. \With any of the open-addressing schemes,
as the hash table fills, the probability of a collision increascs. At some point, a
larger hash table becomes desirable. If you use a dynamically allocated array for
the hash table, you can increase its size whenever the table becomes too full,

You cannot simply double the size of the array, as we did in carlicr chap-
ters, because the size of the hash table must remain prime. Secondly, you do
not copy the items from the original hash table to the new hash table. If your
hash function is & mod tableSize, it changes as tableSize changes. Thus, you
need to apply your new hash function to cevery item in the old hash table
before placing it into the new hash table.

Approach 2: Restructuring the hash table, Another way to resolve colli-
sions is to change the structure of the array table—the hash table—so that it
can accommodate more than one item in the same location. We describe two
such ways to alter the hash table.

h(14)
Colos 3 [s8
h;(91)

6 9
.
hi(91)————>1
Collison . v
table

[FIGURE 12-48 S

Double hashing during the insertion of 58, 14, and 91

Each hash-table
locatlon can accom-
modate more than
one item

Hashing

typedef KeyedItem TableltemType;

/#*+* ADT table.
* Hash table implementation.
* Assumption: A table contains at most one item with a
* given search key at any time. =/

class HashTable

{

public:

// constructors and destructor:
HashTable();
HashTable(const HashTables table);
virtual ~HashTable();

// table operations:

virtual bool tablelsEmpty() const;

virtual int tableGetlLength() const;

virtual void tableInsert(const TableltemType& newltem)
throw(TableException);

virtual void tableDelete(KeyType search¥ey)
throw(TableException);

virtual void tableRetrieve(KeyType searchKey,
TableltemType& tableltem) const
throw(TableException);

protected:
int hashIndex(KeyType searchKey) const; // Hash function

private:
static const int HASH_TABLE SIZE = 101; // Size of hash
// table
typedef ChainNode * HashTableType[HASH TABLE SIZE];

HashTableType table; // Hash table */

int pize; // size of ADT table
}: // end HashTable
// BEnd of header file.

/*+* ffile KeyedItem.h
* Provides basis for classes that need a search key value. */
typedef desircd-type-of-scarch-key KeyType;

class KeyedItem
{
public:
KeyedItem() {)
KeyedItem(const KeyTypes keyValue)
: searchKey(keyValue) ()

700 Chapter 12 Advanced Implementations of Tables ‘

KeyType getKey() comnst // returns search key
{ return searchKey;
} // end getKey
private:
KeyType searchKey;
}; // end KeyedItem

/*+ @file ChainNode.h.
* Provides the chain node definition for the hash table. +/
$¢include "KeyedItem.h"

class ChainNode
{
private:
ChainNode (const KeyedItem & nodeltem,
ChainNode *nextNode = NULL)
: item(nodelItem), next(nextNode) {)
KeyedItem item;
ChainNode *next;

friend class HashTable;
}; // end ChainNode

The class keyedItem can be used as the base class for the items that
are stored in the table. The KeyedItem class was fist presented in Chaprer
10 and provides a data field for the scarch key. The scarch key is used
by the hashIndex method in the class HashTable to generate a hash index
value.

When you insert a new item into the table, you place it at the beginning of
the linked list that the hash function indicates. The following pseudocode
describes the insertion algorithm:

tableInsert (in newltem:TablelItemType)
throw TableException

searchKey = the search key of newltem

i = hashIndex(searchKey)

p = pointer to a new node

Throw TableException according to whether the
previous memory allocation 1s successful

p->item = newltem

p~>next = table(i)

tablejfi] = p

Hashing 701

When you want to retrieve an item, you search the linked list that the hash
function indicates, The following pseudocode describes the retrieval algorithm:

tableRetrieve(in searchKey:KeyType,
out tableItem:TableItemType)
throw TableException

i = hashIndex(searchKey)
p = table(i]

while ((p != NULL) &&
(p->item.getKey() != searchXey))
p = p->next

if (p == NULL)

Throw a TableException
else

tableItem = p->item

The deletion algorithm is very similar to the retrieval algorithm and is left as an
exercise, (See Exercise 14,)

Separate chaining is thus a successful approach to resolving collisions. With Separate chaining
separate chaining, the size of the ADT table is dynamic and can exceed the size Successfully
of the hash table, because cach linked list can be as long as necessary. As you '@soives collisions
will see in the next section, the length of these linked lists affects the efficiency
of retrievals and deletions.

The Efficiency of Hashing

An analysis of the average-case efficiency of hashing involves the load factor «,
which is the ratio of the current number of items in the table to the maximum
size of the array table. That is,

Current number of table items

O = The load factor mea-

tableSize sures how full a

o is a measure of how full the hash table table is. As table fills, & increases hash tabie ¥
and the chance of collision increases, so search times increase. Thus, hashing
efficiency decreases as o increases,

Unlike the efficiency of carlier table implementations, the cfficiency of
hashing does not depend solely on the number N of items in the table. While
it is true that for a fixed rableSize, efficiency decreases as N increases, for a
given N you can choose tableSize 1o increase efficiency. Thus, when determin-
ing tableSise, you should estimate the largest possible N and select tbleSise so Unsuccesstul

3 . searches genearally

that o is small. As you will s¢e shortly, o should nor exceed 2/3. require more time

Hashing efficiency for a particular scarch also depends on whether the than successtul
scarch is successful. An unsuccessful scarch requires more time in general than searches

702 Chapter 12

Do not let the hash
tabie get too full

Open-addressing
schemes raquire a
good estimate

of the number of
Insertions and
deletions

Insertion is
Instantaneous

Advanced Implementations of Tables

a successful search. The following analyses® enable a comparison of collision-
resolution rechniques.

Linear probing. For lincar probing, the approximate average number of com-

parisons that a search requires is

1 [l - ;] for a successful scarch, and
2 B ¢

1
l- [I +] for an unsuccessful scarch
2 l-o

As collisions increase, the probe sequences increase in length, causing increased
search times. For example, for a table that is two-thirds full (&t =2/3), an
average unsuccessful search might require at most five comparisons, or probes,
while an average successful search might require at most two comparisons. To
maintain efficiency, it is important to prevent the hash table from filling up.

Quadratic probing and double hashing. The efficiency of both quadraric
prabing and double hashing is given by

M for a successful search, and
o
1
-« for an unsuccessful scarch

On average, both techniques require fewer comparisons than lincar probing.
For example, for a table that is two-thirds full, an average unsuccessful search
might require at most three comparisons, or prabes, while an average success-
ful search might require at most two comparisons, As a result, you can use a
smaller hash table for both quadratic probing and double hashing than you can
for lincar probing, However, because they are open-addressing schemes, all
three approaches suffer when you are unable to predict the number of inser-
tions and deletions that will occur, If your hash rable is too small, it will fill up,
and search efficiency will decrease.

Separate chaining. Because the tablernsert operation places the new item
at the beginning of a linked list within the hash rable, it is O(1). The table
Retrieve and tableDelete operations, however, are not as fast. They cach
require a search of the linked list of items, so ideally vou would like for these
linked lists to be short.

For separate chaining, rableSize is the number of linked lists, not the
maximum number of table items. Thus, it is entirely possible, and even likely,
that the current number of table items N exceeds tableSize. That is, the load

8, D. E. Knuth, Searching and Sorting, vol. 3 of The Art of Computer Programming
(Menlo Park, CA: Addison-Wesley, 1973).

factor ¢, or N/ tableSize, can exceed 1. Because cableSize is the number of
linked lists, N/ tableSize—that is, 0—is the average length of each linked fist.
Some scarches of the hash table are unsuccessful because the relevant
linked list is cmpry- Such searches are virtually instantancous. For an unsuccess:
ful search of a nonempty linked list, however, cableRetrieve and table-
pelete must ¢xamine the entire list, or & items in the average case. On the
other hand, a successful search must examine a nonempty linked list. In the
average case, the search will locate the item in the middic of the list. That is,
after determining that the linked list is not cmpry, the search will examine w/2
items.

Thus, the cfficiency of the retrieval and deletion operations under the
separate-chaining approach is

1+ L) for a successtul search, and
o for an unsuccessful search

Even if the linked lists typically are short, you should still estimate the
worst case. If you seriously underestimate rableSize or if most of the table items
happen to hash into the same location, the number of items in a linked list
could be quite large. In fact, in the WOrst €ase, all Nitems in the table could be
in the same linked list!

As you can sc¢, the time that a retricval or deletion operation requires can
range from almost nothing—if the linked list to be scarched cither is empty Or
has only a couple of items in it—to the fime required to search a linked list
that contains all the items in the table, if all the items hashed into the same
location.

Comparing techniques. Figure 12-50 plots the relative cfficiency of the colli-
sion-resolution schemes just discussed. When the hash table table is about
half full—that is, when O is 0,5—the techniques are nearly equal in cfficiency.
As the table fills and o approaches 1, separate chaining is the most cefficient.
Does this mean that we should discard all other scarch algorithms in favor of
hashing with separat¢ chaining?

No. The analyses here are average-case analyses. Although an implementa-
tion of the ADT rable that uses hashing might often be faster than one that uses
a scarch tree, in the worst case it can be much slower. If you can afford both an
occasional slow search and a large tableSize—rhat is, 3 «mall oe—then hashing can
be an attractive table implementation. However, if you are performing 3 life-and-
death search for your city’s poison control center, a scarch-tree implementation
would at least provide you with a guaranteed bound on its WOrst-Casc behavior.

Furthermore, while separate chaining is the most tme-cfficient collision:
resolution scheme, You do have the storage overhead of the pointers in the
linked list. If the dat records in the table arc small, the pointers add a

Average-case effi-
ciency of retrievals
and deletions

\n the worst case, a
hashing implemen-
1ation of a 1able can
be much slower
than other
implementations

704

Chapter 12 Advanced Implementations of Tables

20,~- Successful search 20 - Unsuccessful search
18]~ 18 - Linear probing
. 4
16]- 16
s 14]= € 14 4
E . g 4
g 12]- g 12 4
v} . v q
B
E 10]- Linear probing ¥ 10 4
B E
2 8|- Z 8 4
Z f = | double hashing
al- 4 -
. Quadratic probing, .
2]- double hashing 2 4
Separate chaining Separate chaining
T T T T 1 ! Ny U ——y—
02 04 06 08 1.0 02 04 06 08 10
(i o

The relative efficiency of four collision-resolution methods

significant overhead in storage, and you may want to consider a simpler
collision-resolution scheme. On the other hand, if the records are large, the
addition of a pointer is insignificant, so separate chaining is a good choice.

What Constitutes a Good Hash Function?

Before we conclude this introduction to hashing, consider in more detail the
issue of choosing a hash function to perform the address calculations for a given
application. A great deal has been written on this subject, most of which is
beyond the mathematical level of this book. However, this section will present a
brief summary of the major concerns,

® A hash function should be casy and fast to compute. If a hashing
scheme is to perform table operations almost instantancously and in con-
stant time, you certainly must be able to calculate the hash function rap-
idly. Most of the common hash functions require only a single division
(like the modulo function), a single multiplication, or some kind of “bit-
level™ operation on the internal representation of the scarch key. In all
these cases, the requirement that the hash function be casy and fast to
compute is satisfied.

Hashing 705

= A hash function should scatter the data evenly throughout the hash
table. Unless vou use a perfect hash function—which is usually impracti-
cal to construct—you typically cannot avoid collisions entircly. For exam- You cannot avoid
ple, to achieve the best performance from a separate-chaining scheme, —collisions entirely
cach entry table(i) should contain approximatcly the same number of
items in its chain; that is, cach chain should contain approximately
N/tableSize items (and thus no chain should contain significantly more
than N/tableSize items). To accomplish this goal, your hash function
should scatter the search keys evenly throughout the hash table.

There are two issues to consider with regard to how evenly a hash function
scatters the scarch keys.

= How well does the hash function scatter random data? If every scarch-
key value is equally likely, will the hash function scatter the scarch keys
evenly? For example, consider the following scheme for hashing nine-digit
ID numbers:

table(0..39) is the hash table, and
the hash function is bix) = (first two digits of x) mod 40

The question is, given the assumption that all employee 1D numbers are
equally likely, does a given 1D number x have equal probability of hashing
into any one of the 40 array locations? For this hash function, the answer is
no, Only ID numbers that start with 19, 59, and 99 map into table[19),
while only 1D numbers thar start with 20 and 60 map into tablef20). In
general, three different 1D prefives—that is, the first two digits of an ID
number—map into each array location 0 through 19, while only two dift
ferent prefixes map into cach array location 20 through 39. Because all 1D
numbers are equally likely—and thus all prefises 00 through 99 arc equally
likely—a given ID number is 50 percent more likely to hash into one of
the locations 0 through 19 than it is to hash into one of the locations 20
through 39. As a result, cach array location 0 through 19 would contain, on
average, 50 percent more items than cach location 20 through 39.

Thus, the hash function

I x) = (first two digits of x) mod 40 A function that does
not scatter random
does not scatter random data evenly throughout the array table[0..39]. 4a13 avenly
On the other hand, it can be shown that the hash function
Ka) = xmod 101 A function that does
T scatter random data
does, in fact, scatter random data cvenly throughout the army geeny

table[0..100].

s How well does the hash function scatter nonrandom data? Fven if a hash
function scarters random data evenly, it may have trouble with nonrandom
data, In general, no matter what hash function you select, it is always possi-
ble that the data will have some unlucky pattern thar will result in uncven

706 Chapter 12 Advanced Implementations of Tables .

General require-
ments of a hash
function

scattering. Although there is no way to guarantee that a hash function wij
scatter all data evenly, you can greatly increase the likelihood of this behavior.

As an example, consider the following scheme:

table[0..99] is the hash table, and
the hash function is A(x) = first two digits of x

If every 1D number is equally likely, & will scatter the scarch keys evenly
throughout the array. But what if every 1D number is not equally likely?
For instance, a company might assign emplovee IDs according to depan-
ment, as follows:

10xxxxx Sales
20xxxxx Customer Relations

90xxxxx Data Processing

Under this assignment, only 9 out of the 100 array locations would
contain any items at all. Further, those locations corresponding to the
largest departments (Sales, for example, which corresponds to table10))
would contain more items than those locations corresponding to the
smallest departments. This scheme certainly does not scatter the data
evenly. Much research has been done into the types of hash functions that
you should use to guard against various types of patterns in the data. The
results of this research are really in the province of more advanced courses,
but two general principles can be noted here:

1. The calculation of the hash function should fmvelve the entive search ke
Thus, for example, computing a modulo of the entire ID number is
much safer than using only its first two digits,

2. If a hash function uses modulo arithmetic, the base should be prime; that
is, if b is of the form

M x) = xmod rableSize

then tableSize should be a prime number. This sclection of rableSize is
a safeguard against many subtle kinds of patterns in the data (for
example, scarch keys whose digits are likely to be multiples of one
another). Although cach application can have its own particular kind
of patterns and thus should be analyzed on an individual basis, choos-
ing tableSize to be prime is an casy way to safeguard against some
common types of patterns in the data.

Table Traversal: An Inefficient Operation
Under Hashing

For many applications, hashing provides the most efficient implementation of the
ADT table, One important table operation—traversal in sorted order—performs
poorly when hashing implements the table. As was mentioned previously, a good

Hashing

hash function scatters items as randomly as possible throughout the array, so that
no ordering relationship exists between the search keys that hash into tablefi)
and those that hash into tablefi+1). As a consequence, if you must traverse the
table in sorted order, vou first would have to sort the items. If sorting were
required frequently, hashing would be a far less attractive implementation than a
scarch tree,

Traversing a table in sorted order is really just one example of a whole class
of operations that hashing does not support well. Many similar operations that
you often wish to perform on a table require that the items be ordered. For
example, consider an operation that must find the table item with the smallest
or largest value in its scarch key. If you use a search-tree implementation, these
items are in the leftmost and rightmost nodes of the tree, respectively. If you
use a hashing implementation, however, vou do not know where these items
arc—vyou would have to search the entire table. A similar type of operation is a
range query, which requires that you retrieve all items whose search keys fall
into a given range of values. For example, you might want to retrieve all items
whose scarch keys are in the range 129 to 755. This task is relatively easy 1o
perform by using a search tree (see Exercise 3), but if you use hashing, there is
no efficient way to answer the range query.

In general, if an application requires any of these ordered operations, you
should probably use a scarch tree. Although the tableRetrieve, tableInsert,
and tableDelete opcrations are somewhat more efficient when you use
hashing to implement the table instead of a balanced search tree, the balanced
search tree supports these operations so efficiently itself that, in most contexts,
the difference in speed for these operations is negligible (whereas the advantage
of the search tree over hashing for the ordered operations is significant),

In the context of external storage, however, the story is different. For data
that is stored externally, the difference in speed berween hashing's implementa-
tion of tableRetrieve and a scarch tree’s implementation may well be signifi-
cant, as you will see in Chapter 14. In an external setting, it is not uncommon
to sce a hashing implementation of the tableretrieve operation and a
search-tree implementation of the ordered operations used simultancously.

Implementing a HashMap Class Using the STL

The standard C++ library does not contain a hash table class, However, there
are several implementations of the STL that provide hash_map and hash_set
classes. These classes will most likely be included in the nexr revision of the
Ca+ STL. In the meantime, if programmers would like to provide a hash func-
tion to use with a table, they can cither download one of the available imple-
mentations or write a hash table class themselves.

The following Hashmap class is a template class derived from existung STL
containers, It is implemented with separate chaining using a vector of maps.
The vector holds the dynamic hash buckets, where cach bucket is a map that
holds clements with the same hash value. The hash function must be supplied
as a template parameter, along with the key type, value, and the optional com-
parison function object for the map class.

ltems hashed into
tablefi] and
tablefi+l1]
have no ordering
redationship

Hashing versus bal-
anced search trees

708 Chapter 12 Advanced Implementations of Tables

The following files contain an ADT for a Hashmap.

/** @file HashMap.h
* The HashMap is derived from the STL vector and map. */

finclude <vector>
#include <map>

using namespace std;

template <typename Key, typename T, typename Hash>
class HashMap : private vector<map<Key, T> >

{

public:

/** Constructor

* Bpre The HashMap is empty.

* @post The HashMap is initialized to hold maxBuckets. The
. Hash template parameter is assigned to the hash

* variable, */
HashMap(const int maxBuckets);

/** Overloads the subscript operator for the HashMap class
* @pre The HashMap contains a hash for type T.
* @post The value of a hashed key is returned. */

T& operator|[) (Key& key);

/** Hashes the key to find the vector index. Finds the map
* element using the key as the index.
* 8pre The HashMap contains a hash for type T.
* Bpost An iterator to the (key, item) pair is returned.
* If the item is not in the map, the iterator points
* to the end of the map. */
map<Key, T>::const_iterator findItem(const Keys key);

/** Hashes the key to find the vector index. Inserts the
* (key, item) pair into the map at that index.
* @pre The HashMap contains a hash for the type T.
* @post The (key, item) pair is inserted at the hashed
v index. */

void insert(const Keys key, const Té item);

/** Removes the item with the Key k in the hash table.
* fpre The HashMap contains a hash for the type T.
* @post The (key, item) pair at the hashed index is
w removed. The number of items removed is returned
* (either 0 or 1), #/
int erase(const Key& k);

Hashing

/** The hash function object. */
Hash hash;
}: // end HashMap

#include "HashMap.cpp"
// End of header file

/** @file HashMap.cpp */

template <typename Key, typename T, typename Hash>
HashMap<Key, T, Hash>::HashMap(int maxBuckets)
{
hash = Hash();
resize(maxBuckets+1);
} // end constructor

template <typename Key, typename T, typename Hash>
T& HashMap<Key, T, Hash>::operator|](Keyi key)
{
return at(hash(key))[key);
} // end operator|]

template <typename Key, typename T, typename Hash>
map<Key, T>::const_iterator HashMap<Key, T, Hash>::
findItem(const Key& key)
{
map<Key, T>::const_iterator it;
int index = hash(key);
it = at(index).find(key);

return it;
} // end findItem

template <typename Key, typename T, typename Hash>
void HashMap<Key, T, Hash>::insert (const Key& key,
const T& item)
{
int index = hash(key);
at(index).insert(make pair(key, item));
} // end insert

template <typename Key, typename T, typename Hash>
int HashMap<Key, T, Hash>::erase(const Keys key)
{

int index = hash(key);

return at(index).erase(key);

709

