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Abstract—Olfactory-based mechanisms have been hy-
pothesized for biological behaviors including foraging, mate-
seeking, homing, and host-seeking. Typically, olfactory-
based mechanisms proposed for biological entities combine a 
large-scale orientation behavior based in part on olfaction 
with a multisensor local search in the vicinity of the source. 
Long-range olfactory based search is documented in moths at 
ranges of 100-1000 m and in Antarctic procellariiform sea-
birds over thousands of kilometers.  Autonomous underwater 
vehicles (AUVs) capable of such chemical plume tracing 
feats would have applicability in searching for environmen-
tally interesting phenomena, unexploded ordinance, undersea 
wreckage, and sources of hazardous chemicals or pollutants. 
 
This article presents an approach and experimental results 
using a REMUS AUV to find a chemical plume, trace the 
chemical plume to its source, and maneuver to reliably de-
clare the source location. The experiments were conducted in 
November 2002 at San Clemente Island, California using a 
plume of Rhodamine dye developed in a turbulent fluid flow 
(i.e., near shore ocean conditions). 
 
Index Terms—Autonomous vehicles, behavior based 
planning, chemical plume tracing. 
 

I. INTRODUCTION 
Olfactory-based mechanisms have been hypothesized for 

a variety of biological behaviors [1, 2, 3]: homing by Pacific 
salmon [4], foraging by Antarctic procellariiform seabirds 
[5], foraging by lobsters [6, 7], foraging by blue crabs [8], 
and mate-seeking and foraging by insects [9, 10]. Typically, 
olfactory-based mechanisms proposed for biological entities 
combine a large-scale orietation behavior based in part on 
olfaction with a multisensor local search in the vicinity of the 
source. The long-range olfactory based search is documented 
in moths at ranges of 100-1000 m [11] and in Antartic pro-
cellariiform seabirds over 1000 km [5]. 

This article presents a algorithm that replicates these 
Chemical Plume Tracing (CPT) feats in autonomous vehi-
cles. The goal of the autonomous vehicle is to locate the 
source of a chemical that is transported in a turbulent fluid 

flow. The basic idea of CPT is illustrated in Figure 1. A ve-
hicle is constrained to maneuver within a region referred to 
as the OpArea.  Within the OpArea the vehicle should search 
for a specified chemical.  If the chemical is detected, the ve-
hicle should trace the chemical plume to its source and accu-
rately declare the source location.  Such autonomous vehicle 
capabilities have applicability in searching for environmen-
tally interesting phenomena, hazardous chemicals, and pol-
lutants.  

 
Figure 1.  Depiction of a vehicle (not to scale) performing 

chemical plume tracing. The array of blue arrows indicate the 
direction and relative magnitude of the flow at the tail of the 
arrow.  The numbers in the four corners are the coordinates 

of the corners.  The meandering gray-scale trail is the plume. 
The chemical source is at (20,0) m. The start of the searcher 

trajectory is the curved red path in the upper right. 

An initial approach to designing an autonomous vehicle 
plume-tracing strategy might attempt to calculate a concen-
tration gradient, with subsequent plume tracing based on 
gradient following; however, gradient-based algorithms are 
not feasible in environments with medium to high Reynolds 
numbers [12, 13]. At medium and high Reynolds numbers, 
the evolution of the chemical distribution in the flow is tur-
bulence dominated [14]. The result of the turbulent diffusion 
process is a highly discontinuous and intermittent distribu-
tion of the chemical [12, 15]. A dense array of sensors dis-
tributed over the area of interest and a long (i.e., several min-
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utes) time-average of the output of each sensor is required to 
estimate a smooth (time-averaged) chemical distribution [16, 
17] suitable for gradient-based calculations. However, the 
required dense spatial sampling and long time-averaging 
makes such an approach inefficient for implementation on a 
vehicle. In addition, even decameters from the odor source in 
the direction of the flow the gradient is too shallow to detect 
in a time-averaged plume. For an ‘instantaneous’ plume, the 
gradient is time-varying, steep, frequently in the wrong direc-
tion, and its evaluation would require numerous sensors. 
Therefore, gradient following is not practical.  

The instantaneous odor distribution is distinct from the 
time-averaged plume [12, 13]. The major differences in-
clude: the time-averaged plume is smooth and unimodal 
while the instantaneous plume is discontinuous and multi-
modal; the time-averaged plume is time invariant while the 
instantaneous plume is time-varying. Instantaneous concen-
trations well-above the time-averaged concentration will be 
detected much more often than predicted by the time-
averaged plume model. The fact that instantaneous concen-
trations well-above the time-average are available at signifi-
cant distances from the source is one of reasons that olfaction 
is a useful long distance sensor [18]. A challenge in using 
olfaction on autonomous vehicles is to design effective algo-
rithms to determine the odor source location even though the 
odor source concentration is not known, the advection dis-
tance of the detected odor is unknown, and the flow varies 
with both location and time. 

Various studies have developed biomemetic robotic 
plume-tracing algorithms based on olfactory sensing. 
Belanger and Willis [19] presented plume tracing strategies 
intended to mimic moth behavior and analyzed the perform-
ance in a computer simulation. Grasso et al. [20, 21] evalu-
ated biomimetic strategies and challenge theoretical assump-
tions of the strategies by implementing biomimetic strategies 
on their robot lobster. Robots that replicate biological ap-
proaches for plume tracing are also described in [22, 23, 24]. 
Li et al. [25] developed, optimized, and evaluated counter-
turning strategies inspired by moth behavior. The fundamen-
tal aspects of these research efforts are sensing the chemical, 
sensing or estimating the fluid velocity, and generating a 
sequence of searcher speed and heading commands such that 
the resulting motion is likely to locate the odor source. In 
each of these articles, the algorithms for generating speed 
and heading commands use only instantaneous (or very re-
cent) sensor information.  Typical orientation maneuvers 
include: sprinting upwind upon detection, moving crosswind 
when not detecting, and manipulating the relative orientation 
of a multiple sensor array, either to follow an estimated 
plume edge or to maintain the maximum mean reading near 
the central sensor. 

This article extends plume tracing research by presenting 
a complete strategy for finding a plume, tracing the plume to 
its source, and maneuvering to accurately declare the source 
location; and, by presenting results from successful, large-
scale, in-water tests of this strategy. The assumptions made 
herein relative to the chemical and flow are that the chemical 
is a neutrally buoyant and passive scalar being advected by a 
turbulent flow. The autonomous vehicle (or robot) is as-

sumed to be capable of sensing position, concentration, and 
flow velocity.  The concentration sensor is a binary detector. 
We solve the plume-tracing problem in two dimensions.  A 
main motivation for implementing the algorithms in two di-
mensions is the computational simplification achieved; how-
ever, neutral buoyancy of the chemical or stratification of the 
flow [26] will often result in a plume of limited vertical ex-
tent, which may be approximated as two-dimensional.  

II. BEHAVIOR BASED PLANNING 
A behavior-based planning strategy is an efficient means 

to navigate an autonomous system in an uncertain environ-
ment. A behavior is a mapping of sensor inputs to a pattern 
of motor actions.  A set of behaviors can be used to achieve a 
task if a mechanism for coordinating the behaviors is also 
available.  

In the late 1970's and early 1980's, Michael Arbib began 
to investigate models of animal intelligence from the bio-
logical and cognitive sciences point-of-view to gain alterna-
tive insight into the design of advanced robotic capabilities 
[27]. At nearly the same time, Valentine Braitenberg studied 
methods by which machine intelligence could be evolved by 
using sensor-motor pairs to design vehicle systems [28]. 
Later, a new generation of AI researchers began exploring 
the biological sciences in search of new organizing principles 
and methods of obtaining intelligence. This research resulted 
in the reactive behavior-based approaches. Rodney Brooks’ 
subsumption architecture is the most influential of the purely 
reactive paradigms. Its basic idea is to describe a complex 
task by several behaviors, each with simple features [29]. 
Design of a behavior-based planner includes two significant 
steps. First, the designer must formulate each reactive behav-
ior quantitatively and implement the behavior as an algo-
rithm. Second, the designer must define and implement a 
methodology for coordinating the possibly conflicting com-
mands from the different behaviors to achieve good mission 
performance. 

Various coordination approaches have been proposed.  
For example, each behavior can output a command and a 
priority.  Traditional binary logic can be used to select and 
output the command with the highest priority. An alternative 
coordination approach is to use artificial potential fields [30]. 
A drawback to either approach is that formulating and coor-
dinating the reactive behaviors requires significant pre-
mission simulation and testing.  These are ad-hoc processes 
and may need to be re-addressed each time new behaviors 
are added or existing behaviors are changed. In some appli-
cations, these tuning parameters depend heavily on environ-
mental conditions. Another alternative that has been sug-
gested is to train an artificial neural network (ANN) to per-
form the behavior coordination [33]. However, this approach 
would require some mechanism for determining ‘correct’ 
coordination decisions for each training scenario and would 
provide no guarantee that all coordination situations are 
properly trained [31].  Fuzzy logic can improve the perform-
ance of reactive behavior coordination  [32, 33, 34] by pro-
viding a formalism for automatically interpolating between 
alternative behaviors.  
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Behavior based design methodologies are bottom-up ap-
proaches to the design of an intelligent system. Observed 
behaviors with simple features are analyzed and synthesized 
independently. In this paper, we describe the behaviors and 
coordination mechanism that were used to solve the problem 
of chemical plume tracing strategy for an autonomous un-
derwater vehicle.   

III. CPT PLANNER 
The location of pheromone-emitting females by flying 

male moths is considered a remarkable case of odor-guided 
navigation. The AUV behaviors described herein were in-
spired by biological behaviors observed in moths and other 
biological entities [25].   

The CPT behaviors include: Go-To, Find-Plume, Track-
Plume (Track-in and Track-out), Reacquire-Plume and Fly-
By behaviors. In addition, to ensure the safety of the vehicle, 
we implement a cage function that was responsible for not 
allowing the vehicle to leave the rectangular OpArea defined 
by  and . [ ]maxmin , xxx ∈ [ ]maxmin , yyy ∈

The vehicle is equipped with sensors to detect the vehi-
cle location, fluid flow, and the chemical concentration. The 
control commands for the vehicle are speed and heading. 
Figure 2 shows a behavior-switching diagram for behavior 
coordination during vehicle operation. The following subsec-
tions describe the logic for generating the heading commands 
within each behavior. 

 
Figure 2. Behavior Switching Diagram. The symbol d de-
notes a behavior switch that occurs when chemical is de-

tected. The symbol d  denotes a behavior switch that occurs 
when chemical is not detected for some time interval. 

A. Behavior: Go-To 
The Go-To behavior issues heading commands that 

will direct the vehicle from its current location to a target 
location. For example, during mission start-up, the vehicle is 
dispatched from its home location to an area of interest be-
fore starting to search for plume. Also, the vehicle returns to 
its home after it declares the source of odor. Chemical detec-
tion information is ignored during the Go-To behavior.  The 
Go-To behavior uses the following formula to calculate the 
commanded heading ψ and velocity : v

c

cgcg

vv

xxyy

=

−−= ))(),2((atanψ
 

where atan2 is a four quadrant arctangent function, ( , ) 
are coordinates of the target location, ( , ) are the coor-
dinates of the current vehicle location, and 

gx gy

cx cy

cν is a constant 
speed command set as a mission parameter. 

B. Behavior: Find Plume 
Prior to tracing a plume, the plume must be found (i.e., 

chemical detected for the first time). Table 1 contains pseu-
do-code for the finding behavior.  In Table 1, 

deg125=upflowdθ and deg60=downflowdθ are, respec-

tively, the upflow and downflow search offsets. The sign 
function is defined as 
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When the search area is large and there is not prior informa-
tion about the source location (i.e., uninformed search), this 
behavior may consume a significant amount of time.  There-
fore, once chemical is detected, we try to maintain intermit-
tent contact with the plume so that it is unlikely that the ve-
hicle will re-enter this behavior.  

Table 1.  Finding Time Behavior 

Behavior::find_plume( ) 
{ 
   if(odor conc. < threshold){  
      if(  > ){ cx maxX
        upflow_search = 1; 
 } 
      if(  < ){ cx minX
        upflow_search = 0; 
 } 
      if((  > Y ) or (  < Y )) cy max cy min

         η = sign(( +Y )/2 - ); maxY min cy
            if(upflow_search) 
                 ψ = η* upflowdθ ; 

            if(not upflow_search) 
                 ψ = η* downflowdθ ; 

      = ;   v cv
      return plume_finding; 
   } 
   else  
      return track_plume; 
} 

C. Behavior: Reacquire 
If the searcher loses contact with the plume for greater 

than λ s, then the behavior switches to one that is likely to 
reacquire contact with the plume so that the searcher does not 
need to revert to the (resource-consuming) plume-finding 
behavior. The searcher will revert to the plume-finding be-
havior if the plume is not re-contacted within N_re repeti-
tions of the reacquisition trajectory.  
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The reacquire behavior is implemented using on a clover 
leaf shaped trajectory, as in Figure 3. The clover leaf center 
is last location at which odor was detected: ( ,  ).  
The parameter  determines the size of the leaves. This 
pattern was selected as it yields significant search in all di-
rections relative to the last detection point and it is achiev-
able within the vehicle maneuvering constraints.  Table 2 
shows the pseudo code for this strategy. 

lastx lasty

leafd

 
Figure 3.  Clover leaf trajectory of the Reacquire Behavior. 

In Table 2, N_re is the number of cloverleaf patterns re-
peated prior to giving up and reverting to the find behavior.  
Cloverleaf is a function that issues the heading commands 
require for the vehicle to follow the trajectory shown in 
Figure 3.   

Table 2: Pseudo Code for Reacquire Behavior 
Behavior::reacquire( ) 
{ 
  if(odor conc. < threshold){ 
      if(n < N_re) { 
         if(cloverleaf(n) == done){ 
            n++; 
            return reacquire; 

       }           
         else 
            return plume_finding; 
   }    
   else { 
      n = 0; 
      return track_plume;  
   } 
} 

 

D. Behavior: Track-in and Track-out 
Once the vehicle detects the plume concentration over 

a threshold, the vehicle switches to the tracking behavior. 
This behavior attempts to trace the plume towards the source 
location. Due to the turbulent fluid flow, the sensed concen-
tration is an intermittent signal. To address the intermittency, 
we implement this behavior in two cases: Track-in and 
Track-out.  The pseudo-code is shown in Table 3, where 

T_last is the last time at which chemical was detected and t is 
the present time.   

Table 3: Pseudo Code for Plume Tracking Behavior 
Behavior::track_plume( ) 
{ 
   if((t – T_last) < λ)   
   { 
      if(odor conc. >= threshold)  
      {  // Track in 

         ψ= flow_dir + 180; 
      } 
      else  
      {  // Track out 

         ψ = flow_dir + 180 ± β(t);    
      } 
      = v ; v c
      return track_plume;   
   }    
   else  
   { 
      return reacquire; 
   } 
} 

  
In the Track-in case, the vehicle moves upflow di-

rectly so that the vehicle can approach the plume source 
quickly. In Track-out case, the vehicle moves upflow with an 
angle β(t). The sign preceding β(t) is selected to attempt to 
force the search to cross the plume [25]. 

E. Behavior: Fly-by  
The Fly-by maneuver was not used in the November 

2002 series of experiments.  It may be used in future experi-
ments.  The purpose of the Fly-by is to drive the vehicle past 
the declared source location along a trajectory optimized for 
data acquisition by an auxiliary sensor (video or sidescan 
sonar). Such auxiliary sensor information is useful source 
verification, identification, and ground truth location infor-
mation. For example, Figure 7 shows a prototype mission 
where a flyby is used to acquire sidescan imagery of a loca-
tion identified via CPT. 

F. Behavior: Cage  
The Cage behavior has two responsibilities. First, if the 

vehicle leaves the area of operation, the Cage behavior over-
rides the heading command of any of the other behaviors 
with a heading command along the inward pointing Normal 
vector to the nearest boundary.  This heading should return 
the vehicle to the operational area.  Second, if the vehicle is 
more than 30 m outside the operating envelope, then the 
Cage must abort the mission. 

G. Behavior Coordination 
Behaviors A through E were switched based on Boolean 

logic as indicated in the pseudo-code of each behavior.  Only 
one of Behaviors A through E was active at any given time.  
Behavior F, when active, will override any of the other be-
haviors.   
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H. Source Declaration 
The source declaration is not a separate behavior.  In-

stead, it is a function that is called at the end of the Track-
Out behavior.  Each time that the Track-In ends, the last de-
tection point is added to a list.  That list is sorted according 
to distance along the direction of the flow.  Along as the ve-
hicle is making progress up the plume, the first points on the 
list will be widely separated.  When the first three points on 
the list differ in the direction of the flow by less than 4 me-
ters, then the most upflow point on the list is declared as the 
source location.   

IV. IN-WATER RESULTS 
The CPT algorithms described herein were tested in No-

vember 2002 at San Clemente Island onboard a REMUS 
vehicle.  The chemical plume for these tests was Rhodamine 
dye.  The REMUS was equipped with a fluorimeter for 
chemical detection.  This set of tests included 15 vehicle 
runs.  The first 7 runs (MSN001—MSN006) involved pa-
rameter tuning, testing and revision of algorithms.  The main 
revisions concerned the logic for reliably declaring a source 
location.  On the last 8 runs (MSN007—MSN010r3), the 
source location was successfully declared 7 times.   

The declared source locations are shown in Table 4.  For 
MSN007r2—MSN009, the flow was to the southeast at ap-
proximately 135 deg relative to magnetic north.  For 
MSN010r1—MSN010r3, the flow was to the northwest at 
approximately 330 deg.  Between the various runs, the vehi-
cle starting location was varied.  As the data shows, in each 
case the AMP succeeded in finding the source and declaring 
the source location. Due to the fact that the chemical source 
is on the bottom and the vehicle is driving at a nonzero alti-
tude, the chemical will not be detected in the immediate vi-
cinity of the source.  The chemical will only be detected at a 
distance in the downflow direction that is sufficient for the 
chemical plume to rise to the altitude of the vehicle.  There-
fore, the declared source location is known to be some dis-
tance downflow from the source.  This downflow direction is 
known, but the distance is not known since the distance de-
pends on environmental factors. Therefore, the likely source 
location is within a long narrow rectangle.  The long edge is 
parallel to the flow. The downflow narrow edge is centered 
on the declared source location. 

The source declaration locations reported in Table 4 are 
calculated based on the REMUS navigation system.  That 
system uses buoy-mounted transponders.  Changes in the 
buoy locations, due for example to changes in flow, affect 
the accuracy of the reported locations.  For this set of ex-
periments, there is no ground-truth source location for com-
parison.  In future tests, we will use sidescan sonar to obtain 
an independent ground-truth source location in the same co-
ordinate system. 

Trajectory and chemical detection data for three runs is 
shown in Figure 4 – Figure 6.  In each of these figures, the 
red curve indicates the vehicle trajectory.  Each blue x indi-
cates the location of a chemical detection.  The green line 
indicates the boundary of the OpArea.  In Figure 6, the black 
dot indicates the declared source location.  For this set of 
experiments, a camera was in the water and focused on the 

chemical source.  The camera caught the vehicle operating 
near the source on many occasions.  One image is shown in 
Figure 8. 

Table 4.  Declared source locations and flow information for 
the last seven runs. 

Declared Source Location Flow 
Run ID Latitude Longitude cm/s degree 

MSN007r2 32N58.859 118W32.247 7-10 135 
MSN008r1 32N58.847 118W32.249 7-9 129 
MSN008r2 32N58.851 118W32.262 3-6 130 
MSN009 32N58.849 118W32.259 4-10 150 
MSN010r1 32N58.858 118W32.278 3-12 320 
MSN010r2 32N58.849 118W32.269 5-7 340 
MSN010r3 32N58.848 118W32.252 3-6 320 

One of the lessons learned in this experiment is that the 
altitude control algorithm achieves an altitude above the 
commanded altitude when the water depth is increasing (off-
shore direction) and an altitude below the commanded alti-
tude when the water depth is decreasing (onshore direction).  
Since the plume is near the bottom, the vehicle was more 
likely to detect when traveling toward the shore than when 
traveling away from the shore.  This is shown in Figure 5 
where the vehicle drives over the plume on an offshore head-
ing.  Later in the run, chemical is detected at the same loca-
tion when the vehicle has an onshore heading. 

 
Figure 4.  CPT MSN004 data for t in [800,1400] s. This time 

period includes FIND, TRACK, REACQUIRE, and DE-
CLARE behaviors. 

V. CONCLUSION 
This article has described chemical plume tracing algorithms 
and presented successful in-water experimental demonstra-
tion of chemical plume tracing on a REMUS class AUV. For 
these experiments, the OpArea was 250-300 m along shore 
and 100 m cross-shore.  Plumes were tacked for over 100m.  
These are the largest area CPT experiments and longest 
plume tracking experiments known to the authors.  Future 
experiments will (1) increase the size of the OpArea, (2) add 
post-declaration maneuvers, (3) add the ability to obtain 
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ground truth source locations, (4) add the ability to accom-
modate multiple sources. 
 

 
Figure 5.  CPT MSN006 for t in [520, 1800] s. This time 
period includes FIND, TRACK, REACQUIRE, and DE-

CLARE behaviors. 

 

 
Figure 6.  CPT MSN007r2 for t in [440,1190] s. This time 
period includes FIND, TRACK, REACQUIRE, and DE-
CLARE behaviors. The black dot indicates the declared 

source location.   
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Figure 7.  A prototype CPT mission with Flyby. 

 

 
Figure 8.  Image of REMUS vehicle performing CPT near 
the chemical source. 
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